Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Neuropathic pain in diabetes—evidence for a central mechanism

Abstract

Hyperexcitability of and aberrant spontaneous impulse generation by damaged first-order sensory neurons and their peripheral axons are well-established processes that strongly contribute to pain associated with diabetic neuropathy. Studies in the past 5 years, however, suggest that, as in many neuropathic pain disorders, central neuropathic mechanisms can also contribute to pain experienced with diabetes. These studies have demonstrated that thalamic dysfunction occurs in patients with diabetes mellitus, and that in experimental models of this disease neurons in the ventral posterolateral thalamus can become hyperexcitable, firing at abnormally high frequencies and generating aberrant spontaneous activity. In this article, we discuss these findings, which suggest that thalamic neurons can act as central generators or amplifiers of pain in diabetes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VPL thalamic neuron activity in a model of painful diabetic neuropathy.
Figure 2: Models of neuropathic pain.

Similar content being viewed by others

References

  1. Tavakoli, M. & Malik, R. A. Management of painful diabetic neuropathy. Expert Opin. Pharmacother. 9, 2969–2978 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Jose, V. M., Bhansali, A., Hota, D. & Pandhi, P. Randomized double-blind study comparing the efficacy and safety of lamotrigine and amitriptyline in painful diabetic neuropathy. Diabet. Med. 24, 377–383 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Morello, C. M., Leckband, S. G., Stoner, C. P., Moorhouse, D. F. & Sahagian, G. A. Randomized double-blind study comparing the efficacy of gabapentin with amitriptyline on diabetic peripheral neuropathy pain. Arch. Intern. Med. 159, 1931–1937 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Ahlgren, S. C., White, D. M. & Levine, J. D. Increased responsiveness of sensory neurons in the saphenous nerve of the streptozotocin-diabetic rat. J. Neurophysiol. 68, 2077–2085 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Burchiel, K. J., Russell, L. C., Lee, R. P. & Sima, A. A. Spontaneous activity of primary afferent neurons in diabetic BB/Wistar rats. A possible mechanism of chronic diabetic neuropathic pain. Diabetes 34, 1210–1213 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Misawa, S. et al. Neuropathic pain is associated with increased nodal persistent Na+ currents in human diabetic neuropathy. J. Peripher. Nerv. Syst. 14, 279–284 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Craner, M. J., Klein, J. P., Renganathan, M., Black, J. A. & Waxman, S. G. Changes of sodium channel expression in experimental painful diabetic neuropathy. Ann. Neurol. 52, 786–792 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Hong, S., Morrow, T. J., Paulson, P. E., Isom, L. L. & Wiley, J. W. Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J. Biol. Chem. 279, 29341–29350 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Hains, B. C., Saab, C. Y., Klein, J. P., Craner, M. J. & Waxman, S. G. Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J. Neurosci. 24, 4832–4839 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Selvarajah, D. et al. Thalamic neuronal dysfunction and chronic sensorimotor distal symmetrical polyneuropathy in patients with type 1 diabetes mellitus. Diabetologia 51, 2088–2092 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Sorensen, L., Siddall, P. J., Trenell, M. I. & Yue, D. K. Differences in metabolites in pain-processing brain regions in patients with diabetes and painful neuropathy. Diabetes Care 31, 980–981 (2008).

    Article  PubMed  Google Scholar 

  12. Wood, P. B. Role of central dopamine in pain and analgesia. Expert Rev. Neurother. 8, 781–797 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Cauda, F. et al. Altered resting state in diabetic neuropathic pain. PLoS ONE 4, e4542 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Paulson, P. E., Wiley, J. W. & Morrow, T. J. Concurrent activation of the somatosensory forebrain and deactivation of periaqueductal gray associated with diabetes-induced neuropathic pain. Exp. Neurol. 208, 305–313 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fischer, T. Z., Tan, A. M. & Waxman, S. G. Thalamic neuron hyperexcitability and enlarged receptive fields in the STZ model of diabetic pain. Brain Res. 1268, 154–161 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Guilbaud, G., Benoist, J. M., Jazat, F. & Gautron, M. Neuronal responsiveness in the ventrobasal thalamic complex of rats with an experimental peripheral mononeuropathy. J. Neurophysiol. 64, 1537–1554 (1990).

    Article  CAS  PubMed  Google Scholar 

  17. Miki, K. et al. Dorsal column–thalamic pathway is involved in thalamic hyperexcitability following peripheral nerve injury: a lesion study in rats with experimental mononeuropathy. Pain 85, 263–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, P., Waxman, S. G. & Hains, B. C. Sodium channel expression in the ventral posterolateral nucleus of the thalamus after peripheral nerve injury. Mol. Pain 2, 27 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wodarski, R., Clark, A. K., Grist, J., Marchand, F. & Malcangio, M. Gabapentin reverses microglial activation in the spinal cord of streptozotocin-induced diabetic rats. Eur. J. Pain 13, 807–811 (2008).

    Article  PubMed  Google Scholar 

  20. Luo, Y., Kaur, C. & Ling, E. A. Neuronal and glial response in the rat hypothalamus-neurohypophysis complex with streptozotocin-induced diabetes. Brain Res. 925, 42–54 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Vinik, A. Clinical review: use of antiepileptic drugs in the treatment of chronic painful diabetic neuropathy. J. Clin. Endocrinol. Metab. 90, 4936–4945 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Chang, Y. W., Tan, A., Saab, C. & Waxman, S. Unilateral focal burn injury is followed by long-standing bilateral allodynia and neuronal hyperexcitability in spinal cord dorsal horn. J. Pain 11, 119–130 (2009).

    Article  PubMed  Google Scholar 

  23. Hains, B. C. & Waxman, S. G. Activated microglia contribute to the maintenance of chronic pain after spinal cord injury. J. Neurosci. 26, 4308–4317 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin, S. X., Zhuang, Z. Y., Woolf, C. J. & Ji, R. R. p38 Mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J. Neurosci. 23, 4017–4022 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McMahon, S. B., Cafferty, W. B. & Marchand, F. Immune and glial cell factors as pain mediators and modulators. Exp. Neurol. 192, 444–462 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Watkins, L. R., Milligan, E. D. & Maier, S. F. Glial activation: a driving force for pathologicalpain. Trends Neurosci. 24, 450–455 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, P., Waxman, S. G. & Hains, B. C. Extracellular signal-regulated kinase-regulated microglia-neuron signaling by prostaglandin E2 contributes to pain after spinal cord injury. J. Neurosci. 27, 2357–2368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, P., Waxman, S. G. & Hains, B. C. Modulation of thalamic nociceptive processing after spinal cord injury through remote activation of thalamic microglia by cysteine cysteine chemokine ligand 21. J. Neurosci. 27, 8893–8902 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Misawa, S. et al. Axonal potassium conductance and glycemic control in human diabetic nerves. Clin. Neurophysiol. 116, 1181–1187 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Latham, J. R. et al. Selective T-type calcium channel blockade alleviates hyperalgesia in ob/ob mice. Diabetes 58, 2656–2665 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Messinger, R. B. et al. In vivo silencing of the CaV3.2 T-type calcium channels in sensory neurons alleviates hyperalgesia in rats with streptozocin-induced diabetic neuropathy. Pain 145, 184–195 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wei, H., Hämäläinen, M. M., Saarnilehto, M., Koivisto, A. & Pertovaara, A. Attenuation of mechanical hypersensitivity by an antagonist of the TRPA1 ion channel in diabetic animals. Anesthesiology 111, 147–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Lunn, M. P., Hughes, R. A. & Wiffen, P. J. Duloxetine for treating painful neuropathy or chronic pain. Cochrane Database of Systematic Reviews, Issue 4, Art. No.: CD007115. doi:10.1002/14651858.CD007115.pub2 (2009).

  34. Bansal, D., Bhansali, A., Hota, D., Chakrabarti, A. & Dutta, P. Amitriptyline vs pregabalin in painful diabetic neuropathy: a randomized double blind clinical trial. Diabet. Med. 26, 1019–1026 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Wymer, J. P., Simpson, J., Sen, D. & Bongardt, S. Efficacy and safety of lacosamide in diabetic neuropathic pain: an 18-week double-blind placebo-controlled trial of fixed-dose regimens. Clin. J. Pain 25, 376–385 (2009).

    Article  PubMed  Google Scholar 

  36. Tan, A. M. et al. Neuropathic pain memory is maintained by Rac1-regulated dendritic spine remodeling after spinal cord injury. J. Neurosci. 28, 13173–13183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rush, A. M., Cummins, T. R. & Waxman, S. G. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J. Physiol. 579, 1–14 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Rehabilitation Research Service and the Medical Research Service, US Department of Veterans Affairs, and the Erythromelalgia Association. The Center for Neuroscience and Regeneration Research is a collaboration of the Paralyzed Veterans of America and the United Spinal Association with Yale University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Waxman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, T., Waxman, S. Neuropathic pain in diabetes—evidence for a central mechanism. Nat Rev Neurol 6, 462–466 (2010). https://doi.org/10.1038/nrneurol.2010.90

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.90

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing