Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Technology Insight: neuroengineering and epilepsy—designing devices for seizure control

Abstract

Despite substantial innovations in antiepileptic drug therapy over the past 15 years, the proportion of patients with uncontrolled epilepsy has not changed, highlighting the need for new treatment strategies. New implantable antiepileptic devices, which are currently under development and in pivotal clinical trials, hold great promise for improving the quality of life of millions of people with epileptic seizures worldwide. A broad range of strategies to stop seizures is currently being investigated, with various modes of control and intervention. The success of novel antiepileptic devices rests upon collaboration between neuroengineers, physicians and industry to adapt new technologies for clinical use. The initial results with these technologies are exciting, but considerable development and controlled clinical trials will be required before these treatments earn a place in our standard of clinical care.

Key Points

  • Up to 25% of the 50 million people with epilepsy worldwide are unable to control their seizures with currently available medications

  • Implantable devices are being developed to help control seizures in patients with medically refractory epilepsy

  • Open-loop electrical stimulation devices, which lack intrinsic feedback control, are currently being used to treat medically refractory epilepsy

  • A closed-loop device with real-time surface and depth electroencephalographic monitoring is currently in clinical trial; second-generation closed-loop devices will use earlier seizure markers as feedback

  • Other antiseizure devices currently in development use techniques such as drug delivery, focal cooling and magnetic stimulation

  • Future research must address the issues of how to define a seizure, what causes a seizure, and how a seizure can be stopped

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Vagus Nerve Stimulator, manufactured by Cyberonics.
Figure 2: The Medtronic Kinetra® device (Minneapolis, MN).
Figure 3: The NeuroPace Responsive Neurostimulator (RNS®) System (Mountain View, CA).

Similar content being viewed by others

References

  1. Penfield W and Jasper H (1954) Epilepsy and the Functional Anatomy of the Human Brain. Boston: Little Brown and Co.

    Book  Google Scholar 

  2. Hodgkin AL and Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hamill OP et al. (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391: 85–100

    Article  CAS  PubMed  Google Scholar 

  4. Pfurtscheller G et al. (2006) 15 years of BCI research at Graz University of Technology: current projects. IEEE Trans Neural Syst Rehabil Eng 14: 205–210

    Article  CAS  PubMed  Google Scholar 

  5. Isaacs RE et al. (2000) Work toward real-time control of a cortical neural prothesis. IEEE Trans Rehabil Eng 8: 196–198

    Article  CAS  PubMed  Google Scholar 

  6. Donoghue JP et al. (2007) Assistive technology and robotic control using motor cortex ensemble-based neural interface systems in humans with tetraplegia. J Physiol 579: 603–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Peckham PH and Knutson JS (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 7: 327–360

    Article  CAS  PubMed  Google Scholar 

  8. Brelen ME et al. (2006) Intraorbital implantation of a stimulating electrode for an optic nerve visual prosthesis: case report. J Neurosurg 104: 593–597

    Article  PubMed  Google Scholar 

  9. Normann RA (2007) Technology insight: future neuroprosthetic therapies for disorders of the nervous system. Nat Clin Pract Neurol 3: 444–452

    Article  PubMed  Google Scholar 

  10. Contreras DA et al. (1997) Intracellular and computational characterization of the intracortical inhibitory control of synchronized thalamic inputs in vivo. J Neurophysiol 78: 335–350

    Article  CAS  PubMed  Google Scholar 

  11. Traub RD and Bibbig A (2000) A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon–axon gap junctions between pyramidal neurons. J Neurosci 20: 2086–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dyhrfjeld-Johnsen J et al. (2007) Topological determinants of epileptogenesis in large-scale structural and functional models of the dentate gyrus derived from experimental data. J Neurophysiol 97: 1566–1587

    Article  PubMed  Google Scholar 

  13. Netoff TI et al. (2005) Synchronization in hybrid neuronal networks of the hippocampal formation. J Neurophysiol 93: 1197–1208

    Article  PubMed  Google Scholar 

  14. Traub RD et al. (2005) Combined experimental/simulation studies of cellular and network mechanisms of epileptogenesis in vitro and in vivo. J Clin Neurophysiol 22: 330–342

    PubMed  Google Scholar 

  15. Traub RD et al. (2005) Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. J Neurophysiol 93: 2194–2232

    Article  PubMed  Google Scholar 

  16. Ebersole JS and Pedley TA (2003) Current Practice of Clinical Electroencephalography, edn 3. New York: Lippincott Williams & Wilkins

    Google Scholar 

  17. Benbadis S (2000) Invasive EEG. In Epileptic Seizures: Pathophysiology and Clinical Semiology, 32–53 (Eds Luders HO and Noachtar S) New York: Churchill Livingstone

    Google Scholar 

  18. Benabid AL et al. (2000) Deep brain stimulation of the subthalamic nucleus for Parkinson's disease: methodologic aspects and clinical criteria. Neurology 55 (Suppl 6): S40–S44

    CAS  PubMed  Google Scholar 

  19. Uc EY and Follett KA (2007) Deep brain stimulation in movement disorders. Semin Neurol 27: 170–182

    Article  PubMed  Google Scholar 

  20. Wichmann T and DeLong MR (2006) Deep brain stimulation for neurologic and neuropsychiatric disorders. Neuron 52: 197–204

    Article  CAS  PubMed  Google Scholar 

  21. Creutzfeldt OD et al. (1962) Influence of transcortical d-c currents on cortical neuronal activity. Exp Neurol 5: 436–452

    Article  CAS  PubMed  Google Scholar 

  22. Durand D (1986) Electrical stimulation can inhibit synchronized neuronal activity. Brain Res 382: 139–144

    Article  CAS  PubMed  Google Scholar 

  23. Cooper IS et al. (1976) Chronic cerebellar stimulation in epilepsy: clinical and anatomical studies. Arch Neurol 33: 559–570

    Article  CAS  PubMed  Google Scholar 

  24. Grabow JD et al. (1974) Cerebellar stimulation for the control of seizures. Mayo Clin Proc 49: 759–774

    CAS  PubMed  Google Scholar 

  25. Levy LF and Auchterlonie WC (1979) Chronic cerebellar stimulation in the treatment of epilepsy. Epilepsia 20: 235–245

    Article  CAS  PubMed  Google Scholar 

  26. Krauss GL and Fisher RS (1993) Cerebellar and thalamic stimulation for epilepsy. Adv Neurol 63: 231–245

    CAS  PubMed  Google Scholar 

  27. Velasco AL et al. (2000) Subacute and chronic electrical stimulation of the hippocampus on intractable temporal lobe seizures: preliminary report. Arch Med Res 31: 316–328

    Article  CAS  PubMed  Google Scholar 

  28. Kellinghaus C and Loddenkemper T (2006) Double-blind, randomized controlled study of bilateral cerebellar stimulation. Epilepsia 47: 1247

    Article  PubMed  Google Scholar 

  29. Van Buren JM et al. (1978) Preliminary evaluation of cerebellar stimulation by double-blind stimulation and biological criteria in the treatment of epilepsy. J Neurosurg 48: 407–416

    Article  CAS  PubMed  Google Scholar 

  30. Wright GD et al. (1984) A double-blind trial of chronic cerebellar stimulation in twelve patients with severe epilepsy. J Neurol Neurosurg Psychiatry 47: 769–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Velasco F et al. (2005) Double-blind, randomized controlled pilot study of bilateral cerebellar stimulation for treatment of intractable motor seizures. Epilepsia 46: 1071–1081

    Article  PubMed  Google Scholar 

  32. Litt B (2003) Evaluating devices for treating epilepsy. Epilepsia 44 (Suppl 7): S30–S37

    Article  Google Scholar 

  33. Oommen J et al. (2005) Experimental electrical stimulation therapy for epilepsy. Curr Treat Options Neurol 7: 261–271

    Article  PubMed  Google Scholar 

  34. Graves NM and Fisher RS (2005) Neurostimulation for epilepsy, including a pilot study of anterior nucleus stimulation. Clin Neurosurg 52: 127–134

    PubMed  Google Scholar 

  35. Cyberonics (2002) Physician's Manual, VNS Therapy Pulse Model 102 Generator (June vol). Houston, TX: Cyberonics, Inc.

  36. Fisher RS et al. (1997) Assessment of vagus nerve stimulation for epilepsy: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 49: 293–297

    Article  CAS  PubMed  Google Scholar 

  37. Cyberonics: VNS Therapy—Mechanism of Action [http://www.vnstherapy.com/epilepsy/hcp/vnstherapy/mechanismofaction.aspx]

  38. Kerrigan JF et al. (2004) Electrical stimulation of the anterior nucleus of the thalamus for the treatment of intractable epilepsy. Epilepsia 45: 346–354

    Article  PubMed  Google Scholar 

  39. Hodaie M et al. (2002) Chronic anterior thalamus stimulation for intractable epilepsy. Epilepsia 43: 603–608

    Article  PubMed  Google Scholar 

  40. Mirski MA et al. (1986) Anterior thalamus and substantia nigra: two distinct structures mediating experimental generalized seizures. Brain Res 397: 377–380

    Article  CAS  PubMed  Google Scholar 

  41. NIH Clinical Trials.gov: SANTE—Stimulation of the Anterior Nucleus of the Thalamus for Epilepsy [http://clinicaltrials.gov/ct/show/NCT00101933]

  42. Medtronic: Intercept Epilepsy Control System Clinical Trial [http://www.epilepsycontrol.com]

  43. Vonck K et al. (2002) Long-term amygdalohippocampal stimulation for refractory temporal lobe epilepsy. Ann Neurol 52: 556–565

    Article  PubMed  Google Scholar 

  44. Tellez-Zenteno JF et al. (2006) Hippocampal electrical stimulation in mesial temporal lobe epilepsy. Neurology 66: 1490–1494

    Article  CAS  PubMed  Google Scholar 

  45. Dinner DS et al. (2002) EEG and evoked potential recording from the subthalamic nucleus for deep brain stimulation of intractable epilepsy. Clin Neurophysiol 113: 1391–1402

    Article  PubMed  Google Scholar 

  46. Benabid AL et al. (2002) Antiepileptic effect of high-frequency stimulation of the subthalamic nucleus (corpus luysi) in a case of medically intractable epilepsy caused by focal dysplasia: a 30-month follow-up: technical case report. Neurosurgery 50: 1385–1391

    PubMed  Google Scholar 

  47. Fisher RS et al. (1992) Placebo-controlled pilot study of centromedian thalamic stimulation in treatment of intractable seizures. Epilepsia 33: 841–851

    Article  CAS  PubMed  Google Scholar 

  48. Pollo C and Villemure JG (2007) Rationale, mechanisms of efficacy, anatomical targets and future prospects of electrical deep brain stimulation for epilepsy. Acta Neurochir Suppl 97: 311–320

    Article  CAS  PubMed  Google Scholar 

  49. Theodore WH and Fisher RS (2004) Brain stimulation for epilepsy. Lancet Neurol 3: 111–118

    Article  PubMed  Google Scholar 

  50. Franaszczuk PJ et al. (2003) External excitatory stimuli can terminate bursting in neural network models. Epilepsy Res 53: 65–80

    Article  PubMed  Google Scholar 

  51. Lian J et al. (2003) Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. J Physiol 547: 427–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Richardson KA et al. (2003) In vivo modulation of hippocampal epileptiform activity with radial electric fields. Epilepsia 44: 768–777

    Article  PubMed  Google Scholar 

  53. Rothman SM et al. (2005) Focal cooling for epilepsy: an alternative therapy that might actually work. Epilepsy Behav 7: 214–221

    Article  PubMed  Google Scholar 

  54. Yang XF et al. (2002) Neocortical seizure termination by focal cooling: temperature dependence and automated seizure detection. Epilepsia 43: 240–245

    Article  PubMed  Google Scholar 

  55. Imoto H et al. (2006) Use of a Peltier chip with a newly devised local brain-cooling system for neocortical seizures in the rat: technical note. J Neurosurg 104: 150–156

    Article  PubMed  Google Scholar 

  56. Fregni F et al. (2006) A randomized clinical trial of repetitive transcranial magnetic stimulation in patients with refractory epilepsy. Ann Neurol 60: 447–455

    Article  PubMed  Google Scholar 

  57. Joo EY et al. (2007) Antiepileptic effects of low-frequency repetitive transcranial magnetic stimulation by different stimulation durations and locations. Clin Neurophysiol 118: 702–708

    Article  PubMed  Google Scholar 

  58. Theodore WH et al. (2002) Transcranial magnetic stimulation for the treatment of seizures: a controlled study. Neurology 59: 560–562

    Article  CAS  PubMed  Google Scholar 

  59. Bae EH et al. (2007) Safety and tolerability of repetitive transcranial magnetic stimulation in patients with epilepsy: a review of the literature. Epilepsy Behav 10: 521–528

    Article  PubMed  Google Scholar 

  60. Fisher RS and Chen DK (2006) New routes for delivery of anti-epileptic medications. Acta Neurol Taiwan 15: 225–231

    PubMed  Google Scholar 

  61. Lohman RJ et al. (2005) Validation of a method for localised microinjection of drugs into thalamic subregions in rats for epilepsy pharmacological studies. J Neurosci Methods 146: 191–197

    Article  CAS  PubMed  Google Scholar 

  62. Tamargo RJ et al. (2002) The intracerebral administration of phenytoin using controlled-release polymers reduces experimental seizures in rats. Epilepsy Res 48: 145–155

    Article  CAS  PubMed  Google Scholar 

  63. Stein AG et al. (2000) An automated drug delivery system for focal epilepsy. Epilepsy Res 39: 103–114

    Article  CAS  PubMed  Google Scholar 

  64. Ludvig N et al. (2006) Epidural pentobarbital delivery can prevent locally induced neocortical seizures in rats: the prospect of transmeningeal pharmacotherapy for intractable focal epilepsy. Epilepsia 47: 1792–1802

    Article  PubMed  Google Scholar 

  65. Kossoff EH et al. (2004) Effect of an external responsive neurostimulator on seizures and electrographic discharges during subdural electrode monitoring. Epilepsia 45: 1560–1567

    Article  PubMed  Google Scholar 

  66. Barkley GL et al. (2006) Safety and preliminary efficacy of the RNS Responsive Neurostimulator for the treatment of intractable epilepsy in adults [abstract #A.12]. Presented at the Annual Meeting of the American Epilepsy Society: 2006 December 1–5, San Diego, CA, USA

  67. Firpi H et al. (2007) Epileptic seizure detection using genetically programmed artificial features. IEEE Trans Biomed Eng 54: 212–224

    Article  PubMed  Google Scholar 

  68. Saab ME and Gotman J (2005) A system to detect the onset of epileptic seizures in scalp EEG. Clin Neurophysiol 116: 427–442

    Article  CAS  PubMed  Google Scholar 

  69. Gardner AB et al. (2007) Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings. Clin Neurophysiol 118: 1134–1143

    Article  PubMed  PubMed Central  Google Scholar 

  70. Lee HC et al. (2007) Comparison of seizure detection algorithms in continuously monitored pediatric patients. J Clin Neurophysiol 24: 137–146

    Article  PubMed  Google Scholar 

  71. Litt B and Echauz J (2002) Prediction of epileptic seizures. Lancet Neurol 1: 22–30

    Article  PubMed  Google Scholar 

  72. Haut SR et al. (2007) Can patients with epilepsy predict their seizures? Neurology 68: 262–266

    Article  PubMed  Google Scholar 

  73. Litt B and Krieger A (2007) Of seizure prediction, statistics, and dogs: a cautionary tail. Neurology 68: 250–251

    Article  PubMed  Google Scholar 

  74. Litt B et al. (2001) Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30: 51–64

    Article  CAS  PubMed  Google Scholar 

  75. Wong S et al. (2007) A stochastic framework for evaluating seizure prediction algorithms using hidden Markov models. J Neurophysiol 97: 2525–2532

    Article  PubMed  Google Scholar 

  76. Mormann F et al. (2007) Seizure prediction: the long and winding road. Brain 130: 314–333

    Article  PubMed  Google Scholar 

  77. Lehnertz K et al. (2007) State-of-the-art of seizure prediction. J Clin Neurophysiol 24: 147–153

    Article  PubMed  Google Scholar 

  78. Schelter B et al. (2007) Seizure prediction: the impact of long prediction horizons. Epilepsy Res 73: 213–217

    Article  PubMed  Google Scholar 

  79. Lehnertz K and Litt B (2005) The First International Collaborative Workshop on Seizure Prediction: summary and data description. Clin Neurophysiol 116: 493–505

    Article  PubMed  Google Scholar 

  80. Worrell G et al. (2005) Safety and evidence for efficacy of an implantable Responsive Neurostimulator (RNS) for the treatment of medically intractable partial onset epilepsy in adults [abstract #2.397] Epilepsia 46 (Suppl 8): aS226

    Google Scholar 

  81. Osorio I et al. (2005) Automated seizure abatement in humans using electrical stimulation. Ann Neurol 57: 258–268

    Article  PubMed  Google Scholar 

  82. Trafton A (2006) Epilepsy breakthrough on horizon [http://web.mit.edu/newsoffice/2006/epilepsy.html]

  83. Shoeb A et al. (2004) Patient-specific seizure onset detection. Epilepsy Behav 5: 483–498

    Article  PubMed  Google Scholar 

  84. Hirose S et al. (2005) Genetics of idiopathic epilepsies. Epilepsia 46 (Suppl 1): S38–S43

    Article  Google Scholar 

  85. Stables JP et al. (2002) Models for epilepsy and epileptogenesis: report from the NIH workshop, Bethesda, Maryland. Epilepsia 43: 1410–1420

    Article  PubMed  Google Scholar 

  86. Akiyama T et al. (2006) Topographic movie of ictal high-frequency oscillations on the brain surface using subdural EEG in neocortical epilepsy. Epilepsia 47: 1953–1957

    Article  PubMed  Google Scholar 

  87. Ang CW et al. (2006) Massive and specific dysregulation of direct cortical input to the hippocampus in temporal lobe epilepsy. J Neurosci 26: 11850–11856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. D'Alessandro M et al. (2005) A multi-feature and multi-channel univariate selection process for seizure prediction. Clin Neurophysiol 116: 506–516

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C Stacey.

Ethics declarations

Competing interests

B Litt is a stockholder and patent holder with NeuroPace, and a consultant for NeuroVista. WC Stacey declared no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stacey, W., Litt, B. Technology Insight: neuroengineering and epilepsy—designing devices for seizure control. Nat Rev Neurol 4, 190–201 (2008). https://doi.org/10.1038/ncpneuro0750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneuro0750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing