Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Treatment of systemic lupus erythematosus: new therapeutic avenues and blind alleys

Key Points

  • Despite the broad biological and clinical heterogeneity of systemic lupus erythematosus (SLE), specific pathways of immune dysregulation have been well characterized and are known to be relevant to significant subsets of patients

  • Selective targeting of key immune regulatory molecules seems to offer promise for effective disease management with lower toxicity than current therapies

  • Selection of patients that are likely to respond to a particular therapeutic agent could eventually be guided by biomarkers predictive and reflective of response to that treatment

  • Clinical trials of biologic agents in SLE are significantly confounded by aggressive use of background medications that decrease the ability to detect differences between the study and control groups

  • In patients with mild disease manifestations, withdrawal of background medications might allow the implementation of smaller, true placebo-controlled clinical trials

  • In patients with high baseline disease activity, withdrawal of background therapies might not be feasible, but these individuals tend to have less profound responses on background therapies, and therefore trials limited to these patients can succeed without withdrawal of these agents

Abstract

Despite rapid accumulation of knowledge about complex immune dysregulation in systemic lupus erythematosus (SLE) and major primary lupus syndromes, and a plethora of promising new treatments reaching preclinical and early clinical studies, advanced-phase trials of new biologic agents have repeatedly failed to achieve their clinical end points. It is possible that none of these agents work, but the accuracy of this suggestion is as unclear as the case for efficacy, owing to issues in the design of studies and the opacity of the data that have resulted. Disease heterogeneity and complexity might be a hurdle that is simply too high to overcome by existing methodological approaches, and the way forward to interpretable trial results remains unclear. Nonetheless, well-characterized patterns of immune pathology are shared by substantial subsets of patients, and selective targeting of one or more relevant immune system molecules seems to offer the promise of safer and more effective treatments. Evolution dictates a more personalized approach to therapy and trial design, but this option seems challenging in the current economic, regulatory and scientific environment. This Review addresses these concerns by considering the progress of some of the investigational treatments targeting key physiological abnormalities in lupus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathogenic mechanisms in SLE that can be therapeutically targeted.

Similar content being viewed by others

References

  1. Lo, M. S. & Tsokos, G. C. Treatment of systemic lupus erythematosus: new advances in targeted therapy. Ann. NY Acad. Sci. 1247, 138–152 (2012).

    CAS  PubMed  Google Scholar 

  2. Bruce, I. N., Gordon, C., Merrill, J. T. & Isenberg, D. Clinical trials in lupus: what have we learned so far? Rheumatology (Oxford) 49, 1025–1027 (2010).

    Google Scholar 

  3. Niewold, T. B. Interferon α as a primary pathogenic factor in human lupus. J. Interferon Cytokine Res. 31, 887–892 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Davidson, A. The rationale for BAFF inhibition in systemic lupus erythematosus. Curr. Rheumatol. Rep. 14, 295–302 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kalunian, K. et al. Efficacy and safety of rontalizumab (anti-interferon α) in SLE subjects with restricted immunosuppressant use: results of a randomized, double-blind, placebo-controlled phase 2 study. Arthritis Rheum. 64, S1111 (2012).

    Google Scholar 

  6. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    CAS  PubMed  Google Scholar 

  7. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Merrill, J. T. et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 62, 222–233 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rovin, B. H. et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 64, 1215–1226 (2012).

    CAS  PubMed  Google Scholar 

  10. Merrill, J. T. et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 62, 3077–3087 (2010).

    CAS  PubMed  Google Scholar 

  11. Furie, R. et al. Efficacy and safety of abatacept over 12 months in patients with lupus nephritis: results from a multicenter, randomized, double-blind, placebo-controlled phase II/III study. Arthritis Rheum. 63, S962–S963 (2011).

    Google Scholar 

  12. Thanou, A. & Merrill, J. T. Top. 10 things to know about lupus activity measures. Curr. Rheumatol. Rep. 15, 334 (2013).

    PubMed  Google Scholar 

  13. Rullo, O. J. & Tsao, B. P. Recent insights into the genetic basis of systemic lupus erythematosus. Ann. Rheum. Dis. 72 (Suppl. 2), ii56–ii61 (2013).

    CAS  PubMed  Google Scholar 

  14. Crispin, J. C., Hedrich, C. M. & Tsokos, G. C. Gene-function studies in systemic lupus erythematosus. Nat. Rev. Rheumatol. 9, 476–484 (2013).

    CAS  PubMed  Google Scholar 

  15. Gonzalez-Navajas, J. M., Lee, J., David, M. & Raz, E. Immunomodulatory functions of type I interferons. Nat. Rev. Immunol. 12, 125–135 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Munoz, L. E., Lauber, K., Schiller, M., Manfredi, A. A. & Herrmann, M. The role of defective clearance of apoptotic cells in systemic autoimmunity. Nat. Rev. Rheumatol. 6, 280–289 (2010).

    PubMed  Google Scholar 

  17. Baccala, R., Hoebe, K., Kono, D. H., Beutler, B. & Theofilopoulos, A. N. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat. Med. 13, 543–551 (2007).

    CAS  PubMed  Google Scholar 

  18. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).

    PubMed  PubMed Central  Google Scholar 

  19. Liu, Z. & Davidson, A. Taming lupus—a new understanding of pathogenesis is leading to clinical advances. Nat. Med. 18, 871–882 (2012).

    PubMed  PubMed Central  Google Scholar 

  20. Knight, J. S. & Kaplan, M. J. Lupus neutrophils: 'NET' gain in understanding lupus pathogenesis. Curr. Opin. Rheumatol. 24, 441–450 (2012).

    CAS  PubMed  Google Scholar 

  21. Lichtman, E. I., Helfgott, S. M. & Kriegel, M. A. Emerging therapies for systemic lupus erythematosus—focus on targeting interferon-α. Clin. Immunol. 143, 210–221 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Merrill, J. T. et al. Safety profile and clinical activity of sifalimumab, a fully human anti-interferon α monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann. Rheum. Dis. 70, 1905–1913 (2011).

    CAS  PubMed  Google Scholar 

  23. Petri, M. et al. Sifalimumab, a human anti-interferon-α monoclonal antibody, in systemic lupus erythematosus: a phase 1 randomized controlled, dose-escalation study. Arthritis Rheum. 65, 1011–1021 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lauwerys, B. R. et al. Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon α-kinoid. Arthritis Rheum. 65, 447–456 (2013).

    CAS  PubMed  Google Scholar 

  25. Tcherepanova, I., Curtis, M., Sale, M., Miesowicz, F. & Nicolette, C. Results of a randomized placebo controlled phase IA study of AGS-009, a humanized anti-inteferon-α monoclonal antibody in subjects with systemic lupus erythematosus. Ann. Rheum. Dis. 71, 536 (2012).

    Google Scholar 

  26. US National Library of Medicine. ClinicalTrials.gov [online].

  27. US National Library of Medicine. ClinicalTrials.gov [online].

  28. Gronwall, C., Vas, J. & Silverman, G. J. Protective roles of natural IgM antibodies. Front. Immunol. 3, 66 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Stafford, H. A., Anderson, C. J. & Reichlin, M. Unmasking of anti-ribosomal P autoantibodies in healthy individuals. J. Immunol. 155, 2754–2761 (1995).

    CAS  PubMed  Google Scholar 

  30. Hansen, K. E., Arnason, J. & Bridges, A. J. Autoantibodies and common viral illnesses. Semin. Arthritis Rheum. 27, 263–271 (1998).

    CAS  PubMed  Google Scholar 

  31. Marin, G. G., Cardiel, M. H., Cornejo, H. & Viveros, M. E. Prevalence of antinuclear antibodies in 3 groups of healthy individuals: blood donors, hospital personnel, and relatives of patients with autoimmune diseases. J. Clin. Rheumatol. 15, 325–329 (2009).

    PubMed  Google Scholar 

  32. Lu, T. Y. et al. A retrospective seven-year analysis of the use of B cell depletion therapy in systemic lupus erythematosus at University College London Hospital: the first fifty patients. Arthritis Rheum. 61, 482–487 (2009).

    PubMed  Google Scholar 

  33. Catapano, F., Chaudhry, A. N., Jones, R. B., Smith, K. G. & Jayne, D. W. Long-term efficacy and safety of rituximab in refractory and relapsing systemic lupus erythematosus. Nephrol. Dial. Transplant. 25, 3586–3592 (2010).

    CAS  PubMed  Google Scholar 

  34. Diaz-Lagares, C. et al. Efficacy of rituximab in 164 patients with biopsy-proven lupus nephritis: pooled data from European cohorts. Autoimmun. Rev. 11, 357–364 (2012).

    CAS  PubMed  Google Scholar 

  35. Reddy, V., Jayne, D., Close, D. & Isenberg, D. A. B-cell depletion in SLE: clinical and trial experience with rituximab and ocrelizumab and implications for study design. Arthritis Res. Ther. 15, S2 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Looney, R. J. et al. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum. 50, 2580–2589 (2004).

    CAS  PubMed  Google Scholar 

  37. Mei, H. E., Schmidt, S. & Dorner, T. Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity. Arthritis Res. Ther. 14 (Suppl. 5), S1 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. Mysler, E. F. et al. Efficacy and safety of ocrelizumab, a humanized antiCD20 antibody, in patients with active proliferative lupus nephritis (LN): results from the randomized, double-blind phase III BELONG study. Arthritis Rheum. 62, S607 (2010).

    Google Scholar 

  39. Thanou-Stavraki, A. & Sawalha, A. H. An update on belimumab for the treatment of lupus. Biologics 5, 33–43 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wallace, D. J. et al. Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-202760.

  41. Furie, R. A. et al. Effects of blisibimod, a sucutaneous inhibitor of B cell activating factor, in patients with SLE. Ann. Rheum. Dis. 72 (Suppl. 3), 90 (2013).

    Google Scholar 

  42. Fillatreau, S., Gray, D. & Anderton, S. M. Not always the bad guys: B cells as regulators of autoimmune pathology. Nat. Rev. Immunol. 8, 391–397 (2008).

    CAS  PubMed  Google Scholar 

  43. Vital, E. M. et al. B cell biomarkers of rituximab responses in systemic lupus erythematosus. Arthritis Rheum. 63, 3038–3047 (2011).

    CAS  PubMed  Google Scholar 

  44. Merrill, J. et al. Assessment of flares in lupus patients enrolled in a phase II/III study of rituximab (EXPLORER). Lupus 20, 709–716 (2011).

    CAS  PubMed  Google Scholar 

  45. Wallace, D. J. et al. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Rheum. 61, 1168–1178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Furie, R. A. et al. Novel evidence-based systemic lupus erythematosus responder index. Arthritis Rheum. 61, 1143–1151 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. van Vollenhoven, R. F. et al. Belimumab in the treatment of systemic lupus erythematosus: high disease activity predictors of response. Ann. Rheum. Dis. 71, 1343–1349 (2012).

    CAS  PubMed  Google Scholar 

  48. Kyttaris, V. C., Zhang, Z., Kampagianni, O. & Tsokos, G. C. Calcium signaling in systemic lupus erythematosus T cells: a treatment target. Arthritis Rheum. 63, 2058–2066 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Crispin, J. C., Kyttaris, V. C., Terhorst, C. & Tsokos, G. C. T cells as therapeutic targets in SLE. Nat. Rev. Rheumatol. 6, 317–325 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kyttaris, V. C., Wang, Y., Juang, Y. T., Weinstein, A. & Tsokos, G. C. Increased levels of NF-ATc2 differentially regulate CD154 and IL-2 genes in T cells from patients with systemic lupus erythematosus. J. Immunol. 178, 1960–1966 (2007).

    CAS  PubMed  Google Scholar 

  51. Sidiropoulos, P. I. & Boumpas, D. T. Lessons learned from anti-CD40L treatment in systemic lupus erythematosus patients. Lupus 13, 391–397 (2004).

    CAS  PubMed  Google Scholar 

  52. Kalunian, K. C., Davis, J. C. Jr, Merrill, J. T., Totoritis, M. C. & Wofsy, D. Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 46, 3251–3258 (2002).

    CAS  PubMed  Google Scholar 

  53. Boumpas, D. T. et al. A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 48, 719–727 (2003).

    CAS  PubMed  Google Scholar 

  54. Robles-Carrillo, L. et al. Anti-CD40L immune complexes potently activate platelets in vitro and cause thrombosis in FCGR2A transgenic mice. J. Immunol. 185, 1577–1583 (2010).

    CAS  PubMed  Google Scholar 

  55. US National Library of Medicine. ClinicalTrials.gov [online].

  56. Wofsy, D., Hillson, J. L. & Diamond, B. Abatacept for lupus nephritis: alternative definitions of complete response support conflicting conclusions. Arthritis Rheum. 64, 3660–3665 (2012).

    CAS  PubMed  Google Scholar 

  57. US National Library of Medicine. ClinicalTrials.gov [online].

  58. US National Library of Medicine. ClinicalTrials.gov [online].

  59. Giacomini, P. S. & Bar-Or, A. Laquinimod in multiple sclerosis. Clin. Immunol. 142, 38–43 (2012).

    CAS  PubMed  Google Scholar 

  60. Hahn, B. H., Wong, M., Lourenco, E. & Skaggs, B. Laquinimod (LAQ) is equivalent to mycophenolate mofetil (MMF) in preventing and suppressing murine lupus nephritis and has greater effects on myeloid/monocyte/macrophage cells. Arthritis Rheum. 64, S1032 (2012).

    Google Scholar 

  61. US National Library of Medicine. ClinicalTrials.gov [online].

  62. Jayne, D. et al. A randomized controlled study of laquinimod in active lupus nephritis patients in combination with standard of care. Ann. Rheum. Dis. 72, 164 (2013).

    Google Scholar 

  63. Bengtsson, A. A. et al. Pharmacokinetics, tolerability, and preliminary efficacy of paquinimod (ABR-215757), a new quinoline-3-carboxamide derivative: studies in lupus-prone mice and a multicenter, randomized, double-blind, placebo-controlled, repeat-dose, dose-ranging study in patients with systemic lupus erythematosus. Arthritis Rheum. 64, 1579–1588 (2012).

    CAS  PubMed  Google Scholar 

  64. Bengtsson, A. et al. An exploratory study to evaluate changes in disease activity and biomarkers during treatment with ABR-215757 in patients with mild active systemic lupus erythematosus (SLE). Ann. Rheum. Dis. 70, 316 (2011).

    Google Scholar 

  65. Chi, H. Sphingosine-1-phosphate and immune regulation: trafficking and beyond. Trends Pharmacol. Sci. 32, 16–24 (2011).

    CAS  PubMed  Google Scholar 

  66. Willis, M. A. & Cohen, J. A. Fingolimod therapy for multiple sclerosis. Semin. Neurol. 33, 37–44 (2013).

    PubMed  Google Scholar 

  67. Sun, Y. et al. FTY720-induced conversion of conventional Foxp3 CD4+ T cells to Foxp3+ regulatory T cells in NOD mice. Am. J. Reprod. Immunol. 66, 349–362 (2011).

    CAS  PubMed  Google Scholar 

  68. US National Library of Medicine. ClinicalTrials.gov [online].

  69. Schall, N. et al. Peptide-based approaches to treat lupus and other autoimmune diseases. J. Autoimmun. 39, 143–153 (2012).

    CAS  PubMed  Google Scholar 

  70. Monneaux, F. et al. Selective modulation of CD4+ T cells from lupus patients by a promiscuous, protective peptide analog. J. Immunol. 175, 5839–5847 (2005).

    CAS  PubMed  Google Scholar 

  71. Zimmer, R., Scherbarth, H. R., Rillo, O. L., Gomez-Reino, J. J. & Muller, S. Lupuzor/P140 peptide in patients with systemic lupus erythematosus: a randomised, double-blind, placebo-controlled phase IIb clinical trial. Ann. Rheum. Dis. http://dx.doi.org/10.1136/annrheumdis-2012-202460.

  72. Zimmer, R., Wallace, D. J. & Muller, S. Randomized, double-blind, placebo-controlled studies of P140 peptide in mannitol (Lupuzor) and trehalose (Forigerimod) in patients with SLE. Arthritis Rheum. 64, S1110 (2012).

    Google Scholar 

  73. Ronnblom, L. & Elkon, K. B. Cytokines as therapeutic targets in SLE. Nat. Rev. Rheumatol. 6, 339–347 (2010).

    PubMed  Google Scholar 

  74. Jones, S. A., Scheller, J. & Rose-John, S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J. Clin. Invest. 121, 3375–3383 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kurzeja, M., Rudnicka, L. & Olszewska, M. New interleukin-23 pathway inhibitors in dermatology: ustekinumab, briakinumab, and secukinumab. Am. J. Clin. Dermatol. 12, 113–125 (2011).

    PubMed  Google Scholar 

  76. Li, J., Wang, X., Zhang, F. & Yin, H. Toll-like receptors as therapeutic targets for autoimmune connective tissue diseases. Pharmacol. Ther. 138, 441–451 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Aringer, M. & Smolen, J. S. Therapeutic blockade of TNF in patients with SLE—promising or crazy? Autoimmun. Rev. 11, 321–325 (2012).

    CAS  PubMed  Google Scholar 

  78. Fleischmann, R. M. et al. Evidence of peripheral B cell depletion in subjects with controlled systemic lupus erythematosus (SLE) following subcutaneous administration of SBI-087. Arthritis Rheum. 62, S1154 (2010).

    Google Scholar 

  79. Czuczman, M. S. & Gregory, S. A. The future of CD20 monoclonal antibody therapy in B-cell malignancies. Leuk. Lymphoma 51, 983–994 (2010).

    CAS  PubMed  Google Scholar 

  80. Shaw, M. et al. The effects of repeated doses of briobacept (BR3-Fc) in patients with rheumatoid arthritis. Ann. Rheum. Dis. 67, 87 (2008).

    Google Scholar 

  81. Dall'Era, M. et al. Reduced B lymphocyte and immunoglobulin levels after atacicept treatment in patients with systemic lupus erythematosus: results of a multicenter, phase Ib, double-blind, placebo-controlled, dose-escalating trial. Arthritis Rheum. 56, 4142–4150 (2007).

    CAS  PubMed  Google Scholar 

  82. Pena-Rossi, C. et al. An exploratory dose-escalating study investigating the safety, tolerability, pharmacokinetics and pharmacodynamics of intravenous atacicept in patients with systemic lupus erythematosus. Lupus 18, 547–555 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ginzler, E. M. et al. Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res. Ther. 14, R33 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Seavey, M. M., Lu, L. D., Stump, K. L., Wallace, N. H. & Ruggeri, B. A. Novel, orally active, proteasome inhibitor, delanzomib (CEP-18770), ameliorates disease symptoms and glomerulonephritis in two preclinical mouse models of SLE. Int. Immunopharmacol. 12, 257–270 (2012).

    CAS  PubMed  Google Scholar 

  85. Ichikawa, H. T. et al. Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheum. 64, 493–503 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Mozes, E. & Sharabi, A. A novel tolerogenic peptide, hCDR1, for the specific treatment of systemic lupus erythematosus. Autoimmun. Rev. 10, 22–26 (2010).

    CAS  PubMed  Google Scholar 

  87. Cardiel, M. H. et al. Abetimus sodium for renal flare in systemic lupus erythematosus: results of a randomized, controlled phase III trial. Arthritis Rheum. 58, 2470–2480 (2008).

    CAS  PubMed  Google Scholar 

  88. Mosca, M., Baldini, C. & Bombardieri, S. LJP-394 (abetimus sodium) in the treatment of systemic lupus erythematosus. Expert Opin. Pharmacother. 8, 873–879 (2007).

    CAS  PubMed  Google Scholar 

  89. Merrill, J. T. & Buyon, J. P. Connective tissue diseases: What does the death of Riquent hold for the future of SLE? Nat. Rev. Rheumatol. 5, 306–307 (2009).

    PubMed  Google Scholar 

  90. Smith, K. G. & Clatworthy, M. R. FcγRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat. Rev. Immunol. 10, 328–343 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Illei, G. G. et al. Tocilizumab in systemic lupus erythematosus: data on safety, preliminary efficacy, and impact on circulating plasma cells from an open-label phase I dosage-escalation study. Arthritis Rheum. 62, 542–552 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yeilding, N. et al. Development of the IL-12/23 antagonist ustekinumab in psoriasis: past, present, and future perspectives—an update. Ann. NY Acad. Sci. 1263, 1–12 (2012).

    PubMed  Google Scholar 

  93. Gordon, K. B. et al. A phase III, randomized, controlled trial of the fully human IL-12/23 mAb briakinumab in moderate-to-severe psoriasis. J. Invest. Dermatol. 132, 304–314 (2012).

    CAS  PubMed  Google Scholar 

  94. Llorente, L. et al. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis Rheum. 43, 1790–1800 (2000).

    CAS  PubMed  Google Scholar 

  95. Deng, G. M., Liu, L., Bahjat, F. R., Pine, P. R. & Tsokos, G. C. Suppression of skin and kidney disease by inhibition of spleen tyrosine kinase in lupus-prone mice. Arthritis Rheum. 62, 2086–2092 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ichinose, K., Juang, Y. T., Crispin, J. C., Kis-Toth, K. & Tsokos, G. C. Suppression of autoimmunity and organ pathology in lupus-prone mice upon inhibition of calcium/calmodulin-dependent protein kinase type IV. Arthritis Rheum. 63, 523–529 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tagoe, C. & Putterman, C. JAK2 inhibition in murine systemic lupus erythematosus. Immunotherapy 4, 369–372 (2012).

    CAS  PubMed  Google Scholar 

  98. Deng, J., Huo, D., Wu, Q., Yang, Z. & Liao, Y. A meta-analysis of randomized controlled trials comparing tacrolimus with intravenous cyclophosphamide in the induction treatment for lupus nephritis. Tohoku J. Exp. Med. 227, 281–288 (2012).

    CAS  PubMed  Google Scholar 

  99. Barikbin, B., Givrad, S., Yousefi, M. & Eskandari, F. Pimecrolimus 1% cream versus betamethasone 17-valerate 0.1% cream in the treatment of facial discoid lupus erythematosus: a double-blind, randomized pilot study. Clin. Exp. Dermatol. 34, 776–780 (2009).

    CAS  PubMed  Google Scholar 

  100. Fernandez, D., Bonilla, E., Mirza, N., Niland, B. & Perl, A. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 54, 2983–2988 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Lai, Z. W. et al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 64, 2937–2946 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Stirzaker, R. A. et al. Administration of fasudil, a ROCK inhibitor, attenuates disease in lupus-prone NZB/W F1 female mice. Lupus 21, 656–661 (2012).

    CAS  PubMed  Google Scholar 

  103. Ando, S. et al. FTY720 exerts a survival advantage through the prevention of end-stage glomerular inflammation in lupus-prone BXSB mice. Biochem. Biophys. Res. Commun. 394, 804–810 (2010).

    CAS  PubMed  Google Scholar 

  104. US National Library of Medicine. ClinicalTrials.gov [online].

  105. US National Library of Medicine. ClinicalTrials.gov [online].

  106. US National Library of Medicine. ClinicalTrials.gov [online].

  107. US National Library of Medicine. ClinicalTrials.gov [online].

  108. US National Library of Medicine. ClinicalTrials.gov [online].

  109. US National Library of Medicine. ClinicalTrials.gov [online].

  110. US National Library of Medicine. ClinicalTrials.gov [online].

  111. US National Library of Medicine. ClinicalTrials.gov [online].

  112. US National Library of Medicine. ClinicalTrials.gov [online].

  113. US National Library of Medicine. ClinicalTrials.gov [online].

  114. US National Library of Medicine. ClinicalTrials.gov [online].

  115. US National Library of Medicine. ClinicalTrials.gov [online].

  116. US National Library of Medicine. ClinicalTrials.gov [online].

  117. US National Library of Medicine. ClinicalTrials.gov [online].

  118. US National Library of Medicine. ClinicalTrials.gov [online].

  119. US National Library of Medicine. ClinicalTrials.gov [online].

  120. US National Library of Medicine. ClinicalTrials.gov [online].

  121. US National Library of Medicine. ClinicalTrials.gov [online].

  122. US National Library of Medicine. ClinicalTrials.gov [online].

  123. US National Library of Medicine. ClinicalTrials.gov [online].

  124. US National Library of Medicine. ClinicalTrials.gov [online].

  125. US National Library of Medicine. ClinicalTrials.gov [online].

  126. US National Library of Medicine. ClinicalTrials.gov [online].

  127. US National Library of Medicine. ClinicalTrials.gov [online].

  128. US National Library of Medicine. ClinicalTrials.gov [online].

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Thanou researched data for the article and wrote the first draft of the manuscript. J. T. Merrill expanded the content of the article and reviewed/edited the manuscript before submission.

Corresponding author

Correspondence to Joan T. Merrill.

Ethics declarations

Competing interests

A. Thanou declares that she has received a one-year research grant from RDRCC for funding of a clinical trial of dipyridamole in the treatment of lupus. J. T. Merrill declares that she has received speaking, consulting and/or training fees from Abbott/Abbvie, Amgen, Argos, Astellas, Baxter, Biogen Idec, Bristol Myers Squibb, Cephalon, DSMB, Dynavax, Eisai, EMD Serono, Genentech/Roche, HGS/GlaxoSmithKline, Idera, InCyte, Kirin, Lilly, Macrogenics, MedImmune/AstraZeneca, Neovacs, Novo Nordisk, Ono, Parexel, Pfizer, Questcor, RPS, Takeda and UCB, and has participated in clinical trial adjudication for DSMB.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thanou, A., Merrill, J. Treatment of systemic lupus erythematosus: new therapeutic avenues and blind alleys. Nat Rev Rheumatol 10, 23–34 (2014). https://doi.org/10.1038/nrrheum.2013.145

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2013.145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing