Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ischemic stroke in the elderly: an overview of evidence

Subjects

Abstract

Stroke mostly occurs in elderly people and patient outcomes after stroke are highly influenced by age. A better understanding of the causes of stroke in the elderly might have important practical implications not only for clinical management, but also for preventive strategies and future health-care policies. In this Review, we explore the evidence from both human and animal studies relating to the effect of old age—in terms of susceptibility, patient outcomes and response to treatment—on ischemic stroke. Several aging-related changes in the brain have been identified that are associated with an increase in vulnerability to ischemic stroke in the elderly. Furthermore, risk factor profiles for stroke and mechanisms of ischemic injury differ between young and elderly patients. Elderly patients with ischemic stroke often receive less-effective treatment and have poorer outcomes than younger individuals who develop this condition. Neuroprotective agents for ischemic stroke have been sought for decades but none has proved effective in humans. One contributing factor for this translational failure is that most preclinical studies have used young animals. Future research on ischemic stroke should consider age as a factor that influences stroke prevention and treatment, and should focus on the management of acute stroke in the elderly to reduce the incidence and improve outcomes in this vulnerable group.

Key Points

  • Over 80% of strokes occur in the elderly (people aged ≥65 years), and patient outcomes after stroke are highly influenced by age

  • The increased vulnerability of elderly people to ischemic stroke is associated with several changes that occur in the aged brain

  • Risk factor profiles and mechanisms of ischemic injury vary between young and old patients with stroke

  • Elderly patients often receive less-effective treatment and have poorer outcomes following a stroke than younger individuals

  • Most preclinical studies of neuroprotective agents have used young animals, which might partly explain the translational failure of these drugs in humans

  • Future stroke research should place more focus on aged animals and the elderly

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stroke incidence rates in various age groups at selected locations.
Figure 2: Human brains at different ages.

References

  1. Strong, K., Mathers, C. & Bonita, R. Preventing strokes: saving lives around the world. Lancet Neurol. 6, 182–187 (2007).

    Article  PubMed  Google Scholar 

  2. Di Carlo, A. Human and economic burden of stroke. Age Ageing 38, 4–5 (2009).

    Article  PubMed  Google Scholar 

  3. Murray, C. J. & Lopez, A. D. Global mortality, disability and the contribution of risk factors: global burden of the disease study. Lancet 349, 1436–1442 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Sturm, J. W. et al. Quality of life after stroke: the North East Melbourne Stroke Incidence Study (NEMESIS). Stroke 35, 2340–2345 (2004).

    Article  PubMed  Google Scholar 

  5. Evers, S. M. et al. International comparison of stroke cost studies. Stroke 35, 1209–1215 (2004).

    Article  PubMed  Google Scholar 

  6. Allender, S. et al. European cardiovascular disease statistics 2008. British Heart Foundation statistics website [online], (2009).

    Google Scholar 

  7. Goldstein, L. B. et al. Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group: the American Academy of Neurology affirms the value of this guideline. Stroke 37, 1583–1633 (2006).

    Article  PubMed  Google Scholar 

  8. Rothwell, P. M. et al. Population-based study of event-rate, incidence, case fatality, and mortality for all acute vascular events in all arterial territories (Oxford Vascular Study). Lancet 366, 1773–1783 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Rojas, J. I., Zurrú, M. C., Romano, M., Patrucco, L. & Cristiano, E. Acute ischemic stroke and transient ischemic attack in the very old—risk factor profile and stroke subtype between patients older than 80 years and patients aged less than 80 years. Eur. J. Neurol. 14, 895–899 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Feigin, V. L., Lawes, C. M., Bennett, D. A. & Anderson, C. S. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol. 2, 43–53 (2003).

    Article  PubMed  Google Scholar 

  11. Rosamond, W. et al. Heart disease and stroke statistics—2008 update: a report from the American Heart Associations Statistics Committee and Stroke Statistics Subcommittee. Circulation 117, e25–e146 (2008).

    PubMed  Google Scholar 

  12. Krug, E. G., Mercy, J. A., Dahlberg, L. L. & Zwi, A. B. The world report on violence and health. Lancet 360, 1083–1088 (2002).

    Article  PubMed  Google Scholar 

  13. Powell, J. L. & Cook, I. G. Global ageing in comparative perspective: a critical discussion. Int. J. Sociol. Soc. Policy 29, 388–400 (2009).

    Article  Google Scholar 

  14. Warlow, C. P. et al. Stroke: Practical Management 3rd edn (Wiley–Blackwell, Oxford, 2008).

    Book  Google Scholar 

  15. Mensah, G. A. Epidemiology of stroke and high blood pressure in Africa. Heart 94, 697–705 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Khaw, K. T. Healthy ageing. BMJ 315, 1090–1096 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Raz, N. in New Frontiers in Cognitive Ageing (eds Dixon, R. A., Bäckman, L. & Nilsson, L.-G.) 115–134 (Oxford University Press, Oxford, 2004).

    Book  Google Scholar 

  18. Esiri, M. M. Ageing and the brain. J. Pathol. 211, 181–187 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Anderson, J. M., Hubbard, B. M., Coghill, G. R. & Slidders, W. The effect of advanced old age on the neurone content of the cerebral cortex. Observations with an automatic image analyser point counting method. J. Neurol. Sci. 58, 235–246 (1983).

    Article  CAS  PubMed  Google Scholar 

  20. Pfefferbaum, A. et al. A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Arch. Neurol. 51, 874–887 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Resnick, S. M., Pham, D. L., Kraut, M. A., Zonderman, A. B. & Davatzikos, C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J. Neurosci. 23, 3295–3301 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Scahill, R. I. et al. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch. Neurol. 60, 989–994 (2003).

    Article  PubMed  Google Scholar 

  23. Abe, O. et al. Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data. Neurobiol. Aging 29, 102–116 (2008).

    Article  PubMed  Google Scholar 

  24. Allen, J. S., Bruss, J., Brown, C. K. & Damasio, H. Normal neuroanatomical variation due to age: the major lobes and a parcellation of the temporal region. Neurobiol. Aging 26, 1245–1260 (2005).

    Article  PubMed  Google Scholar 

  25. Chen, R. L. & Preston, J. E. Changes in kinetics of amino acid uptake at the ageing ovine blood–cerebrospinal fluid barrier. Neurobiol. Aging doi:10.1016/j.neurobiolaging.2010.01.015.

  26. Coleman, P. D. & Flood, D. G. Neuron numbers and dendritic extent in normal aging and Alzheimer's disease. Neurobiol. Aging 8, 521–545 (1987).

    Article  CAS  PubMed  Google Scholar 

  27. West, M. J., Coleman, P. D., Flood, D. G. & Troncoso, J. C. Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer's disease. Lancet 344, 769–772 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. West, M. J. New stereological methods for counting neurons. Neurobiol. Aging 14, 275–285 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Morrison, J. H. & Hof, P. R. Life and death of neurons in the aging brain. Science 278, 412–419 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Rozovsky, I., Wei, M., Morgan, T. E. & Finch, C. E. Reversible age impairments in neurite outgrowth by manipulations of astrocytic GFAP. Neurobiol. Aging 26, 705–715 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Breteler, M. M. et al. Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study. Neurology 44, 1246–1252 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Fernando, M. S. et al. White matter lesions in an unselected cohort of the elderly. Molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 37, 1391–1398 (2006).

    Article  PubMed  Google Scholar 

  33. Pantoni, L. & Garcia, J. H. Pathogenesis of leukoaraiosis. Stroke 28, 652–659 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Bartzokis, G. et al. White matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study. Arch. Neurol. 60, 393–398 (2003).

    Article  PubMed  Google Scholar 

  35. Farkas, E. et al. Age-related microvascular degeneration in the human cerebral periventricular white matter. Acta Neuropathol. 111, 150–157 (2006).

    Article  PubMed  Google Scholar 

  36. de Groot, J. C. et al. Cerebral white matter lesions and cognitive function: the Rotterdam Scan Study. Ann. Neurol. 47, 145–151 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Pugh, K. G. & Lipsitz, L. A. The microvascular frontal–subcortical syndrome of aging. Neurobiol. Aging 23, 421–431 (2002).

    Article  PubMed  Google Scholar 

  38. Challa, V. R., Thore, C. R., Moody, D. M., Anstrom, J. A. & Brown, W. R. Increase of white matter string vessels in Alzheimer's disease. J. Alzheimers Dis. 6, 379–383 (2004).

    Article  PubMed  Google Scholar 

  39. Prins, N. D. et al. Cerebral white matter lesions and the risk of dementia. Arch. Neurol. 61, 1531–1534 (2004).

    Article  PubMed  Google Scholar 

  40. Inzitari, D. et al. Changes in white matter as determinant of global functional decline in older independent outpatients: three year follow-up of LADIS (leukoaraiosis and disability) study cohort. BMJ 339, b2477 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Koton, S. et al. Cerebral leukoaraiosis in patients with stroke or TIA: clinical correlates and 1-year outcome. Eur. J. Neurol. 16, 218–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Fu, J. H. et al. Extent of white matter lesions is related to acute subcortical infarcts and predicts further stroke risk in patients with first ever ischaemic stroke. J. Neurol. Neurosurg. Psychiatry 76, 793–796 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baltan, S. Ischemic injury to white matter: an age-dependent process. Neuroscientist 15, 126–133 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Scavone, C. et al. Age-related changes in cyclic GMP and PKG-stimulated cerebellar Na, K-ATPase activity. Neurobiol. Aging 26, 907–916 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Baltan, S. et al. White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. J. Neurosci. 28, 1479–1489 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stephens, M. L., Quintero, J. E., Pomerleau, F., Huettl, P. & Gerhardt, G. A. Age-related changes in glutamate release in the CA3 and dentate gyrus of the rat hippocampus. Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2009.05.009.

  47. Brustovetsky, T., Li, V. & Brustovetsky, N. Stimulation of glutamate receptors in cultured hippocampal neurons causes Ca2+-dependent mitochondrial contraction. Cell Calcium 246, 18–29 (2009).

    Article  CAS  Google Scholar 

  48. Tekkök, S. B, Ye, Z. & Ransom, B. R. Excitotoxic mechanisms of ischemic injury in myelinated white matter. J. Cereb. Blood Flow Metab. 27, 1540–1552 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Marstrand, J. R. et al. Cerebral perfusion and cerebrovascular reactivity are reduced in white matter hyperintensities. Stroke 33, 972–976 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Bertsch, K. et al. Resting cerebral blood flow, attention, and aging. Brain Res. 1267, 77–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Mitchell, G. F. Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J. Appl. Physiol. 105, 1652–1660 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Qin, C. C., Hui, R. T. & Liu, Z. H. Aging-related cerebral microvascular degeneration is an important cause of essential hypertension. Med. Hypotheses 70, 643–645 (2008).

    Article  PubMed  Google Scholar 

  53. Hossmann, K. A. Viability thresholds and the penumbra of focal ischemia. Ann. Neurol. 36, 557–565 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Drake, C. T. & Iadecola, C. The role of neuronal signalling in controlling cerebral blood flow. Brain Lang. 102, 141–152 (2007).

    Article  PubMed  Google Scholar 

  55. De Jong, G. I. et al. Cerebral hypoperfusion yields capillary damage in the hippocampal CA1 area that correlates with spatial memory impairment. Neuroscience 91, 203–210 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Stoquart-ElSankari, S. et al. Aging effects on cerebral blood and cerebrospinal fluid flows. J. Cereb. Blood Flow Metab. 27, 1563–1572 (2007).

    Article  PubMed  Google Scholar 

  57. Ueno, M., Tomimoto, H., Akiguchi, I., Wakita, H. & Sakamoto, H. Blood–brain barrier disruption in white matter lesions in a rat model of chronic cerebral hypoperfusion. J. Cereb. Blood Flow Metab. 22, 97–104 (2002).

    Article  PubMed  Google Scholar 

  58. Shah, G. N. & Mooradian, A. D. Age-related changes in the blood–brain barrier. Exp. Gerontol. 32, 501–519 (1997).

    CAS  Google Scholar 

  59. Farrall, A. J. & Wardlaw, J. M. Blood–brain barrier: ageing and microvascular disease—systematic review and meta-analysis. Neurobiol. Aging 30, 337–352 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, R. L. Is it appropriate to use albumin CSF/plasma ratio to assess blood brain barrier permeability? Neurobiol. Aging doi:10.1016/j.neurobiolaging.2008.08.024.

  61. Rodgers, H. et al. Risk factors for first-ever stroke in older people in the north East of England. A population-based study. Stroke 35, 7–11 (2004).

    Article  PubMed  Google Scholar 

  62. Kammersgaard, L. P. et al. Short- and long-term prognosis for very old stroke patients: Copenhagen Stroke Study. Age Ageing 33, 149–154 (2004).

    Article  PubMed  Google Scholar 

  63. Krahn, A. D., Manfreda, J., Tate, R. B., Mathewson, F. A. & Cuddy, E. T. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Mannitoba follow-up study. Am. J. Med. 98, 466–484 (1995).

    Article  Google Scholar 

  64. Arboix, A. et al. Cardiovascular risk factors in patients aged 85 or older with ischemic stroke. Clin. Neurol. Neurosurg. 108, 638–643 (2006).

    Article  PubMed  Google Scholar 

  65. Wolf, P. A., Abbott, R. D. & Kannel, W. B. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 22, 983–988 (1991).

    Article  CAS  PubMed  Google Scholar 

  66. Shuaib, A. & Hachinski, V. C. Mechanism and management of stroke in the elderly. CMAJ 145, 433–443 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Chaturvedi, S. et al. Carotid artery stenting in octogenarians. Periprocedural stroke risk predictor analysis from the multicenter Carotid ACCULINK/ACCUNET Post Approval Trial to Uncover Rare Events (CAPTURE 2) clinical trial. Stroke doi: 10.1161/STROKEAHA.109.569426.

  68. de Weerd, M., Greving, J. P., de Jong, A. W., Buskens, E. & Bots, M. L. Prevalence of asymptomatic carotid artery stenosis according to age and sex. Systematic review and metaregression analysis. Stroke 40, 1105–1113 (2009).

    Article  PubMed  Google Scholar 

  69. Fairhead, J. F. & Rothwell, P. M. Underinvestigation and undertreatment of carotid disease in elderly patients with transient ischaemic attack and stroke: comparative population based study. BMJ 333, 525–527 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Miller, M. T., Comerota, A. J., Tzillinis, A., Daoud, Y. & Hammerling, J. Carotid endarterectomy in octogenarians: does increased age indicate “high risk?” J. Vasc. Surg. 41, 231–237 (2005).

    Article  PubMed  Google Scholar 

  71. Teso, D., Edwards, R. E., Frattini, J. C., Dudrick, S. J. & Dardik, A. Safety of carotid endarterectomy in 2,443 elderly patients: lessons from nanagenarians—are we pushing the limit. J. Am. Coll. Surg. 200, 734–741 (2005).

    Article  PubMed  Google Scholar 

  72. Velez, C. A. et al. Carotid artery stent placement is safe in the very elderly (≥80 years). Catheter. Cardiovasc. Interv. 72, 303–308 (2008).

    Article  PubMed  Google Scholar 

  73. Grant, A. et al. Safety and efficacy of carotid stenting in the elderly. Catheter. Cardiovasc. Interv. doi:10.1002/ccd.22345.

  74. Zarins, C. K., White, R. A., Diethrich, E. B., Shackelton, R. J. & Siami, F. S. Carotid revascularization using endarterectomy or stenting systems (CaRESS): 4-year outcomes. J. Endovasc. Ther. 16, 397–409 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Marini, C. et al. Burden of first-ever ischemic stroke in the oldest old: evidence from a population-based study. Neurology 62, 77–81 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Hankey, G. J., Jamrozik, K., Broadhurst, R. J., Forbes, S. & Anderson, C. S. Long-term disability after first-ever stroke and related prognostic factors in the Perth Community Stroke Study, 1989–1990. Stroke 33, 1034–1040 (2002).

    Article  PubMed  Google Scholar 

  77. Di Carlo, A. et al. Stroke in the very elderly: clinical presentation and determinants of 3-month functional outcome: A European perspective. European BIOMED Study of Stroke Care Group. Stroke 30, 2313–2319 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Sharma, J. C., Flecher, S. & Vassallo, M. Strokes in the elderly—higher acute and 3-month mortality—an explanation. Cerebrovasc. Dis 9, 2–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Asplund, K., Carberg, B. & Sunderström, G. Stroke in the elderly. Observations in a population-based sample of hospitalised patients. Cerebrovasc. Dis. 2, 152–157 (1992).

    Article  Google Scholar 

  80. Johnston, S. C., Gress, D. R., Browner, W. S. & Sidney, S. Short-term prognosis after emergency diagnosis of TIA. JAMA 284, 2901–2906 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. Fonarow, G. C. et al. Age-related differences in characteristics, performance measures, treatment trends, and outcomes in patients with ischemic stroke. Circulation 121, 879–891 (2010).

    Article  PubMed  Google Scholar 

  82. Saposnik, G. et al. Variables associated with 7-day, 30-day, and 1-year fatality after ischemic stroke. Stroke 39, 2318–2324 (2008).

    Article  PubMed  Google Scholar 

  83. Palnum, K. D. et al. Older patients with acute stroke in Denmark: quality of care and short-term mortality. A nationwide follow-up study. Age Ageing 37, 90–95 (2008).

    Article  PubMed  Google Scholar 

  84. Carter, A. M., Catto, A. J., Mansfield, M. W., Bamford, J. M. & Grant, P. J. Predictive variables for mortality after acute ischemic stroke. Stroke 38, 1873–1880 (2007).

    Article  PubMed  Google Scholar 

  85. Collins, T. C. et al. Short-term, intermediate-term, and long-term mortality in patients hospitalized for stroke. J. Clin. Epidemiol. 56, 81–87 (2003).

    Article  PubMed  Google Scholar 

  86. Steger, C. et al. Stroke patients with atrial fibrillation have a worse prognosis than patients without: data from the Australian stroke registry. Eur. Heart J. 25, 1734–1740 (2004).

    Article  PubMed  Google Scholar 

  87. Petty, G. W. et al. Ischemic stroke subtypes: a population-based study of functional outcome, survival, and recurrence. Stroke 31, 1062–1068 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Jin, K. et al. Ischemia-induced neurogenesis is preserved but reduced in the aged rodent brain. Aging Cell 3, 373–377 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. DiNapoli, V. A., Huber, J. D., Houser, K., Li, X. & Rosen, C. L. Early disruptions of the blood–brain barrier may contribute to exacerbated neuronal damage and prolonged functional recovery following stroke in aged rats. Neurobiol. Aging 29, 753–764 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Shapira, S., Sapir, M., Wengier, A., Grauer, E. & Kadar, T. Aging has a complex effect on a rat model of ischemic stroke. Brain Res. 925, 148–158 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Rosen, C. L., Dinapoli, V. A., Nagamine, T. & Crocco, T. Influence of age on stroke outcome following transient focal ischemia. J. Neurosurg. 103, 687–694 (2005).

    Article  PubMed  Google Scholar 

  92. Liu, F., Yuan, R., Benashski, S. E. & McCullough, L. D. Changes in experimental stroke outcome across the life span. J. Cereb. Blood Flow Metab. 29, 792–802 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Wagner, J. C. & Lutsep, H. L. Thrombolysis in young adults. J. Thromb. Thrombolysis 20, 133–136 (2005).

    Article  PubMed  Google Scholar 

  94. Andersen, M. B., Zimmer, J. & Sams-Dodd, F. Specific behavioral effects related to age and cerebral ischemia in rats. Pharmacol. Biochem. Behav. 62, 673–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  95. Green, A. R. Pharmacological approaches to acute ischaemic stroke: reperfusion certainly, neuroprotection possibly. Br. J. Pharmacol. 153 (Suppl. 1), S325–S338 (2008).

    CAS  PubMed  Google Scholar 

  96. [No authors listed] Tissue plasminogen activator for acute ischemic Stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N. Engl. J. Med. 333, 1581–1587 (1995).

  97. Kwiatkowski, T. G. et al. Effects of tissue plasminogen activator for acute ischemic stroke at one year. National Institute of Neurological Disorders and Stroke Recombinant Tissue Plasminogen Activator Stroke Study Group. N. Engl. J. Med. 340, 1781–1787 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Grotta, J. & Marler, J. Intravenous rt-PA: a tenth anniversary reflection. Surg. Neurol. 68 (Suppl. 1), S12–S16 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  99. [No authors listed] Generalized efficacy of t-PA for acute stroke. Subgroup analysis of the NINDS t-PA Stroke Trial. Stroke 28, 2119–2125 (1997).

  100. Hacke, W. et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N. Engl. J. Med. 359, 1317–1329 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Wahlgren, N. et al. Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study. Lancet 369, 275–282 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Zeevi, N., Chabra, J., Silverman, I. E., Lee, N. S. & McCullough, L. D. Acute stroke management in the elderly. Cerebrovasc. Dis. 23, 304–308 (2007).

    Article  PubMed  Google Scholar 

  103. Tanne, D. et al. Intravenous tissue plasminogen activator for acute ischaemic stroke in patients aged 80 years and older: the tPA stroke survey experience. Stroke 31, 370–375 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Simon, J. E., Sandler, D. L., Pexman, J. H., Hill, M. D. & Buchan, A. M. Is intravenous recombinant tissue plasminogen activator (rt-PA) safe for use in patients over 80 years old with acute ischaemic stroke stroke?—the Calgary experience. Age Ageing 33, 143–149 (2004).

    Article  PubMed  Google Scholar 

  105. Derex, L. & Nighoghossian, N. Thrombolysis, stroke-unit admission and early rehabilitation in elderly patients. Nat. Rev. Neurol. 5, 506–511 (2009).

    Article  PubMed  Google Scholar 

  106. Engelter, S. T., Bonati, L. H. & Lyrer, P. A. Intravenous thrombolysis in stroke patients of ≥80 years versus <80 years of age—a systematic review across cohort studies. Age Ageing 35, 572–580 (2006).

    Article  PubMed  Google Scholar 

  107. Saposnik, G. et al. Stroke outcome in those over 80: a multicenter cohort study across Canada. Stroke 39, 2310–2317 (2008).

    Article  PubMed  Google Scholar 

  108. Pundik, S. et al. Older age does not increase risk of hemorrhagic complications after intravenous and/or intra-arterial thrombolysis for acute stroke. J. Stroke Cerebrovasc. Dis. 17, 266–272 (2008).

    Article  PubMed  Google Scholar 

  109. Meseguer, E. et al. Determinants of outcome and safety of intravenous rt-PA therapy in the very old: a clinical registry study and systematic review. Age Ageing 37, 107–111 (2008).

    Article  PubMed  Google Scholar 

  110. [No authors listed] A large randomised controlled trial of thrombolysis with intravenous recombinant tissue plasminogen activator (rt-PA) for acute ischaemic stroke within 6 hours. The Third International Stroke Trial (Thrombolysis) [online], (2009).

  111. del Zoppo, G. J. et al. PROACT: a phase II randomized trial of pro-urokinase by direct arterial delivery in acute middle cerebral artery stroke. PROACT Investigators. Prolyse in Acute Cerebral Thromboembolism. Stroke 29, 4–11 (1998).

    Article  CAS  PubMed  Google Scholar 

  112. Furlan, A. et al. Intra-arterial prourokinase for acute ischaemic stroke. The PROACT II study: a randomized controlled trail. Prolyse in acute cerebral thromboembolism. JAMA 282, 2003–2011 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Kase, C. et al. Cerebral haemorrhage after intra-arterial thrombolysis for ischaemic stroke: the PROACT II trial. Neurology 57, 1603–1610 (2001).

    Article  CAS  PubMed  Google Scholar 

  114. Kidwell, C. S. et al. Predictors of haemorrhagic transformation in patients receiving intra-arterial thrombolysis. Stroke 33, 717–724 (2002).

    Article  PubMed  Google Scholar 

  115. Kim, D. et al. Intra-arterial thrombolysis for acute stroke in patients 80 and older: a comparison of results in patients younger than 80 years. AJNR Am. J. Neuroradiol. 28, 159–163 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Wolfe, T. et al. Comparison of combined venous and arterial thrombolysis with primary arterial therapy using recombinant tissue plasminogen activator in acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 17, 121–128 (2008).

    Article  PubMed  Google Scholar 

  117. Smith, W. S. et al. Mechanical thrombectomy for acute ischemic stroke: final results of the Multi MERCI trial. Stroke 39, 1205–1212 (2008).

    Article  PubMed  Google Scholar 

  118. Bose, A. et al. Penumbra Phase I Stroke Trial Investigators. The Penumbra System: a mechanical device for the treatment of acute stroke due to thromboembolism. AJNR Am. J. Neuroradiol. 29, 1409–1413 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brekenfeld, C. et al. Stent placement in acute cerebral artery occlusion: use of a self-expandable intracranial stent for acute stroke treatment. Stroke 40, 847–852 (2009).

    Article  PubMed  Google Scholar 

  120. Broderick, J. P. Endovascular therapy for acute ischemic stroke. Stroke 40, S103–S106 (2009).

    Article  PubMed  Google Scholar 

  121. Natarajan, S. K. et al. Safety and effectiveness of endovascular therapy after 8 hours of acute ischemic stroke onset and wake-up strokes. Stroke 40, 3269–3274 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. IMS II Trial Investigators. The Interventional Management of Stroke (IMS) II Study. Stroke 38, 2127–2135 (2007).

  123. Pérez de la Ossa, N. & Davalos, A. Neuroprotection in cerebral infarction: the opportunity of new studies. Cerebrovasc. Dis. 24 (Suppl. 1), 153–156 (2007).

    Article  PubMed  Google Scholar 

  124. O'Collins, V. E. et al. 1,026 experimental treatments in acute stroke. Ann. Neurol. 59, 467–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  125. Fisher, M. et al. Enhancing the development and approval of acute stroke therapies: Stroke Therapy Academic Industry roundtable. Stroke 36, 1808–1813 (2005).

    Article  PubMed  Google Scholar 

  126. Adams, H. P. Jr et al. Guidelines for the early management of adults with ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the American Academy of Neurology affirms the value of this guideline as an educational tool for neurologists. Stroke 38, 1655–1711 (2007).

    Article  PubMed  Google Scholar 

  127. California Acute Stroke Pilot Registry Investigators. The impact of standardized stroke orders on adherence to best practices. Neurology 65, 360–365 (2005).

  128. Forster, A. et al. Rehabilitation for older people in long-term care. Cochrane Database of Systematic Reviews, Issue 1. Art. No.:CD004294. doi: 10.1002/14651858.CD004294.pub2 (2009).

    Google Scholar 

  129. Candelise, L. et al. Stroke-unit care for acute stroke patients: an observational follow-up study. Lancet 369, 299–305 (2007).

    Article  PubMed  Google Scholar 

  130. Saposnik, G. et al. Do all age groups benefit from organized inpatient stroke care? Stroke 40, 3321–3327 (2009).

    Article  PubMed  Google Scholar 

  131. Lawes, C. M., Bennett, D. A., Feigin, V. L. & Rodgers, A. Blood pressure and stroke: an overview of published reviews. Stroke 35, 776–785 (2004).

    Article  PubMed  Google Scholar 

  132. Turnbull, F. et al. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: meta-analysis of randomised trials. BMJ 336, 1121–1123 (2008).

    CAS  PubMed  Google Scholar 

  133. Beckett, N. S. et al. Treatment of hypertension in patients 80 years of age or older. N. Engl. J. Med. 358, 1887–1898 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Chalmers, J. et al. International Society of Hypertension (ISH): statement on blood pressure lowering and stroke prevention. J. Hypertens. 21, 651–663 (2003).

    Article  PubMed  Google Scholar 

  135. [No authors listed] Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). SHEP Cooperative Research Group. JAMA 265, 3255–3264 (1991).

  136. PROGRESS Collaborative Group. Randomised trial of a perindopril-based blood-pressure-lowering regimen among 6,105 individuals with previous stroke or transient ischaemic attack. Lancet 358, 1033–1041 (2001).

  137. Schrader, J. et al. Mortbidity and mortality after stroke, eprosartan compared with nitrendipine for secondary prevention: principal results of a prospective randomized controlled study (MOSES). Stroke 36, 1218–1226 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Ogihara, T. et al. The optimal target blood pressure for antihypertensive treatment in Japanese elderly patients with high-risk hypertension: a subanalysis of the Candesartan Antihypertensive Survival Evaluation in Japan (CASE-J) Trial. Hypertension Res. 31, 1595–1601 (2008).

    Article  Google Scholar 

  139. Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. National Heart, Lung and Blood Institute [online], (2004).

  140. Oates, D. J., Berlowitz, D. R., Glickman, M. E., Silliman, R. A. & Borzecki, A. M. Blood pressure and survival in the oldest old. J. Am. Geriatr. Soc. 55, 383–388 (2007).

    Article  PubMed  Google Scholar 

  141. [No authors listed] Collaborative overview of randomised trials of antiplatelet therapy—I: prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. Antiplatelet Trialists' Collaboration. BMJ 308, 81–106 (1994).

  142. [No authors listed] The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19,435 patients with acute ischaemic stroke. International Stroke Trial Collaborative Group. Lancet 349, 1569–1581 (1997).

  143. [No authors listed] CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. CAST (Chinese Acute Stroke Trial) Collaborative Group. Lancet 349, 1641–1649 (1997).

  144. Ridker, P. M. et al. A randomized trial of low-dose aspirin in the primary prevention of cardiovascular disease in women. N. Engl. J. Med. 352, 1293–1304 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Sacco, R. L. et al. Guidelines for prevention of stroke in patients with ischemic stroke or transient ischemic attack: a statement for healthcare professionals from the American Heart Association/American Stroke Association Council on Stroke: co-sponsored by the Council on Cardiovascular Radiology and Intervention: the American Academy of Neurology affirms the value of this guideline. Stroke 37, 577–617 (2006).

    Article  PubMed  Google Scholar 

  146. [No authors listed] Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation. Analysis of pooled data from five randomized controlled trials. Arch. Intern. Med. 154, 1449–1457 (1994).

  147. Mant, J. et al. Warfarin versus aspirin for stroke prevention in an elderly community population with atrial fibrillation (the Birmingham Atrial Fibrillation Treatment of the Aged Study, BAFTA): a randomised controlled trial. Lancet 370, 493–503 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Tsivgoulis, G. et al. Efficacy of anticoagulation for secondary stroke prevention in older people with non-valvular atrial fibrillation: a propective case series study. Age Ageing 34, 35–40 (2005).

    Article  PubMed  Google Scholar 

  149. Ansell, J. et al. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 133, (Suppl. 6), S160–S198 (2008).

    Article  Google Scholar 

  150. [No authors listed] MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 360, 7–22 (2002).

  151. Baigent, C. et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366, 1267–1278 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Ridker, P. M. et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N. Engl. J. Med. 359, 2195–2207 (2008).

    Article  CAS  PubMed  Google Scholar 

  153. Chaturvedi, S. et al. Effect of atorvastatin in elderly patients with a recent stroke or transient ischemic attack. Neurology 72, 688–694 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Afilalo, J. et al. Statins for secondary prevention in elderly patients: a hierarchical bayesian meta-analysis. J. Am. Coll. Cardiol. 51, 37–45 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Zhang, L. et al. Multitargeted effects of statin-enhanced thrombolytic therapy for stroke with recombinant human tissue-type plasminogen activator in the rat. Circulation 112, 3486–3494 (2005).

    Article  CAS  PubMed  Google Scholar 

  156. Bushnell, C. D. et al. Statin use and sex-specific stroke outcomes in patients with vascular disease. Stroke 37, 1427–1431 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Appelros, P., Stegmayr, B. & Terént, A. Sex differences in stroke epidemiology: a systematic review. Stroke 40, 1082–1090 (2009).

    Article  PubMed  Google Scholar 

  158. Arboix, A. et al. Acute cerebrovascular disease in women. Eur. Neurol. 45, 199–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  159. Béjot, Y. et al. Stroke in the very old: incidence, risk factors, clinical features, outcomes and access to resources—a 22-year population-based study. Cerebrovasc. Dis. 29, 111–121 (2010).

    Article  PubMed  Google Scholar 

  160. Usman, A. A., Tang, G. L. & Eskandari, M. K. Metaanalysis of procedural stroke and death among octogenarians: carotid stenting versus carotid endarterectomy. J. Am. Coll. Surg. 208, 1124–1131 (2009).

    Article  PubMed  Google Scholar 

  161. Seshadri, S. et al. Elevated midlife blood pressure increases stroke risk in elderly persons: the Framingham Study. Arch. Intern. Med. 161, 2343–2350 (2001).

    Article  CAS  PubMed  Google Scholar 

  162. Weverling-Rijnsburger, A. W., Jonkers, I. J., van Exel, E., Gussekloo, J. & Westendorp, R. G. High-density vs low-density lipoprotein cholesterol as the risk factor for coronary artery disease and stroke in old age. Arch. Intern. Med. 163, 1549–1554 (2003).

    Article  CAS  PubMed  Google Scholar 

  163. Milionis, H. J. et al. Components of the metabolic syndrome and risk for first-ever acute ischemic nonembolic stroke in elderly subjects. Stroke 36, 1372–1376 (2005).

    Article  PubMed  Google Scholar 

  164. Scott, D. J. et al. Adipocytokines and risk of stroke in older people: a nested case–control study. Int. J. Epidemiol. 38, 253–261 (2009).

    Article  Google Scholar 

  165. Savva, G. M. et al. Age, neuropathology and dementia. N. Engl. J. Med. 360, 2302–2309 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Jellinger, K. A. Morphologic diagnosis of “vascular dementia”—a critical update. J. Neurol. Sci. 270, 1–12 (2008).

    Article  PubMed  Google Scholar 

  167. Petrovitch, H. et al. AD lesions and infarcts in demented and non-demented Japanese–American men. Ann. Neurol. 57, 98–103 (2005).

    Article  PubMed  Google Scholar 

  168. Love, S., Miners, S., Palmer, J., Chalmers, K. & Kehoe, P. Insights into the pathogenesis and pathogenicity of cerebral amyloid angiopathy. Front. Biosci. 14, 4778–4792 (2009).

    Article  CAS  Google Scholar 

  169. Thal, D. R., Griffin, W. S., de Vos, R. A. & Grebremedhin, E. Cerebral amyloid angiopathy and its relationship to Alzheimer's disease. Acta Neuropathol. 115, 599–609 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Thore, C. R. et al. Morphometric analysis of arteriolar tortuosity in human cerebral white matter of preterm, young, and aged subjects. J. Neuropathol. Exp. Neurol. 66, 337–345 (2007).

    Article  PubMed  Google Scholar 

  171. Schneider, J. A., Arvanitakis, Z., Bang, W. & Bennett, D. A. Mixed brain pathologies account for most dementia in community-dwelling older persons. Neurology 69, 2197–2204 (2007).

    Article  PubMed  Google Scholar 

  172. Southern, L., Williams, J. & Esiri, M. M. Immunohistochemical study of N-epsilon-carboxymethyl lysine (CML) in human brain: relation to vascular dementia. BMC Neurol. 7, 35 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sato, T. et al. Toxic advanced glycation end products (TAGE) theory in Alzheimer's disease. Am. J. Alzheimers Dis. Other Demen. 21, 197–208 (2006).

    Article  PubMed  Google Scholar 

  174. Lowe, J., Mirra, S. S., Hyman, B. T. & Dickson, D. W. in Greenfield's Neuropathology 8th edn Vol. 1 (eds Love, S., Louis, D. N. & Ellison, D. W.) 1031–1152 (Hodder Arnold, London, 2008).

    Google Scholar 

  175. Ince, P. G., Clark, B., Holton, J., Revesz, T. & Wharton, S. B. in Greenfield's Neuropathology 8th edn Vol. 1 (eds Love, S., Louis, D. N. & Ellison, D. W.) 889–1030 (Hodder Arnold, London, 2008).

    Google Scholar 

Download references

Acknowledgements

We are grateful for funding received from the Dunhill Medical Trust, the Medical Research Council, the Fondation Leducq, the Biomedical Research Center, the National Institute for Health Research, and the Oxford Radcliffe Hospitals National Health Service Trust.

Charles P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair M. Buchan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, RL., Balami, J., Esiri, M. et al. Ischemic stroke in the elderly: an overview of evidence. Nat Rev Neurol 6, 256–265 (2010). https://doi.org/10.1038/nrneurol.2010.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing