Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging in the surgical treatment of epilepsy

Abstract

Medically refractory focal epilepsy is potentially curable by surgery. This Review considers the application of recent advances in structural and functional brain imaging to increase the number of patients with epilepsy who are treated surgically, and to reduce the risk of complications arising from such intervention. Current optimal MRI of brain structure can identify previously undetectable lesions, with voxel-based and quantitative analyses further increasing the diagnostic yield. If MRI proves unremarkable, PET (with 18F-fluorodeoxyglucose) and single-photon emission CT of ictal–interictal cerebral blood flow might identify the brain region that contains the epileptic focus. Magnetoencephalography plus simultaneous EEG and functional MRI can map the location of interictal epileptic discharges, thereby facilitating placement of intracranial recording electrodes to define the site of seizure onset. Functional MRI can also lateralize language and localize primary motor, somatosensory and language areas, and shows promise for predicting the effects of temporal lobe resection on memory. Tractography can visualize the main cerebral white matter tracts, thereby predicting and reducing surgery risk. Currently, displays of the optic radiation and pyramidal tracts are the most relevant for epilepsy surgery. Reliable integration of structural and functional data into surgical image-guidance systems is being pursued, and promises safer neurosurgery for epilepsy in the future.

Key Points

  • Currently available optimal structural MRI can reveal previously covert epileptic lesions, with quantitative and voxel-based analyses of MRI data increasing the diagnostic yield of such imaging

  • PET, single-photon emission CT (SPECT), EEG with simultaneous functional MRI (EEG–fMRI), and magnetoencephalography (MEG) should be considered if MRI is unremarkable or discordant with clinical and EEG data

  • PET, SPECT, EEG–fMRI and MEG can inform the strategy for placement of intracranial EEG electrodes

  • In clinical practice, fMRI is now used to lateralize language function and localize primary motor and sensory cortices

  • Electrical stimulation mapping is recommended for resections close to eloquent cortex to estimate and minimize the risk of causing new deficits

  • Tractography visualizes the main white matter tracts, and is used in surgical planning so as to minimize the risk of causing damage to these tracts

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coronal fluid-attenuated inversion recovery MRI sequence acquired at 3T.
Figure 2: High-resolution T2-weighted coronal MRI scan.
Figure 3: Coronal 18F-FDG PET scan.
Figure 4: Combined EEG–fMRI and simultaneous ESI.
Figure 5: MEG of an interictal epileptic discharge.
Figure 6: Language mapping.
Figure 7: Prediction of verbal and visual memory decline after anterior temporal lobe resection using memory fMRI.
Figure 8: Visualization of the optic radiation.

Similar content being viewed by others

References

  1. Lhatoo, S. D. et al. A prospective study of the requirement for and the provision of epilepsy surgery in the United Kingdom. Epilepsia 44, 673–676 (2003).

    PubMed  Google Scholar 

  2. Berg, A. T. et al. Frequency, prognosis and surgical treatment of structural abnormalities seen with magnetic resonance imaging in childhood epilepsy. Brain 132, 2785–2797 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. Spencer, S. & Huh, L. Outcomes of epilepsy surgery in adults and children. Lancet Neurol. 7, 525–537 (2008).

    PubMed  Google Scholar 

  4. Duncan, J. S. (Ed.) Neuroimaging Clinics of North America—Epilepsy (Elsevier Saunders, Philadelphia, 2004).

    Google Scholar 

  5. Berkovic, S. F. et al. ILAE neuroimaging commission recommendations for neuroimaging of persons with refractory epilepsy. Epilepsia 39, 1375–1376 (1998).

    Google Scholar 

  6. Strandberg, M., Larsson, E. M., Backman, S. & Kallen, K. Pre-surgical epilepsy evaluation using 3T MRI. Do surface coils provide additional information? Epileptic Disord. 10, 83–92 (2008).

    PubMed  Google Scholar 

  7. Knake, S. et al. 3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology 65, 1026–1031 (2005).

    CAS  PubMed  Google Scholar 

  8. Focke, N. K., Symms, M. R., Burdett, J. L. & Duncan, J. S. Voxel-based analysis of whole brain FLAIR at 3T detects focal cortical dysplasia. Epilepsia 49, 786–793 (2008).

    PubMed  Google Scholar 

  9. Focke, N. K. et al. Automated normalized FLAIR imaging in MRI-negative patients with refractory focal epilepsy. Epilepsia 50, 1484–1490 (2009).

    PubMed  Google Scholar 

  10. Salmenpera, T. M. et al. Evaluation of quantitative magnetic resonance imaging contrasts in MRI-negative refractory focal epilepsy. Epilepsia 48, 229–237 (2007).

    PubMed  Google Scholar 

  11. Chen, Q. et al. MRI-negative refractory partial epilepsy: role for diffusion tensor imaging in high field MRI. Epilepsy Res. 80, 83–89 (2008).

    PubMed  Google Scholar 

  12. Thivard, L. et al. Interictal diffusion MRI in partial epilepsies explored with intracerebral electrodes. Brain 129, 375–385 (2006).

    PubMed  Google Scholar 

  13. Guye, M. et al. What is the significance of interictal water diffusion changes in frontal lobe epilepsies? Neuroimage 35, 28–37 (2007).

    CAS  PubMed  Google Scholar 

  14. Mahvash, M. et al. Coregistration of digital photography of the human cortex and cranial magnetic resonance imaging for visualization of subdural electrodes in epilepsy surgery. Neurosurgery 61, 340–344 (2007).

    PubMed  Google Scholar 

  15. Carmichael, D. W. et al. Safety of localizing epilepsy monitoring intracranial electroencephalograph electrodes using MRI: radiofrequency-induced heating. J. Magn. Reson. Imaging 28, 1233–1244 (2008).

    PubMed  PubMed Central  Google Scholar 

  16. Eriksson, S. H. et al. PROPELLER MRI visualizes detailed pathology of hippocampal sclerosis. Epilepsia 49, 33–39 (2008).

    PubMed  PubMed Central  Google Scholar 

  17. Cook, M. J., Fish, D. R., Shorvon, S. D., Straughan, K. & Stevens, J. M. Hippocampal volumetric and morphometric studies in frontal and temporal lobe epilepsy. Brain 115, 1001–1015 (1992).

    PubMed  Google Scholar 

  18. Bonilha, L. et al. Automated MRI analysis for identification of hippocampal atrophy in temporal lobe epilepsy. Epilepsia 50, 228–233 (2009).

    PubMed  Google Scholar 

  19. Hogan, R. E. et al. Hippocampal deformation mapping in MRI negative PET positive temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 79, 636–640 (2008).

    CAS  PubMed  Google Scholar 

  20. Jackson, G. D., Connelly, A., Duncan, J. S., Grunewald, R. A. & Gadian, D. G. Detection of hippocampal pathology in intractable partial epilepsy: increased sensitivity with quantitative magnetic resonance T2 relaxometry. Neurology 43, 1793–1799 (1993).

    CAS  PubMed  Google Scholar 

  21. Woermann, F. G., Barker, G. J., Birnie, K. D., Meencke, H. J. & Duncan, J. S. Regional changes in hippocampal T2 relaxation and volume: a quantitative magnetic resonance imaging study of hippocampal sclerosis. J. Neurol. Neurosurg. Psychiatry 65, 656–664 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Bartlett, P. A., Symms, M. R., Free, S. L. & Duncan, J. S. T2 relaxometry of the hippocampus at 3T. AJNR Am. J. Neuroradiol. 28, 1095–1098 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Goncalves Pereira, P. M., Oliveira, E. & Rosado, P. Apparent diffusion coefficient mapping of the hippocampus and the amygdala in pharmaco-resistant temporal lobe epilepsy. AJNR Am. J. Neuroradiol. 27, 671–683 (2006).

    CAS  PubMed  Google Scholar 

  24. Wehner, T. et al. The value of interictal diffusion-weighted imaging in lateralizing temporal lobe epilepsy. Neurology 68, 122–127 (2007).

    CAS  PubMed  Google Scholar 

  25. Salamon, N. et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology 71, 1594–1601 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee, K. K. & Salamon, N. [18F] fluorodeoxyglucose-positron-emission tomography and MR imaging coregistration for presurgical evaluation of medically refractory epilepsy. AJNR Am. J. Neuroradiol. 30, 1811–1816 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Willmann, O., Wennberg, R., May, T., Woermann, F. G. & Pohlmann-Eden, B. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy: a meta-analysis. Seizure 16, 509–520 (2007).

    CAS  PubMed  Google Scholar 

  28. O'Brien, T. J. et al. The cost-effective use of 18F-FDG PET in the presurgical evaluation of medically refractory focal epilepsy. J. Nucl. Med. 49, 931–937 (2008).

    PubMed  Google Scholar 

  29. Muzik, O., Chugani, D. C., Juhasz, C., Shen, C. & Chugani, H. T. Statistical parametric mapping: assessment of application in children. Neuroimage 12, 538–549 (2000).

    CAS  PubMed  Google Scholar 

  30. Alkonyi, B. et al. Quantitative brain surface mapping of an electrophysiologic/metabolic mismatch in human neocortical epilepsy. Epilepsy Res. 87, 77–87 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Vinton, A. B. et al. The extent of resection of FDG-PET hypometabolism relates to outcome of temporal lobectomy. Brain 130, 548–560 (2007).

    PubMed  Google Scholar 

  32. Ryvlin, P. et al. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. Brain 121, 2067–2081 (1998).

    PubMed  Google Scholar 

  33. Richardson, M. P., Koepp, M. J., Brooks, D. J. & Duncan, J. S. 11C-Flumazenil PET in neocortical epilepsy. Neurology 51, 485–492 (1998).

    CAS  PubMed  Google Scholar 

  34. Wakamoto, H. et al. Alpha-methyl-L-tryptophan positron emission tomography in epilepsy with cortical developmental malformations. Pediatr. Neurol. 39, 181–188 (2008).

    PubMed  Google Scholar 

  35. O'Brien, T. J. et al. Subtraction SPECT co-registered to MRI improves postictal SPECT localization of seizure foci. Neurology 52, 137–146 (1999).

    CAS  PubMed  Google Scholar 

  36. Dupont, P. et al. Ictal perfusion patterns associated with single MRI-visible focal dysplastic lesions: implications for the noninvasive delineation of the epileptogenic zone. Epilepsia 47, 1550–1557 (2006).

    PubMed  Google Scholar 

  37. Kazemi, N. J. et al. Ictal SPECT statistical parametric mapping in temporal lobe epilepsy surgery. Neurology 74, 70–76 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Van Paesschen, W., Dupont, P., Van Driel, G., Van Billoen, H. & Maes, A. SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis. Brain 126, 1103–1111 (2003).

    CAS  PubMed  Google Scholar 

  39. Salek-Haddadi, A. et al. Hemodynamic correlates of epileptiform discharges: an EEG–fMRI study of 63 patients with focal epilepsy. Brain Res. 1088, 148–166 (2006).

    CAS  PubMed  Google Scholar 

  40. Gotman, J., Benar, C. G. & Dubeau, F. Combining EEG and fMRI in epilepsy: methodological challenges and clinical results. J. Clin. Neurophysiol. 21, 229–240 (2004).

    PubMed  Google Scholar 

  41. Jacobs, J. et al. Hemodynamic responses to interictal epileptiform discharges in children with symptomatic epilepsy. Epilepsia 48, 2068–2078 (2007).

    PubMed  Google Scholar 

  42. Grova, C. et al. Concordance between distributed EEG source localization and simultaneous EEG–fMRI studies of epileptic spikes. Neuroimage 39, 755–774 (2008).

    CAS  PubMed  Google Scholar 

  43. Vulliemoz, S. et al. Continuous EEG source imaging enhances analysis of EEG–fMRI in focal epilepsy. Neuroimage 49, 3219–3229 (2010).

    CAS  PubMed  Google Scholar 

  44. Groening, K. et al. Combination of EEG–fMRI and EEG source analysis improves interpretation of spike-associated activation networks in paediatric pharmacoresistant focal epilepsies. Neuroimage 46, 827–833 (2009).

    PubMed  Google Scholar 

  45. Vulliemoz, S. et al. The spatio-temporal mapping of epileptic networks: combination of EEG–fMRI and EEG source imaging. Neuroimage 46, 834–843 (2009).

    CAS  PubMed  Google Scholar 

  46. Zijlmans, M. et al. EEG–fMRI in the preoperative work-up for epilepsy surgery. Brain 130, 2343–2353 (2007).

    PubMed  Google Scholar 

  47. Moeller, F. et al. EEG–fMRI: adding to standard evaluations of patients with nonlesional frontal lobe epilepsy. Neurology 73, 2023–2030 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Thornton, R. et al. EEG correlated functional MRI and postoperative outcome in focal epilepsy. J. Neurol. Neurosurg. Psychiatry 81, 922–927 (2010).

    PubMed  Google Scholar 

  49. Tyvaert, L. et al. Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG–fMRI study. Brain 131, 2042–2060 (2008).

    CAS  PubMed  Google Scholar 

  50. LeVan, P., Tyvaert, L., Moeller, F. & Gotman, J. Independent component analysis reveals dynamic ictal BOLD responses in EEG–fMRI data from focal epilepsy patients. Neuroimage 49, 366–378 (2010).

    PubMed  Google Scholar 

  51. Carmichael, D. W. et al. Feasibility of simultaneous intracranial EEG–fMRI in humans: a safety study. Neuroimage 49, 379–390 (2010).

    PubMed  Google Scholar 

  52. Knake, S. et al. The value of multichannel MEG and EEG in the presurgical evaluation of 70 epilepsy patients. Epilepsy Res. 69, 80–86 (2006).

    CAS  PubMed  Google Scholar 

  53. Ossenblok, P., De Munck, J. C., Colon, A., Drolsbach, W. & Boon, P. Magnetoencephalography is more successful for screening and localizing frontal lobe epilepsy than electroencephalography. Epilepsia 48, 2139–2149 (2007).

    PubMed  Google Scholar 

  54. Knowlton, R. C. et al. Effect of epilepsy magnetic source imaging on intracranial electrode placement. Ann. Neurol. 65, 716–723 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. Agirre-Arrizubieta, Z., Huiskamp, G. J., Ferrier, C. H., van Huffelen, A. C. & Leijten, F. S. Interictal magnetoencephalography and the irritative zone in the electrocorticogram. Brain 132, 3060–3071 (2009).

    CAS  PubMed  Google Scholar 

  56. Knowlton, R. C. et al. Functional imaging: II. Prediction of epilepsy surgery outcome. Ann. Neurol. 64, 35–41 (2008).

    PubMed  Google Scholar 

  57. Macdonell, R. A. et al. Motor cortex localization using functional MRI and transcranial magnetic stimulation. Neurology 53, 1462–1467 (1999).

    CAS  PubMed  Google Scholar 

  58. Bittar, R. G. et al. Presurgical motor and somatosensory cortex mapping with functional magnetic resonance imaging and positron emission tomography. J. Neurosurg. 91, 915–921 (1999).

    CAS  PubMed  Google Scholar 

  59. Yetkin, F. Z. et al. Functional MR activation correlated with intraoperative cortical mapping. AJNR Am. J. Neuroradiol. 18, 1311–1315 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Binder, J. R. et al. Determination of language dominance using functional MRI: a comparison with the Wada test. Neurology 46, 978–984 (1996).

    CAS  PubMed  Google Scholar 

  61. Woermann, F. G. et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology 61, 699–701 (2003).

    CAS  PubMed  Google Scholar 

  62. Gaillard, W. D. et al. Language dominance in partial epilepsy patients identified with an fMRI reading task. Neurology 59, 256–265 (2002).

    CAS  PubMed  Google Scholar 

  63. Gaillard, W. D. et al. fMRI language task panel improves determination of language dominance. Neurology 63, 1403–1408 (2004).

    CAS  PubMed  Google Scholar 

  64. Adcock, J. E., Wise, R. G., Oxbury, J. M., Oxbury, S. M. & Matthews, P. M. Quantitative fMRI assessment of the differences in lateralization of language-related brain activation in patients with temporal lobe epilepsy. Neuroimage 18, 423–438 (2003).

    CAS  PubMed  Google Scholar 

  65. Thivard, L. et al. Productive and perceptive language reorganization in temporal lobe epilepsy. Neuroimage 24, 841–851 (2005).

    PubMed  Google Scholar 

  66. Liegeois, F. et al. A direct test for lateralization of language activation using fMRI: comparison with invasive assessments in children with epilepsy. Neuroimage 17, 1861–1867 (2002).

    CAS  PubMed  Google Scholar 

  67. Suarez, R. O. et al. Threshold-independent functional MRI determination of language dominance: a validation study against clinical gold standards. Epilepsy Behav. 16, 288–297 (2009).

    PubMed  PubMed Central  Google Scholar 

  68. Abbott, D. F., Waites, A. B., Lillywhite, L. M. & Jackson, G. D. fMRI assessment of language lateralization: an objective approach. Neuroimage 50, 1446–1455 (2010).

    PubMed  Google Scholar 

  69. Wilke, A. & Schmithorst, V. J. A combined bootstrap/histogram analysis approach for computing a lateralization index from neuroimaging data. Neuroimage 33, 522–530 (2006).

    PubMed  Google Scholar 

  70. Sanjuán, A. et al. Comparison of two fMRI tasks for the evaluation of the expressive language function. Neuroradiology 52, 407–415 (2010).

    PubMed  Google Scholar 

  71. Berl, M. M. et al. Seizure focus affects regional language networks assessed by fMRI. Neurology 65, 1604–1611 (2005).

    CAS  PubMed  Google Scholar 

  72. Gaillard, W. D. et al. Atypical language in lesional and nonlesional complex partial epilepsy. Neurology 69, 1761–1771 (2007).

    CAS  PubMed  Google Scholar 

  73. Liegeois, F. et al. Language reorganization in children with early-onset lesions of the left hemisphere: an fMRI study. Brain 127, 1229–1236 (2004).

    CAS  PubMed  Google Scholar 

  74. Rosenberger, L. R. et al. Interhemispheric and intrahemispheric language reorganization in complex partial epilepsy. Neurology 72, 1830–1836 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Weber, B. et al. Left hippocampal pathology is associated with atypical language lateralization in patients with focal epilepsy. Brain 129, 346–351 (2006).

    PubMed  Google Scholar 

  76. Wellmer, J. et al. Cerebral lesions can impair fMRI-based language lateralization. Epilepsia 50, 2213–2224 (2009).

    PubMed  Google Scholar 

  77. Janszky, J., Mertens, M., Janszky, I., Ebner, A. & Woermann, F. G. Left-sided interictal epileptic activity induces shift of language lateralization in temporal lobe epilepsy: an fMRI study. Epilepsia 47, 921–927 (2006).

    PubMed  Google Scholar 

  78. Waites, A. B., Briellmann, R. S., Saling, M. M., Abbott, D. F. & Jackson, G. D. Functional connectivity networks are disrupted in left temporal lobe epilepsy. Ann. Neurol. 59, 335–343 (2006).

    PubMed  Google Scholar 

  79. Davies, K. G. et al. Naming decline after left anterior temporal lobectomy correlates with pathological status of resected hippocampus. Epilepsia 39, 407–419 (1998).

    CAS  PubMed  Google Scholar 

  80. Sabsevitz, D. S. et al. Use of preoperative functional neuroimaging to predict language deficits from epilepsy surgery. Neurology 60, 1788–1792 (2003).

    CAS  PubMed  Google Scholar 

  81. Giussani, C. et al. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery 66, 113–120 (2010).

    PubMed  Google Scholar 

  82. Kim, J. H. et al. Functional reorganization associated with semantic language processing in temporal lobe epilepsy patients after anterior temporal lobectomy: a longitudinal functional magnetic resonance image study. J. Korean Neurosurg. Soc. 47, 17–25 (2010).

    PubMed  PubMed Central  Google Scholar 

  83. Wong, S. W. et al. Cortical reorganization following anterior temporal lobectomy in patients with temporal lobe epilepsy. Neurology 73, 518–525 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Noppeney, U., Price, C. J., Duncan, J. S. & Koepp, M. J. Reading skills after left anterior temporal lobe resection: an fMRI study. Brain 128, 1377–1385 (2005).

    PubMed  Google Scholar 

  85. Frye, R. E., Rezaie, R. & Papanicolaou, A. C. Functional neuroimaging of language using magnetoencephalography. Phys. Life Rev. 6, 1–10 (2009).

    PubMed  PubMed Central  Google Scholar 

  86. Doss, R. C., Zhang, W., Risse, G. L. & Dickens, D. L. Lateralizing language with magnetic source imaging: validation based on the Wada test. Epilepsia 50, 2242–2248 (2009).

    PubMed  Google Scholar 

  87. McDonald, C. R. et al. Distributed source modeling of language with magnetoencephalography: application to patients with intractable epilepsy. Epilepsia 50, 2256–2266 (2009).

    PubMed  PubMed Central  Google Scholar 

  88. Hermann, B. P., Seidenberg, M., Haltiner, A. & Wyler, A. R. Relationship of age at onset, chronologic age, and adequacy of preoperative performance to verbal memory change after anterior temporal lobectomy. Epilepsia 36, 137–145 (1995).

    CAS  PubMed  Google Scholar 

  89. Sabsevitz, D. S., Swanson, S. J., Morris, G. L., Mueller, W. M. & Seidenberg, M. Memory outcome after left anterior temporal lobectomy in patients with expected and reversed Wada memory asymmetry scores. Epilepsia 42, 1408–1415 (2001).

    CAS  PubMed  Google Scholar 

  90. Spiers, H. J. et al. Unilateral temporal lobectomy patients show lateralized topographical and episodic memory deficits in a virtual town. Brain 124, 2476–2489 (2001).

    CAS  PubMed  Google Scholar 

  91. Lee, T. M., Yip, J. T. & Jones-Gotman, M. Memory deficits after resection from left or right anterior temporal lobe in humans: a meta-analytic review. Epilepsia 43, 283–291 (2002).

    PubMed  Google Scholar 

  92. Baxendale, S., Thompson, P., Harkness, W. & Duncan, J. Predicting memory decline following epilepsy surgery: a multivariate approach. Epilepsia 47, 1887–1894 (2006).

    PubMed  Google Scholar 

  93. Binder, J. R. et al. Use of preoperative functional MRI to predict verbal memory decline after temporal lobe epilepsy surgery. Epilepsia 49, 1377–1394 (2008).

    PubMed  PubMed Central  Google Scholar 

  94. Dupont, S. et al. Functional MR imaging or Wada test: which is the better predictor of individual postoperative memory outcome? Radiology 255, 128–134 (2010).

    PubMed  Google Scholar 

  95. Wagner, K. et al. Differential effect of side of temporal lobe epilepsy on lateralization of hippocampal, temporolateral, and inferior frontal activation patterns during a verbal episodic memory task. Epilepsy Behav. 12, 382–387 (2008).

    PubMed  Google Scholar 

  96. Rabin, M. L. et al. Functional MRI predicts post-surgical memory following temporal lobectomy. Brain 127, 2286–2298 (2004).

    PubMed  Google Scholar 

  97. Richardson, M. P. et al. Pre-operative verbal memory fMRI predicts post-operative memory decline after left temporal lobe resection. Brain 127, 2419–2426 (2004).

    PubMed  Google Scholar 

  98. Richardson, M. P., Strange, B. A., Duncan, J. S. & Dolan, R. J. Memory fMRI in left hippocampal sclerosis: optimizing the approach to predicting postsurgical memory. Neurology 66, 699–705 (2006).

    PubMed  Google Scholar 

  99. Janszky, J. et al. Functional MRI predicts memory performance after right mesiotemporal epilepsy surgery. Epilepsia 46, 244–250 (2005).

    PubMed  Google Scholar 

  100. Powell, H. W. et al. Preoperative fMRI predicts memory decline following anterior temporal lobe resection. J. Neurol. Neurosurg. Psychiatry 79, 686–693 (2008).

    CAS  PubMed  Google Scholar 

  101. Frings, L. et al. Lateralization of hippocampal activation differs between left and right temporal lobe epilepsy patients and correlates with postsurgical verbal learning decrement. Epilepsy Res. 78, 161–170 (2008).

    PubMed  Google Scholar 

  102. Koylu, B., Walser, G., Ischebeck, A., Ortler, M. & Benke, T. Functional imaging of semantic memory predicts postoperative episodic memory functions in chronic temporal lobe epilepsy. Brain Res. 1223, 73–81 (2008).

    PubMed  Google Scholar 

  103. Binder, J. R. et al. A comparison of two fMRI methods for predicting verbal memory decline after left temporal lobectomy: Language lateralization versus hippocampal activation asymmetry. Epilepsia 51, 618–626 (2010).

    PubMed  Google Scholar 

  104. Cheung, M. C., Chan, A. S., Lam, J. M. & Chan, Y. L. Pre- and postoperative fMRI and clinical memory performance in temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 80, 1099–1106 (2009).

    PubMed  Google Scholar 

  105. Bonelli, S. B. et al. Imaging memory in temporal lobe epilepsy: predicting the effects of temporal lobe resection. Brain 133, 1186–1199 (2010).

    PubMed  PubMed Central  Google Scholar 

  106. Axmacher, N. et al. Sustained neural activity patterns during working memory in the human medial temporal lobe. J. Neurosci. 27, 7807–7816 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Voets, N. L. et al. Functional and structural changes in the memory network associated with left temporal lobe epilepsy. Hum. Brain Mapp. 30, 4070–4081 (2009).

    PubMed  PubMed Central  Google Scholar 

  108. Mori, S. & van Zijl, P. C. Fiber tracking: principles and strategies—a technical review. NMR Biomed. 15, 468–480 (2002).

    PubMed  Google Scholar 

  109. Alexander, D. C. Multiple-fiber reconstruction algorithms for diffusion MRI. Ann. NY Acad. Sci. 1064, 113–133 (2005).

    PubMed  Google Scholar 

  110. Parker, G. J. & Alexander, D. C. Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 893–902 (2005).

    PubMed  PubMed Central  Google Scholar 

  111. Ciccarelli, O. et al. From diffusion tractography to quantitative white matter tract measures: a reproducibility study. Neuroimage 18, 348–359 (2003).

    CAS  PubMed  Google Scholar 

  112. Catani, M., Howard, R. J., Pajevic, S. & Jones, D. K. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17, 77–94 (2002).

    PubMed  Google Scholar 

  113. Guye, M. et al. Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage 19, 1349–1360 (2003).

    PubMed  Google Scholar 

  114. Gaetz, W. et al. Mapping of the cortical spinal tracts using magnetoencephalography and diffusion tensor tractography in pediatric brain tumor patients. Childs Nerv. Syst. doi: 10.1007/s00381-010-1189-8.

    PubMed  Google Scholar 

  115. Powell, H. W. et al. Abnormalities of language networks in temporal lobe epilepsy. Neuroimage 36, 209–221 (2007).

    PubMed  Google Scholar 

  116. Matsumoto, R. et al. Hemispheric asymmetry of the arcuate fasciculus: a preliminary diffusion tensor tractography study in patients with unilateral language dominance defined by Wada test. J. Neurol. 255, 1703–1711 (2008).

    CAS  PubMed  Google Scholar 

  117. McDonald, C. R. et al. Diffusion tensor imaging correlates of memory and language impairments in temporal lobe epilepsy. Neurology 71, 1869–1876 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ahmadi, M. E. et al. Side matters: diffusion tensor imaging tractography in left and right temporal lobe epilepsy. AJNR Am. J. Neuroradiol. 30, 1740–1747 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Rodrigo, S. et al. Language lateralization in temporal lobe epilepsy using functional MRI and probabilistic tractography. Epilepsia 49, 1367–1376 (2008).

    PubMed  Google Scholar 

  120. Govindan, R. M., Makki, M. I., Sundaram, S. K., Juhasz, C. & Chugani, H. T. Diffusion tensor analysis of temporal and extra-temporal lobe tracts in temporal lobe epilepsy. Epilepsy Res. 80, 30–41 (2008).

    PubMed  PubMed Central  Google Scholar 

  121. Powell, H. W. et al. Imaging language pathways predicts postoperative naming deficits. J. Neurol. Neurosurg. Psychiatry 79, 327–330 (2008).

    CAS  PubMed  Google Scholar 

  122. Diehl, B. et al. Cortical stimulation for language mapping in focal epilepsy: Correlations with tractography of the arcuate fasciculus. Epilepsia 51, 639–646 (2010).

    PubMed  Google Scholar 

  123. Yogarajah, M. et al. The structural plasticity of white matter networks following anterior temporal lobe resection. Brain (in press).

  124. Concha, L., Beaulieu, C. & Gross, D. W. Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Ann. Neurol. 57, 188–196 (2005).

    PubMed  Google Scholar 

  125. Concha, L., Gross, D. W., Wheatley, B. M. & Beaulieu, C. Diffusion tensor imaging of time-dependent axonal and myelin degradation after corpus callosotomy in epilepsy patients. Neuroimage 32, 1090–1099 (2006).

    PubMed  Google Scholar 

  126. Concha, L., Beaulieu, C., Wheatley, B. M. & Gross, D. W. Bilateral white matter diffusion changes persist after epilepsy surgery. Epilepsia 48, 931–940 (2007).

    PubMed  Google Scholar 

  127. Yogarajah, M. et al. Tractography of the parahippocampal gyrus and material specific memory impairment in unilateral temporal lobe epilepsy. Neuroimage 40, 1755–1764 (2008).

    CAS  PubMed  Google Scholar 

  128. Diehl, B. et al. Abnormalities in diffusion tensor imaging of the uncinate fasciculus relate to reduced memory in temporal lobe epilepsy. Epilepsia 49, 1409–1418 (2008).

    PubMed  Google Scholar 

  129. Manji, H. & Plant, G. T. Epilepsy surgery, visual fields, and driving: a study of the visual field criteria for driving in patients after temporal lobe epilepsy surgery with a comparison of Goldmann and Esterman perimetry. J. Neurol. Neurosurg. Psychiatry 68, 80–82 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Yamamoto, T., Yamada, K., Nishimura, T. & Kinoshita, S. Tractography to depict three layers of visual field trajectories to the calcarine gyri. Am. J. Ophthalmol. 140, 781–785 (2005).

    PubMed  Google Scholar 

  131. Kikuta, K. et al. Early experience with 3-T magnetic resonance tractography in the surgery of cerebral arteriovenous malformations in and around the visual pathway. Neurosurgery 58, 331–337 (2006).

    PubMed  Google Scholar 

  132. Powell, H. W. et al. MR tractography predicts visual field defects following temporal lobe resection. Neurology 65, 596–599 (2005).

    CAS  PubMed  Google Scholar 

  133. Nilsson, D. et al. Intersubject variability in the anterior extent of the optic radiation assessed by tractography. Epilepsy Res. 77, 11–16 (2007).

    PubMed  Google Scholar 

  134. Taoka, T. et al. Diffusion tensor tractography of the Meyer loop in cases of temporal lobe resection for temporal lobe epilepsy: correlation between postsurgical visual field defect and anterior limit of Meyer loop on tractography. AJNR Am. J. Neuroradiol. 29, 1329–1334 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Yogarajah, M. et al. Defining Meyer's loop—temporal lobe resections, visual field deficits and diffusion tensor tractography. Brain 132, 1656–1668 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Chen, X., Weigel, D., Ganslandt, O., Buchfelder, M. & Nimsky, C. Prediction of visual field deficits by diffusion tensor imaging in temporal lobe epilepsy surgery. Neuroimage 45, 286–297 (2009).

    PubMed  Google Scholar 

  137. Knowlton, R. C. et al. Functional imaging: I. Relative predictive value of intracranial electroencephalography. Ann. Neurol. 64, 25–34 (2008).

    PubMed  Google Scholar 

Download references

Acknowledgements

I am grateful to the Wellcome Trust (Program Grants 067,176 and 083,148), Wolfson Trust, Medical Research Council (G0301067), European Union (201,380) and the National Society for Epilepsy for their support. This work was undertaken at University College London Hospital and University College London, UK, which both receive a proportion of their funding from the UK Government Department of Health's National Institute of Health Research Biomedical Research Centers funding scheme. I am indebted to J. de Tisi for assistance with the bibliography and for formatting this paper, and to my colleagues at the National Society for Epilepsy's MRI Unit for their enthusiastic collaboration.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duncan, J. Imaging in the surgical treatment of epilepsy. Nat Rev Neurol 6, 537–550 (2010). https://doi.org/10.1038/nrneurol.2010.131

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2010.131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing