Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The benefits of exercise training in multiple sclerosis

Abstract

Multiple sclerosis (MS) is an immune-mediated disease characterized by inflammatory demyelination and neurodegeneration within the CNS. This damage of CNS structures leads to deficits of body functions, which, in turn, affect patient activities, such as walking, and participation. The pathogenesis and resulting consequences of MS have been described as concepts within the International Classification of Functioning, Disability and Health (ICF) model—an international standard to describe and measure health and disability. Evidence suggests that exercise training in people with MS has the potential to target and improve many of the components outlined in the ICF model. Although the body of research examining the effects of exercise training on depression, cognition and participatory outcomes is not sufficiently developed, some preliminary evidence is promising. Exercise training is proposed to affect inflammation, neurodegeneration, and CNS structures, but current evidence is limited. In this Review, we discuss evidence from clinical trials that suggests beneficial effects of exercise training on muscle strength, aerobic capacity and walking performance, and on fatigue, gait, balance and quality of life. Issues with current studies and areas of future research are highlighted.

Key Points

  • Multiple sclerosis (MS) is an immune-mediated neurodegenerative disease that results in the progressive accumulation of mental and physical symptoms

  • The International Classification of Functioning, Disability and Health (ICF) model for MS describes pathogenesis and downstream consequences on CNS structures, body functions, patient activities and participation

  • Exercise training has beneficial effects on muscular strength, aerobic capacity and ambulatory performance, and may improve fatigue, gait, balance and quality of life in patients with MS

  • Effects of exercise training on MS pathogenesis, CNS structures, depression, cognition, and participation outcomes have not been adequately investigated or consistently supported

  • Exercise training has meaningful consequences in people with MS, and continued investigation will further elucidate the range of benefits of exercise on the various constructs of the ICF model

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interactions between exercise and the ICF model of MS pathogenesis.

Similar content being viewed by others

References

  1. Frohman, E. M., Racke, M. K. & Raine, C. S. Multiple sclerosis—the plaque and its pathogenesis. N. Engl. J. Med. 354, 942–955 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Mayr, W. T. et al. Incidence and prevalence of multiple sclerosis in Olmsted County, Minnesota, 1985–2000. Neurology 61, 1373–1377 (2003).

    CAS  PubMed  Google Scholar 

  3. Page, W. F., Kurtzke, J. F., Murphy, F. M. & Norman, J. E. Jr. Epidemiology of multiple sclerosis in U.S. veterans: V. Ancestry and the risk of multiple sclerosis. Ann. Neurol. 33, 632–639 (1993).

    CAS  PubMed  Google Scholar 

  4. International Classification of Functioning, Disability and Health (ICF). World Health Organization [online], (2001).

  5. Coenen, M. et al. The development of ICF Core Sets for multiple sclerosis: results of the International Consensus Conference. J. Neurol. 258, 1477–1488 (2011).

    PubMed  Google Scholar 

  6. Goldman, M. D., Marrie, R. A. & Cohen, J. A. Evaluation of the six-minute walk in multiple sclerosis subjects and healthy controls. Mult. Scler. 14, 383–390 (2008).

    PubMed  Google Scholar 

  7. Larocca, N. G. Impact of walking impairment in multiple sclerosis: perspectives of patients and care partners. Patient 4, 189–201 (2011).

    PubMed  Google Scholar 

  8. Motl, R. W., McAuley, E. & Snook, E. M. Physical activity and multiple sclerosis: a meta-analysis. Mult. Scler. 11, 459–463 (2005).

    PubMed  Google Scholar 

  9. Motl, R. W. Physical activity and irreversible disability in multiple sclerosis. Exerc. Sport Sci. Rev. 38, 186–191 (2010).

    PubMed  Google Scholar 

  10. White, L. J. & Castellano, V. Exercise and brain health—implications for multiple sclerosis: Part 1—neuronal growth factors. Sports Med. 38, 91–100 (2008).

    PubMed  Google Scholar 

  11. Andreasen, A., Stenager, E. & Dalgas, U. The effect of exercise therapy on fatigue in multiple sclerosis. Mult. Scler. 17, 1041–1054 (2011).

    CAS  PubMed  Google Scholar 

  12. Garrett, M. & Coote, S. Multiple sclerosis and exercise in people with minimal gait impairment—a review. Phys. Ther. Rev. 14, 169–180 (2009).

    Google Scholar 

  13. Motl, R. W., Goldman, M. D. & Benedict, R. H. Walking impairment in patients with multiple sclerosis: exercise training as a treatment option. Neuropsychiatr. Dis. Treat. 6, 767–774 (2010).

    PubMed  PubMed Central  Google Scholar 

  14. Rietberg, M. B., Brooks, D., Uitdehaag, B. M. & Kwakkel, G. Exercise therapy for multiple sclerosis. Cochrane Database of Systematic Reviews Issue 1. Art. No.:CD003980. http://dx.doi.org/10.1002/14651858.CD003980.pub2.

  15. Dalgas, U., Stenager, E. & Ingemann-Hansen, T. Multiple sclerosis and physical exercise: recommendations for the application of resistance-, endurance- and combined training. Mult. Scler. 14, 35–53 (2008).

    CAS  PubMed  Google Scholar 

  16. Asano, M., Dawes, D. J., Arafah, A., Moriello, C. & Mayo, N. E. What does a structured review of the effectiveness of exercise interventions for persons with multiple sclerosis tell us about the challenges of designing trials? Mult. Scler. 15, 412–421 (2009).

    CAS  PubMed  Google Scholar 

  17. White, L. J. & Dressendorfer, R. H. Exercise and multiple sclerosis. Sports Med. 34, 1077–1100 (2004).

    PubMed  Google Scholar 

  18. Brown, T. & Kraft, G. H. Exercise and rehabilitation for individuals with multiple sclerosis. Phys. Med. Rehabil. Clin. N. Am. 16, 513–555 (2006).

    Google Scholar 

  19. Ponichtera-Mulcare, J. A. Exercise and multiple sclerosis. Med. Sci. Sports Exerc. 25, 451–465 (1993).

    CAS  PubMed  Google Scholar 

  20. Caspersen, C. J., Powell, K. E. & Christenson, G. M. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep. 100, 126–131 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Petajan, J. H. & White, A. T. Recommendations for physical activity in patients with multiple sclerosis. Sports Med. 27, 179–191 (1999).

    CAS  PubMed  Google Scholar 

  22. Dalgas, U., Ingemann-Hansen, T. & Stenager, E. Physical exercise and MS recommendations. Int. MS J. 16, 5–11 (2009).

    CAS  PubMed  Google Scholar 

  23. Ginis, K. A. et al. The development of evidence-informed physical activity guidelines for adults with spinal cord injury. Spinal Cord 49, 1088–1096 (2011).

    PubMed  Google Scholar 

  24. Brouwers, M. C. et al. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ 182, E839–E842 (2010).

    PubMed  PubMed Central  Google Scholar 

  25. Brouwers, M. C. et al. AGREE II: advancing guideline development, reporting and evaluation in health care. J. Clin. Epidemiol. 63, 1308–1311 (2010).

    PubMed  Google Scholar 

  26. Brouwers, M. C. et al. AGREE II: advancing guideline development, reporting and evaluation in health care. Prev. Med. 51, 421–424 (2010).

    PubMed  Google Scholar 

  27. Yong, V. W. Inflammation in neurological disorders: a help or a hindrance? Neuroscientist 16, 408–420 (2010).

    CAS  Google Scholar 

  28. Nicklas, B. J. & Brinkley, T. E. Exercise training as a treatment for chronic inflammation in the elderly. Exerc. Sport Sci. Rev. 37, 165–170 (2009).

    PubMed  PubMed Central  Google Scholar 

  29. Golzari, Z., Shabkhiz, F., Soudi, S., Kordi, M. R. & Hashemi, S. M. Combined exercise training reduces IFN-γ and IL-17 levels in the plasma and the supernatant of peripheral blood mononuclear cells in women with multiple sclerosis. Int. Immunopharmacol. 10, 1415–1419 (2010).

    CAS  PubMed  Google Scholar 

  30. Schulz, K.-H. et al. Impact of aerobic training on immune-endocrine parameters, neurotrophic factors, quality of life and coordinative function in multiple sclerosis. J. Neurol. Sci. 225, 11–18 (2004).

    CAS  PubMed  Google Scholar 

  31. White, L. J., Castellano, V. & Mc Coy, S. C. Cytokine responses to resistance training in people with multiple sclerosis. J. Sports Sci. 24, 911–914 (2006).

    PubMed  Google Scholar 

  32. Castellano, V., Patel, D. I. & White, L. J. Cytokine responses to acute and chronic exercise in multiple sclerosis. J. Appl. Physiol. 104, 1697–1702 (2008).

    CAS  PubMed  Google Scholar 

  33. Cotman, C. W. & Engesser-Cesar, C. Exercise enhances and protects brain function. Exerc. Sport Sci. Rev. 30, 75–79 (2002).

    PubMed  Google Scholar 

  34. Castellano, V. & White, L. J. Serum brain-derived neurotrophic factor response to aerobic exercise in multiple sclerosis. J. Neurol. Sci. 269, 85–91 (2008).

    CAS  PubMed  Google Scholar 

  35. Prakash, R. S., Snook, E. M., Motl, R. W. & Kramer, A. F. Aerobic fitness is associated with gray matter volume and white matter integrity in multiple sclerosis. Brain Res. 1341, 41–51 (2010).

    CAS  PubMed  Google Scholar 

  36. Prakash, R. S., Patterson, B., Janssen, A., Abduljalil, A. & Boster, A. Physical activity associated with increased resting-state functional connectivity in multiple sclerosis. J. Int. Neuropsychol. Soc. 17, 986–997 (2011).

    PubMed  Google Scholar 

  37. Rossi, S. et al. Exercise attenuates the clinical, synaptic and dendritic abnormalities of experimental autoimmune encephalomyelitis. Neurobiol. Dis. 36, 51–59 (2009).

    CAS  PubMed  Google Scholar 

  38. Colcombe, S. J. et al. Aerobic exercise training increases brain volume in aging humans. J. Gerontol. A Biol. Sci. Med. Sci. 61, 1166–1170 (2006).

    PubMed  Google Scholar 

  39. Colcombe, S. J. et al. Cardiovascular fitness, cortical plasticity, and aging. Proc. Natl Acad. Sci. USA 101, 3316–3321 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Colcombe, S. J. et al. Aerobic fitness reduces brain tissue loss in aging humans. J. Gerontol. A Biol. Sci. Med. Sci. 58, 176–180 (2003).

    PubMed  Google Scholar 

  41. Erickson, K. I. et al. Exercise training increases size of hippocampus and improves memory. Proc. Natl Acad. Sci. USA 108, 3017–3022 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Erickson, K. I. et al. Training-induced plasticity in older adults: effects of training on hemispheric asymmetry. Neurobiol. Aging 28, 272–283 (2007).

    PubMed  Google Scholar 

  43. Erickson, K. I. et al. Training-induced functional activation changes in dual-task processing: an fMRI study. Cereb. Cortex 17, 192–204 (2007).

    PubMed  Google Scholar 

  44. Rao, S. M., Leo, G. J., Bernardin, L. & Unverzagt, F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology 41, 685–691 (1991).

    CAS  PubMed  Google Scholar 

  45. Benedict, R. H. et al. Neocortical atrophy, third ventricular width, and cognitive dysfunction in multiple sclerosis. Arch. Neurol. 63, 1301–1306 (2006).

    PubMed  Google Scholar 

  46. Calabrese, M. et al. Widespread cortical thinning characterizes patients with MS with mild cognitive impairment. Neurology 74, 321–328 (2010).

    CAS  PubMed  Google Scholar 

  47. Benedict, R. H. et al. Frontal cortex atrophy predicts cognitive impairment in multiple sclerosis. J. Neuropsychiatry Clin. Neurosci. 14, 44–51 (2002).

    PubMed  Google Scholar 

  48. Benedict, R. H. et al. Predicting quality of life in multiple sclerosis: accounting for physical disability, fatigue, cognition, mood disorder, personality, and behavior change. J. Neurol. Sci. 231, 29–34 (2005).

    PubMed  Google Scholar 

  49. White, L. J. et al. Resistance training improves strength and functional capacity in persons with multiple sclerosis. Mult. Scler. 10, 668–674 (2004).

    CAS  PubMed  Google Scholar 

  50. McCullagh, R., Fitzgerald, A. P., Murphy, R. P. & Cooke, G. Long-term benefits of exercising on quality of life and fatigue in multiple sclerosis patients with mild disability: a pilot study. Clin. Rehabil. 22, 206–214 (2008).

    PubMed  Google Scholar 

  51. Oken, B. S. et al. Randomized controlled trial of yoga and exercise in multiple sclerosis. Neurology 62, 2058–2064 (2004).

    CAS  PubMed  Google Scholar 

  52. Roehrs, T. G. & Karst, G. M. Effects of an aquatics exercise program on quality of life measures for individuals with progressive multiple sclerosis. J. Neurol. Phys. Ther. 28, 63–71 (2004).

    Google Scholar 

  53. Dalgas, U. et al. Fatigue, mood and quality of life improve in MS patients after progressive resistance training. Mult. Scler. 16, 480–490 (2010).

    CAS  PubMed  Google Scholar 

  54. Konecný, L. et al. Combination of aerobic and resistance training in multiple sclerosis. Scr. Med. 83, 98–106 (2010).

    Google Scholar 

  55. Dettmers, C., Sulzmann, M., Ruchay-Plossl, A., Gutler, R. & Vieten, M. Endurance exercise improves walking distance in MS patients with fatigue. Acta Neurol. Scand. 120, 251–257 (2009).

    CAS  PubMed  Google Scholar 

  56. Mostert, S. & Kesselring, J. Effects of a short-term exercise training program on aerobic fitness, fatigue, health perception and activity level of subjects with multiple sclerosis. Mult. Scler. 8, 161–168 (2002).

    CAS  PubMed  Google Scholar 

  57. Newman, M. A. et al. Can aerobic treadmill training reduce the effort of walking and fatigue in people with multiple sclerosis: a pilot study. Mult. Scler. 13, 113–119 (2007).

    CAS  PubMed  Google Scholar 

  58. Petajan, J. H. et al. Impact of aerobic training on fitness and quality of life in multiple sclerosis. Ann. Neurol. 39, 432–441 (1996).

    CAS  PubMed  Google Scholar 

  59. Cakt, B. D. et al. Cycling progressive resistance training for people with multiple sclerosis: a randomized controlled study. Am. J. Phys. Med. Rehabil. 89, 446–457 (2010).

    PubMed  Google Scholar 

  60. Pilutti, L. A. et al. Effects of 12 weeks of supported treadmill training on functional ability and quality of life in progressive multiple sclerosis: a pilot study. Arch. Phys. Med. Rehabil. 92, 31–36 (2011).

    PubMed  Google Scholar 

  61. Wier, L. M., Hatcher, M. S., Triche, E. W. & Lo, A. C. Effect of robot-assisted versus conventional body-weight-supported treadmill training on quality of life for people with multiple sclerosis. J. Rehabil. Res. Dev. 48, 483–492 (2011).

    PubMed  Google Scholar 

  62. Freeman, J. & Allison, R. Group exercise classes in people with multiple sclerosis: a pilot study. Physiother. Res. Int. 9, 104–107 (2004).

    PubMed  Google Scholar 

  63. Geddes, E. L., Costello, E., Raivel, K. & Wilson, R. The effects of a twelve-week home walking program on cardiovascular parameters and fatigue perception of individuals with multiple sclerosis: a pilot study. Cardiopulm. Phys. Ther. J. 20, 5–12 (2009).

    PubMed  PubMed Central  Google Scholar 

  64. Hayes, H. A., Gappmaier, E. & LaStayo, P. C. Effects of high-intensity resistance training on strength, mobility, balance, and fatigue in individuals with multiple sclerosis: a randomized controlled trial. J. Neurol. Phys. Ther. 35, 2–10 (2011).

    PubMed  Google Scholar 

  65. Rampello, A. et al. Effect of aerobic training on walking capacity and maximal exercise tolerance in patients with multiple sclerosis: a randomized crossover controlled study. Phys. Ther. 87, 545–559 (2007).

    PubMed  Google Scholar 

  66. Sabapathy, N. M., Minahan, C. L., Turner, G. T. & Broadley, S. A. Comparing endurance- and resistance-exercise training in people with multiple sclerosis: a randomized pilot study. Clin. Rehabil. 25, 14–24 (2011).

    PubMed  Google Scholar 

  67. van den Berg, M. et al. Treadmill training for individuals with multiple sclerosis: a pilot randomised trial. J. Neurol. Neurosurg. Psychiatry. 77, 531–533 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Salem, Y. et al. Effects of an aquatic exercise program on functional mobility in individuals with multiple sclerosis. J. Aquatic Phys. Ther. 18, 22–32 (2010).

    Google Scholar 

  69. Velikonja, O., Curic, K., Ozura, A. & Jazbec, S. S. Influence of sports climbing and yoga on spasticity, cognitive function, mood and fatigue in patients with multiple sclerosis. Clin. Neurol. Neurosurg. 112, 597–601 (2010).

    PubMed  Google Scholar 

  70. Fragoso, Y. D., Santana, D. L. B. & Pinto, R. C. The positive effects of a physical activity program for multiple sclerosis patients with fatigue. NeuroRehabilitation 23, 153–157 (2008).

    PubMed  Google Scholar 

  71. Dodd, K. J. et al. Progressive resistance training did not improve walking but can improve muscle performance, quality of life and fatigue in adults with multiple sclerosis: a randomized controlled trial. Mult. Scler. 17, 1362–1374 (2011).

    CAS  PubMed  Google Scholar 

  72. Motl, R. W. & Gosney, J. L. Effect of exercise training on quality of life in multiple sclerosis: a meta-analysis. Mult. Scler. 14, 129–135 (2008).

    CAS  PubMed  Google Scholar 

  73. Kjølhede, T., Vissing, K. & Dalgas, U. Multiple sclerosis and progressive resistance training: a systematic review. Mult. Scler. http://dx.doi.org/10.1177/1352458512437418.

  74. Romberg, A., Virtanen, A. & Ruutiainen, J. Long-term exercise improves functional impairment but not quality of life in multiple sclerosis. J. Neurol. 252, 839–845 (2005).

    PubMed  Google Scholar 

  75. Dalgas, U. et al. Resistance training improves muscle strength and functional capacity in multiple sclerosis. Neurology 73, 1478–1484 (2009).

    CAS  PubMed  Google Scholar 

  76. Motl, R. W., Sandroff, B. M. & Benedict, R. H. Cognitive dysfunction and multiple sclerosis: developing a rationale for considering the efficacy of exercise training. Mult. Scler. 17, 1034–1040 (2011).

    PubMed  Google Scholar 

  77. Colcombe, S. & Kramer, A. F. Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol. Sci. 14, 125–130 (2003).

    PubMed  Google Scholar 

  78. Motl, R. W., Gappmaier, E., Nelson, K. & Benedict, R. H. Physical activity and cognitive function in multiple sclerosis. J. Sport Exerc. Psychol. 33, 734–741 (2011).

    PubMed  Google Scholar 

  79. Prakash, R. S. et al. Cardiorespiratory fitness: a predictor of cortical plasticity in multiple sclerosis. Neuroimage 34, 1238–1244 (2007).

    PubMed  Google Scholar 

  80. McAuley, E., Kramer, A. F. & Colcombe, S. J. Cardiovascular fitness and neurocognitive function in older adults: a brief review. Brain Behav. Immun. 18, 214–220 (2004).

    PubMed  Google Scholar 

  81. Motl, R. W. & Goldman, M. Physical inactivity, neurological disability, and cardiorespiratory fitness in multiple sclerosis. Acta Neurol. Scand. 123, 98–104 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Pearson, O., Busse, M., van Deursen, R. & Wiles, C. Quantification of walking mobility in neurological disorders. QJM 97, 467–475 (2004).

    Google Scholar 

  83. Motl, R. W. & Fernhall, B. Accurate prediction of cardiorespiratory fitness using cycle ergometry in minimally disabled persons with relapsing–remitting multiple sclerosis. Arch. Phys. Med. Rehabil. 93, 490–495 (2012).

    PubMed  Google Scholar 

  84. Kent-Braun, J. A. et al. Strength, skeletal muscle composition, and enzyme activity in multiple sclerosis. J. Appl. Physiol. 83, 1998–2004 (1997).

    CAS  PubMed  Google Scholar 

  85. Givon, U., Zeilig, G. & Achiron, A. Gait analysis in multiple sclerosis: characterization of temporal-spatial parameters using GAITRite functional ambulation system. Gait Posture 29, 138–142 (2009).

    PubMed  Google Scholar 

  86. Sosnoff, J. J., Sandroff, B. M. & Motl, R. W. Quantifying gait abnormalities in persons with multiple sclerosis with minimal disability. Gait Posture 36, 154–156 (2012).

    PubMed  Google Scholar 

  87. Broekmans, T. et al. Exploring the effects of a 20-week whole-body vibration training programme on leg muscle performance and function in persons with multiple sclerosis. J. Rehabil. Med. 42, 866–872 (2010).

    PubMed  Google Scholar 

  88. de Souza-Teixeira, F. et al. Effects of resistance training in multiple sclerosis. Int. J. Sports Med. 30, 245–250 (2009).

    CAS  PubMed  Google Scholar 

  89. Taylor, N. F., Dodd, K. J., Prasad, D. & Denisenko, S. Progressive resistance exercise for people with multiple sclerosis. Disabil. Rehabil. 28, 1119–1126 (2006).

    CAS  PubMed  Google Scholar 

  90. DeBolt, L. S. & McCubbin, J. A. The effects of home-based resistance exercise on balance, power, and mobility in adults with multiple sclerosis. Arch. Phys. Med. Rehabil. 85, 290–297 (2004).

    PubMed  Google Scholar 

  91. Romberg, A. et al. Effects of a 6-month exercise program on patients with multiple sclerosis: a randomized study. Neurology 63, 2034–2038 (2004).

    CAS  PubMed  Google Scholar 

  92. Gehlsen, G. M., Grigsby, S. A. & Winant, D. M. Effects of an aquatic fitness program on the muscular strength and endurance of patients with multiple sclerosis. Phys. Ther. 64, 653–657 (1984).

    CAS  PubMed  Google Scholar 

  93. Beer, S. et al. Robot-assisted gait training in multiple sclerosis: a pilot randomized trial. Mult. Scler. 14, 231–236 (2008).

    CAS  PubMed  Google Scholar 

  94. Bjarnadottir, O. H., Konradsdottir, A. D., Reynisdottir, K. & Olafsson, E. Multiple sclerosis and brief moderate exercise. A randomised study. Mult. Scler. 13, 776–782 (2007).

    CAS  PubMed  Google Scholar 

  95. Rodgers, M. M. et al. Gait characteristics of individuals with multiple sclerosis before and after a 6-month aerobic training program. J. Rehabil. Res. Dev. 36, 183–188 (1999).

    CAS  PubMed  Google Scholar 

  96. Ponichtera-Mulcare, J. A., Mathews, T., Barrett, P. J. & Gupta, S. C. Change in aerobic fitness of patients with multiple sclerosis during a 6-month training program. Sports Med. Train. Rehabil. 7, 265–272 (1997).

    Google Scholar 

  97. Salem, Y. et al. Community-based group aquatic programme for individuals with multiple sclerosis: a pilot study. Disabil. Rehabil. 33, 720–728 (2011).

    PubMed  Google Scholar 

  98. Conklyn, D. et al. A home-based walking program using rhythmic auditory stimulation improves gait performance in patients with multiple sclerosis: a pilot study. Neurorehabil. Neural Repair 24, 835–842 (2010).

    PubMed  Google Scholar 

  99. Gutierrez, G. M. et al. Resistance training improves gait kinematics in persons with multiple sclerosis. Arch. Phys. Med. Rehabil. 86, 1824–1829 (2005).

    PubMed  Google Scholar 

  100. Motl, R. W. et al. Combined training improves walking mobility in persons with significant disability from multiple sclerosis: a pilot study. J. Neurol. Phys. Ther. 36, 32–37 (2012).

    PubMed  Google Scholar 

  101. Collett, J. et al. Exercise for multiple sclerosis: a single-blind randomized trial comparing three exercise intensities. Mult. Scler. 17, 594–603 (2011).

    PubMed  Google Scholar 

  102. Kileff, J. & Ashburn, A. A pilot study of the effect of aerobic exercise on people with moderate disability multiple sclerosis. Clin. Rehabil. 19, 165–169 (2005).

    CAS  PubMed  Google Scholar 

  103. Lo, A. C. & Triche, E. W. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Neurorehabil. Neural Repair 22, 661–671 (2008).

    PubMed  Google Scholar 

  104. Freeman, J. A. et al. The effect of core stability training on balance and mobility in ambulant individuals with multiple sclerosis: a multi-centre series of single case studies. Mult. Scler. 16, 1377–1384 (2010).

    CAS  PubMed  Google Scholar 

  105. Mutulay, F., Tekeoglu, A., Saip, S., Altintas, A. & Siva, A. Group exercise training approach to multiple sclerosis rehabilitation. Nobel Med. 4, 20–26 (2008).

    Google Scholar 

  106. Snook, E. M. & Motl, R. W. Effect of exercise training on walking mobility in multiple sclerosis: a meta-analysis. Neurorehabil. Neural Repair 23, 108–116 (2009).

    PubMed  Google Scholar 

  107. Mitchell, A. J., Benito-Leon, J., Gonzalez, J. M. & Rivera-Navarro, J. Quality of life and its assessment in multiple sclerosis: integrating physical and psychological components of wellbeing. Lancet Neurol. 4, 556–566 (2005).

    PubMed  Google Scholar 

  108. Lobentanz, I. S. et al. Factors influencing quality of life in multiple sclerosis patients: disability, depressive mood, fatigue and sleep quality. Acta Neurol. Scand. 110, 6–13 (2004).

    CAS  PubMed  Google Scholar 

  109. Benito-Leon, J., Morales, J. M., Rivera-Navarro, J. & Mitchell, A. A review about the impact of multiple sclerosis on health-related quality of life. Disabil. Rehabil. 25, 1291–1303 (2003).

    PubMed  Google Scholar 

  110. Rudick, R. A., Miller, D., Clough, J. D., Gragg, L. A. & Farmer, R. G. Quality of life in multiple sclerosis. Comparison with inflammatory bowel disease and rheumatoid arthritis. Arch. Neurol. 49, 1237–1242 (1992).

    CAS  PubMed  Google Scholar 

  111. Sutherland, G., Andersen, M. B. & Stoove, M. A. Can aerobic exercise training affect health-related quality of life for people living with multiple sclerosis? J. Sport Exerc. Psychol. 23, 122–135 (2001).

    Google Scholar 

  112. Motl, R. W. & McAuley, E. Pathways between physical activity and quality of life in adults with multiple sclerosis. Health Psychol. 28, 682–689 (2009).

    PubMed  Google Scholar 

  113. Motl, R. W., McAuley, E., Snook, E. M. & Gliottoni, R. C. Physical activity and quality of life in multiple sclerosis: intermediary roles of disability, fatigue, mood, pain, self-efficacy and social support. Psychol. Health Med. 14, 111–124 (2009).

    PubMed  PubMed Central  Google Scholar 

  114. Patti, F. et al. Effects of a short outpatient rehabilitation treatment on disability of multiple sclerosis patients—a randomised controlled trial. J. Neurol. 250, 861–866 (2003).

    PubMed  Google Scholar 

  115. Motl, R. W. & McAuley, E. Longitudinal analysis of physical activity and symptoms as predictors of change in functional limitations and disability in multiple sclerosis. Rehabil. Psychol. 54, 204–210 (2009).

    PubMed  Google Scholar 

  116. Motl, R. W., Snook, E. M., McAuley, E., Scott, J. A. & Gliottoni, R. C. Are physical activity and symptoms correlates of functional limitations and disability in multiple sclerosis? Rehabil. Psychol. 52, 463–469 (2007).

    Google Scholar 

  117. Dalgas, U. et al. Muscle fiber size increases following resistance training in multiple sclerosis. Mult. Scler. 16, 1367–1376 (2010).

    CAS  PubMed  Google Scholar 

  118. Confavreux, C. & Vukusic, S. Accumulation of irreversible disability in multiple sclerosis: from epidemiology to treatment. Clin. Neurol. Neurosurg. 108, 327–332 (2006).

    PubMed  Google Scholar 

  119. Benito-León, J. Physical activity in multiple sclerosis: the missing prescription. Neuroepidemiology 36, 192–193 (2011).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. W. Motl and L. A. Pilutti contributed equally to researching data for the article, discussion of content, writing the article, and to the review and editing of the manuscript before submission.

Corresponding author

Correspondence to Robert W. Motl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motl, R., Pilutti, L. The benefits of exercise training in multiple sclerosis. Nat Rev Neurol 8, 487–497 (2012). https://doi.org/10.1038/nrneurol.2012.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2012.136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing