Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Myeloid cells — targets of medication in multiple sclerosis

Key Points

  • The roles of lymphocytes in multiple sclerosis (MS) pathophysiology are well known, but myeloid cells, including monocytes, macrophages, microglia and dendritic cells, are also important

  • Interactions between lymphocytes and myeloid cells exacerbate injurious processes

  • Myeloid cells are not the main targets of immunomodulators that are used to treat MS, but are still affected by them in disease-relevant ways

  • The actions of MS immunomodulators on myeloid cells contribute to the clinical efficacy of these therapeutic approaches

Abstract

Discussions of multiple sclerosis (MS) pathophysiology tend to focus on T cells and B cells of the adaptive immune response. The innate immune system is less commonly considered in this context, although dendritic cells, monocytes, macrophages and microglia — collectively referred to as myeloid cells — have prominent roles in MS pathogenesis. These populations of myeloid cells function as antigen-presenting cells and effector cells in neuroinflammation. Furthermore, a vicious cycle of interactions between T cells and myeloid cells exacerbates pathology. Several disease-modifying therapies are now available to treat MS, and insights into their mechanisms of action have largely focused on the adaptive immune system, but these therapies also have important effects on myeloid cells. In this Review, we discuss the evidence for the roles of myeloid cells in MS and the experimental autoimmune encephalomyelitis model of MS, and consider how interactions between myeloid cells and T cells and/or B cells promote MS pathology. Finally, we discuss the direct and indirect effects of existing MS medications on myeloid cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of myeloid cells.
Figure 2: Characteristics of macrophage subsets.
Figure 3: Postulated immune cascades in multiple sclerosis.
Figure 4: Proposed actions of disease-modifying multiple sclerosis therapies on myeloid cells.

Similar content being viewed by others

References

  1. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Prineas, J. W. et al. Immunopathology of secondary-progressive multiple sclerosis. Ann. Neurol. 50, 646–657 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Howell, O. W. et al. Activated microglia mediate axoglial disruption that contributes to axonal injury in multiple sclerosis. J. Neuropathol. Exp. Neurol. 69, 1017–1033 (2010).

    Article  PubMed  Google Scholar 

  4. Strachan-Whaley, M., Rivest, S. & Yong, V. W. Interactions between microglia and T cells in multiple sclerosis pathobiology. J. Interferon Cytokine Res. 34, 615–622 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010). An excellent review on the types and origins of myeloid cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010). Seminal work that revealed the origin and development of microglia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prinz, M., Tay, T. L., Wolf, Y. & Jung, S. Microglia: unique and common features with other tissue macrophages. Acta Neuropathol. 128, 319–331 (2014).

    Article  PubMed  Google Scholar 

  8. Kierdorf, K. et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16, 273–280 (2013). A pivotal paper that describes the transcription factors that regulate the early development of microglia.

    Article  CAS  PubMed  Google Scholar 

  9. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012). This paper showed for the first time that microglia precursor cells are MyB-independent, differentiating them from cells that are generated from haematopoietic stem cells.

    Article  CAS  PubMed  Google Scholar 

  10. Gomez Perdiguero, E. et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518, 547–551 (2015).

    Article  PubMed  CAS  Google Scholar 

  11. Prinz, M., Priller, J., Sisodia, S. S. & Ransohoff, R. M. Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nat. Neurosci. 14, 1227–1235 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Delneste, Y. et al. Interferon-γ switches monocyte differentiation from dendritic cells to macrophages. Blood 101, 143–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Sorokin, L. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10, 712–723 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Agrawal, S. M. et al. Extracellular matrix metalloproteinase inducer shows active perivascular cuffs in multiple sclerosis. Brain 136, 1760–1777 (2013).

    Article  PubMed  Google Scholar 

  16. Tran, E. H., Hoekstra, K., van Rooijen, N., Dijkstra, C. D. & Owens, T. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J. Immunol. 161, 3767–3775 (1998).

    CAS  PubMed  Google Scholar 

  17. Gordon, S. & Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014). This review calls for consensus in the nomenclature to describe the various activation states of macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xue, J. et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40, 274–288 (2014). Through RNA profiling in macrophages exposed to different activators, this paper reveals a broad spectrum of activated macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Agrawal, S. M., Silva, C., Tourtellotte, W. W. & Yong, V. W. EMMPRIN: a novel regulator of leukocyte transmigration into the CNS in multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neurosci. 31, 669–677 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005). A seminal paper in which real-time videomicroscopy was used to show for the first time that microglial processes constantly move and survey their environment in vivo.

    Article  CAS  PubMed  Google Scholar 

  23. Czeh, M., Gressens, P. & Kaindl, A. M. The yin and yang of microglia. Dev. Neurosci. 33, 199–209 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Saijo, K. & Glass, C. K. Microglial cell origin and phenotypes in health and disease. Nat. Rev. Immunol. 11, 775–787 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Rawji, K. S. & Yong, V. W. The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin. Dev. Immunol. 2013, 948976 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Casano, A. M. & Peri, F. Microglia: multitasking specialists of the brain. Dev. Cell 32, 469–477 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Reizis, B., Bunin, A., Ghosh, H. S., Lewis, K. L. & Sisirak, V. Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. 29, 163–183 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miller, S. D., McMahon, E. J., Schreiner, B. & Bailey, S. L. Antigen presentation in the CNS by myeloid dendritic cells drives progression of relapsing experimental autoimmune encephalomyelitis. Ann. N. Y. Acad. Sci. 1103, 179–191 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Duraes, F. V. et al. pDC therapy induces recovery from EAE by recruiting endogenous pDC to sites of CNS inflammation. J. Autoimmun. 67, 8–18 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. King, I. L., Dickendesher, T. L. & Segal, B. M. Circulating Ly-6C+ myeloid precursors migrate to the CNS and play a pathogenic role during autoimmune demyelinating disease. Blood 113, 3190–3197 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mildner, A. et al. CCR2+Ly-6Chi monocytes are crucial for the effector phase of autoimmunity in the central nervous system. Brain 132, 2487–2500 (2009).

    Article  PubMed  Google Scholar 

  32. Mishra, M. K., Wang, J., Silva, C., Mack, M. & Yong, V. W. Kinetics of proinflammatory monocytes in a model of multiple sclerosis and its perturbation by laquinimod. Am. J. Pathol. 181, 642–651 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011). A landmark paper showing that the microglial population is not replenished from peripheral immune cells in adulthood.

    Article  CAS  PubMed  Google Scholar 

  34. Agrawal, S. et al. Dystroglycan is selectively cleaved at the parenchymal basement membrane at sites of leukocyte extravasation in experimental autoimmune encephalomyelitis. J. Exp. Med. 203, 1007–1019 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yong, V. W., Power, C., Forsyth, P. & Edwards, D. R. Metalloproteinases in biology and pathology of the nervous system. Nat. Rev. Neurosci. 2, 502–511 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nuttall, R. K. et al. Metalloproteinases are enriched in microglia compared with leukocytes and they regulate cytokine levels in activated microglia. Glia 55, 516–526 (2007).

    Article  PubMed  Google Scholar 

  37. Brosnan, C. F., Bornstein, M. B. & Bloom, B. R. The effects of macrophage depletion on the clinical and pathologic expression of experimental allergic encephalomyelitis. J. Immunol. 126, 614–620 (1981).

    CAS  PubMed  Google Scholar 

  38. Huitinga, I., van Rooijen, N., de Groot, C. J., Uitdehaag, B. M. & Dijkstra, C. D. Suppression of experimental allergic encephalomyelitis in Lewis rats after elimination of macrophages. J. Exp. Med. 172, 1025–1033 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Bauer, J. et al. The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 15, 437–446 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Sloka, S., Metz, L. M., Hader, W., Starreveld, Y. & Yong, V. W. Reduction of microglial activity in a model of multiple sclerosis by dipyridamole. J. Neuroinflamm. 10, 89 (2013).

    Article  Google Scholar 

  41. Mikita, J. et al. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult. Scler. 17, 2–15 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Weber, M. S. et al. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat. Med. 13, 935–943 (2007). This manuscript highlights the generation of regulatory myeloid cells by glatiramer acetate treatment, leading to the production of T H 2 cells commonly associated with this medication.

    Article  CAS  PubMed  Google Scholar 

  43. Benveniste, E. N. Role of macrophages/microglia in multiple sclerosis and experimental allergic encephalomyelitis. J. Mol. Med. (Berl.) 75, 165–173 (1997).

    Article  CAS  Google Scholar 

  44. Sosa, R. A., Murphey, C., Robinson, R. R. & Forsthuber, T. G. IFN-γ ameliorates autoimmune encephalomyelitis by limiting myelin lipid peroxidation. Proc. Natl Acad. Sci. USA 112, E5038–E5047 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nikic, I. et al. A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 17, 495–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Mossakowski, A. A. et al. Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation. Acta Neuropathol. 130, 799–814 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. van Horssen, J., Witte, M. E., Schreibelt, G. & de Vries, H. E. Radical changes in multiple sclerosis pathogenesis. Biochim. Biophys. Acta 1812, 141–150 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Yamasaki, R. et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211, 1533–1549 (2014). This important paper revealed the different roles of microglia and macrophages in the experimental autoimmune encephalitis brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brosnan, C. F., Sacks, H. J., Goldschmidt, R. C., Goldmuntz, E. A. & Norton, W. T. Prazosin treatment during the effector stage of disease suppresses experimental autoimmune encephalomyelitis in the Lewis rat. J. Immunol. 137, 3451–3456 (1986).

    CAS  PubMed  Google Scholar 

  50. Shaked, I. et al. Transcription factor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages to limit neuroinflammation. Nat. Immunol. 16, 1228–1234 (2015). An important paper that shows that noradrenaline from macrophages helps promote the migration of leukocytes into the CNS, thereby linking stress and neuroinflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ponomarev, E. D., Shriver, L. P., Maresz, K. & Dittel, B. N. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J. Neurosci. Res. 81, 374–389 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Rasmussen, S. et al. Persistent activation of microglia is associated with neuronal dysfunction of callosal projecting pathways and multiple sclerosis-like lesions in relapsing–remitting experimental autoimmune encephalomyelitis. Brain 130, 2816–2829 (2007).

    Article  PubMed  Google Scholar 

  53. Takeuchi, H. et al. Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J. Biol. Chem. 281, 21362–21368 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Aloisi, F., Ria, F., Penna, G. & Adorini, L. Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J. Immunol. 160, 4671–4680 (1998).

    CAS  PubMed  Google Scholar 

  55. Aloisi, F. et al. Relative efficiency of microglia, astrocytes, dendritic cells and B cells in naive CD4+ T cell priming and Th1/Th2 cell restimulation. Eur. J. Immunol. 29, 2705–2714 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Davalos, D. et al. Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation. Nat. Commun. 3, 1227 (2012).

    Article  PubMed  CAS  Google Scholar 

  57. Heppner, F. L. et al. Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat. Med. 11, 146–152 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Goldmann, T. et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat. Neurosci. 16, 1618–1626 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Neumann, J. et al. Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J. Neurosci. 28, 5965–5975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, Z. et al. Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat. Commun. 5, 4486 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Ferguson, B., Matyszak, M. K., Esiri, M. M. & Perry, V. H. Axonal damage in acute multiple sclerosis lesions. Brain 120, 393–399 (1997).

    Article  PubMed  Google Scholar 

  62. Politis, M. et al. Increased PK11195 PET binding in the cortex of patients with MS correlates with disability. Neurology 79, 523–530 (2012). An important paper that describes the detection of activated microglia and macrophages through PET imaging in people with multiple sclerosis.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Kutzelnigg, A. et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 128, 2705–2712 (2005).

    Article  PubMed  Google Scholar 

  64. van Noort, J. M. et al. Preactive multiple sclerosis lesions offer novel clues for neuroprotective therapeutic strategies. CNS Neurol. Disord. Drug Targets 10, 68–81 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Vogel, D. Y. et al. Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J. Neuroinflamm. 10, 35 (2013).

    Article  CAS  Google Scholar 

  66. Kooi, E. J., Strijbis, E. M., van der Valk, P. & Geurts, J. J. Heterogeneity of cortical lesions in multiple sclerosis: clinical and pathologic implications. Neurology 79, 1369–1376 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Singh, S. et al. Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol. 125, 595–608 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peferoen, L. A. et al. Activation status of human microglia is dependent on lesion formation stage and remyelination in multiple sclerosis. J. Neuropathol. Exp. Neurol. 74, 48–63 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Kouwenhoven, M., Teleshova, N., Ozenci, V., Press, R. & Link, H. Monocytes in multiple sclerosis: phenotype and cytokine profile. J. Neuroimmunol. 112, 197–205 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Huang, Y. M. et al. Multiple sclerosis is associated with high levels of circulating dendritic cells secreting pro-inflammatory cytokines. J. Neuroimmunol. 99, 82–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Makhlouf, K., Weiner, H. L. & Khoury, S. J. Increased percentage of IL-12+ monocytes in the blood correlates with the presence of active MRI lesions in MS. J. Neuroimmunol. 119, 145–149 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Waschbisch, A. et al. Pivotal role for CD16+ monocytes in immune surveillance of the central nervous system. J. Immunol. 196, 1558–1567 (2016).

    Article  CAS  PubMed  Google Scholar 

  73. Kivisakk, P. et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann. Neurol. 65, 457–469 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Croxford, A. L. et al. The cytokine GM-CSF drives the inflammatory signature of CCR2+ monocytes and licenses autoimmunity. Immunity 43, 502–514 (2015). A key paper that links T H 17 cells and the production of GM-CSF with the downstream generation of proinflammatory monocytes that mediate CNS inflammation.

    Article  CAS  PubMed  Google Scholar 

  75. Codarri, L., Greter, M. & Becher, B. Communication between pathogenic T cells and myeloid cells in neuroinflammatory disease. Trends Immunol. 34, 114–119 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Ponomarev, E. D. et al. GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J. Immunol. 178, 39–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Codarri, L. et al. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nat. Immunol. 12, 560–567 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. El-Behi, M. et al. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nat. Immunol. 12, 568–575 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Croxford, A. L., Spath, S. & Becher, B. GM-CSF in neuroinflammation: licensing myeloid cells for tissue damage. Trends Immunol. 36, 651–662 (2015). An excellent review that discusses the critical role of myeloid cells in tissue damage in the CNS.

    Article  CAS  PubMed  Google Scholar 

  80. Bruck, W. et al. Therapeutic decisions in multiple sclerosis: moving beyond efficacy. JAMA Neurol. 70, 1315–1324 (2013).

    PubMed  Google Scholar 

  81. Stuve, O. et al. Pharmacological treatment of early multiple sclerosis. Drugs 68, 73–83 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Biber, K., Moller, T., Boddeke, E. & Prinz, M. Central nervous system myeloid cells as drug targets: current status and translational challenges. Nat. Rev. Drug Discov. 15, 110–124 (2016). This comprehensive review discusses the effector functions of myeloid cells and the approaches to targeting the proinflammatory activity of myeloid cells.

    Article  CAS  PubMed  Google Scholar 

  83. Dhib-Jalbut, S. & Marks, S. Interferon-beta mechanisms of action in multiple sclerosis. Neurology 74, S17–S24 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Marckmann, S. et al. Interferon-β up-regulates the expression of co-stimulatory molecules CD80, CD86 and CD40 on monocytes: significance for treatment of multiple sclerosis. Clin. Exp. Immunol. 138, 499–506 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu, Z., Pelfrey, C. M., Cotleur, A., Lee, J. C. & Rudick, R. A. Immunomodulatory effects of interferon beta-1a in multiple sclerosis. J. Neuroimmunol. 112, 153–162 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Ramgolam, V. S., Sha, Y., Jin, J., Zhang, X. & Markovic-Plese, S. IFN-β inhibits human Th17 cell differentiation. J. Immunol. 183, 5418–5427 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Yen, J. H., Kong, W. & Ganea, D. IFN-β inhibits dendritic cell migration through STAT-1-mediated transcriptional suppression of CCR7 and matrix metalloproteinase 9. J. Immunol. 184, 3478–3486 (2010). An important paper that shows the direct effect of IFN-β on dendritic cells.

    Article  CAS  PubMed  Google Scholar 

  88. Galboiz, Y., Shapiro, S., Lahat, N. & Miller, A. Modulation of monocytes matrix metalloproteinase-2, MT1-MMP and TIMP-2 by interferon-γ and -β: implications to multiple sclerosis. J. Neuroimmunol. 131, 191–200 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Schreiner, B. et al. Interferon-β enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. J. Neuroimmunol. 155, 172–182 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Comabella, M. et al. A type I interferon signature in monocytes is associated with poor response to interferon-β in multiple sclerosis. Brain 132, 3353–3365 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Yen, J. H. & Ganea, D. Interferon β induces mature dendritic cell apoptosis through caspase-11/caspase-3 activation. Blood 114, 1344–1354 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guo, B., Chang, E. Y. & Cheng, G. The type I IFN induction pathway constrains Th17-mediated autoimmune inflammation in mice. J. Clin. Invest. 118, 1680–1690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Prinz, M. et al. Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28, 675–686 (2008). A key paper that implicates myeloid cells as important cellular targets of IFN-β signalling to ameliorate neuroinflammation.

    Article  CAS  PubMed  Google Scholar 

  94. Hussien, Y., Sanna, A., Soderstrom, M., Link, H. & Huang, Y. M. Multiple sclerosis: expression of CD1a and production of IL-12p70 and IFN-γ by blood mononuclear cells in patients on combination therapy with IFN-β and glatiramer acetate compared to monotherapy with IFN-β. Mult. Scler. 10, 16–25 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Lucas, M. et al. Regulation by interferon β-1a of reactive oxygen metabolites production by lymphocytes and monocytes and serum sulfhydryls in relapsing multiple sclerosis patients. Neurochem. Int. 42, 67–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Hamamcioglu, K. & Reder, A. T. Interferon-β regulates cytokines and BDNF: greater effect in relapsing than in progressive multiple sclerosis. Mult. Scler. 13, 459–470 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Waschbisch, A. et al. Interferon beta and vitamin D synergize to induce immunoregulatory receptors on peripheral blood monocytes of multiple sclerosis patients. PLoS ONE 9, e115488 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Weber, M. S. et al. Multiple sclerosis: glatiramer acetate inhibits monocyte reactivity in vitro and in vivo. Brain 127, 1370–1378 (2004).

    Article  PubMed  Google Scholar 

  99. Kim, H. J. et al. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J. Immunol. 172, 7144–7153 (2004). One of the first papers to describe the generation of regulatory myeloid cells by glatiramer acetate.

    Article  CAS  PubMed  Google Scholar 

  100. Sellebjerg, F. et al. Dendritic cell, monocyte and T cell activation and response to glatiramer acetate in multiple sclerosis. Mult. Scler. 19, 179–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Iarlori, C. et al. Reduction of free radicals in multiple sclerosis: effect of glatiramer acetate (Copaxone). Mult. Scler. 14, 739–748 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Pul, R. et al. Glatiramer acetate modulates TNF-α and IL-10 secretion in microglia and promotes their phagocytic activity. J. Neuroimmune Pharmacol. 6, 381–388 (2011).

    Article  PubMed  Google Scholar 

  103. Pul, R. et al. Glatiramer acetate increases phagocytic activity of human monocytes in vitro and in multiple sclerosis patients. PLoS ONE 7, e51867 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Burger, D. et al. Glatiramer acetate increases IL-1 receptor antagonist but decreases T cell-induced IL-1β in human monocytes and multiple sclerosis. Proc. Natl Acad. Sci. USA 106, 4355–4359 (2009). This study shows that human monocytes are responsive to glatiramer acetate and that they increase their regulatory properties as a result.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ayers, C. L. et al. Modulation of immune function occurs within hours of therapy initiation for multiple sclerosis. Clin. Immunol. 147, 105–119 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ratchford, J. N. et al. Decreased microglial activation in MS patients treated with glatiramer acetate. J. Neurol. 259, 1199–1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Chun, J. & Hartung, H. P. Mechanism of action of oral fingolimod (FTY720) in multiple sclerosis. Clin. Neuropharmacol. 33, 91–101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Muller, H. et al. The immunomodulator FTY720 interferes with effector functions of human monocyte-derived dendritic cells. Eur. J. Immunol. 35, 533–545 (2005).

    Article  PubMed  CAS  Google Scholar 

  109. Awojoodu, A. O. et al. Sphingosine 1-phosphate receptor 3 regulates recruitment of anti-inflammatory monocytes to microvessels during implant arteriogenesis. Proc. Natl Acad. Sci. USA 110, 13785–13790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hughes, J. E. et al. Sphingosine-1-phosphate induces an antiinflammatory phenotype in macrophages. Circ. Res. 102, 950–958 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Durafourt, B. A. et al. Differential responses of human microglia and blood-derived myeloid cells to FTY720. J. Neuroimmunol. 230, 10–16 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Noda, H., Takeuchi, H., Mizuno, T. & Suzumura, A. Fingolimod phosphate promotes the neuroprotective effects of microglia. J. Neuroimmunol. 256, 13–18 (2013). The study that demonstrated that microglia are altered by fingolimod exposure to generate growth factors.

    Article  CAS  PubMed  Google Scholar 

  113. Al-Jaderi, Z. & Maghazachi, A. A. Effects of vitamin D3, calcipotriol and FTY720 on the expression of surface molecules and cytolytic activities of human natural killer cells and dendritic cells. Toxins (Basel) 5, 1932–1947 (2013).

    Article  CAS  Google Scholar 

  114. Jackson, S. J., Giovannoni, G. & Baker, D. Fingolimod modulates microglial activation to augment markers of remyelination. J. Neuroinflamm. 8, 76 (2011). This study demonstrated that microglia are affected by fingolimod, and that they become pro-reparative as a result.

    Article  CAS  Google Scholar 

  115. Lewis, N. D. et al. Circulating monocytes are reduced by sphingosine-1-phosphate receptor modulators independently of S1P3. J. Immunol. 190, 3533–3540 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Luessi, F. et al. FTY720 (fingolimod) treatment tips the balance towards less immunogenic antigen-presenting cells in patients with multiple sclerosis. Mult. Scler. 21, 1811–1822 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Michell-Robinson, M. A. et al. Effects of fumarates on circulating and CNS myeloid cells in multiple sclerosis. Ann. Clin. Transl. Neurol. 3, 27–41 (2016). This study showed that monocytes from patients with multiple sclerosis who were treated with dimethylfumarate had reduced expression of the proinflammatory microRNA miR-155.

    Article  CAS  PubMed  Google Scholar 

  118. Linker, R. A. et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134, 678–692 (2011).

    Article  PubMed  Google Scholar 

  119. Peng, H. et al. Dimethyl fumarate inhibits dendritic cell maturation via nuclear factor κB (NF-κB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen stress-activated kinase 1 (MSK1) signaling. J. Biol. Chem. 287, 28017–28026 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wilms, H. et al. Dimethylfumarate inhibits microglial and astrocytic inflammation by suppressing the synthesis of nitric oxide, IL-1β, TNF-α and IL-6 in an in-vitro model of brain inflammation. J. Neuroinflamm. 7, 30 (2010).

    Article  CAS  Google Scholar 

  121. Cross, S. A. et al. Dimethyl fumarate, an immune modulator and inducer of the antioxidant response, suppresses HIV replication and macrophage-mediated neurotoxicity: a novel candidate for HIV neuroprotection. J. Immunol. 187, 5015–5025 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Schilling, S., Goelz, S., Linker, R., Luehder, F. & Gold, R. Fumaric acid esters are effective in chronic experimental autoimmune encephalomyelitis and suppress macrophage infiltration. Clin. Exp. Immunol. 145, 101–107 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Spencer, C. M., Crabtree-Hartman, E. C., Lehmann-Horn, K., Cree, B. A. & Zamvil, S. S. Reduction of CD8+ T lymphocytes in multiple sclerosis patients treated with dimethyl fumarate. Neurol. Neuroimmunol. Neuroinflamm. 2, e76 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Ghoreschi, K. et al. Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J. Exp. Med. 208, 2291–2303 (2011). This manuscript suggested for the first time that dimethylfumarate has an effect on the generation of regulatory dendritic cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tanasescu, R., Evangelou, N. & Constantinescu, C. S. Role of oral teriflunomide in the management of multiple sclerosis. Neuropsychiatr. Dis. Treat. 9, 539–553 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Korn, T., Magnus, T., Toyka, K. & Jung, S. Modulation of effector cell functions in experimental autoimmune encephalomyelitis by leflunomide — mechanisms independent of pyrimidine depletion. J. Leukoc. Biol. 76, 950–960 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Ringheim, G. E. et al. Teriflunomide attenuates immunopathological changes in the dark agouti rat model of experimental autoimmune encephalomyelitis. Front. Neurol. 4, 169 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Li, L. et al. The effects of teriflunomide on lymphocyte subpopulations in human peripheral blood mononuclear cells in vitro. J. Neuroimmunol. 265, 82–90 (2013).

    Article  CAS  PubMed  Google Scholar 

  129. Mishra, M. K. et al. Laquinimod reduces neuroaxonal injury through inhibiting microglial activation. Ann. Clin. Transl. Neurol. 1, 409–422 (2014). A manuscript that describes that microglial activation is normalized by laquinimod.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schulze-Topphoff, U. et al. Laquinimod, a quinoline-3-carboxamide, induces type II myeloid cells that modulate central nervous system autoimmunity. PLoS ONE 7, e33797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jolivel, V. et al. Modulation of dendritic cell properties by laquinimod as a mechanism for modulating multiple sclerosis. Brain 136, 1048–1066 (2013).

    Article  PubMed  Google Scholar 

  132. Thone, J. et al. Modulation of autoimmune demyelination by laquinimod via induction of brain-derived neurotrophic factor. Am. J. Pathol. 180, 267–274 (2012).

    Article  PubMed  CAS  Google Scholar 

  133. Lund, B. T. et al. Assessment of changes in immune measures of multiple sclerosis patients treated with laquinimod. J. Neuroimmunol. 263, 108–115 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Ali, R., Nicholas, R. S. & Muraro, P. A. Drugs in development for relapsing multiple sclerosis. Drugs 73, 625–650 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Planas, R., Jelcic, I., Schippling, S., Martin, R. & Sospedra, M. Natalizumab treatment perturbs memory- and marginal zone-like B-cell homing in secondary lymphoid organs in multiple sclerosis. Eur. J. Immunol. 42, 790–798 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Jones, J. L. & Coles, A. J. Mode of action and clinical studies with alemtuzumab. Exp. Neurol. 262, 37–43 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Coles, A. J. et al. The window of therapeutic opportunity in multiple sclerosis: evidence from monoclonal antibody therapy. J. Neurol. 253, 98–108 (2006).

    Article  PubMed  Google Scholar 

  138. Boster, A., Ankeny, D. P. & Racke, M. K. The potential role of B cell-targeted therapies in multiple sclerosis. Drugs 70, 2343–2356 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Li, R. et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl. Med. 7, 310ra166 (2015). An excellent paper that showed that the depletion of B cells in patients with multiple sclerosis led to decreases in proinflammatory myeloid responses.

    PubMed  Google Scholar 

  140. Kausar, F. et al. Ocrelizumab: a step forward in the evolution of B-cell therapy. Expert. Opin. Biol. Ther. 9, 889–895 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Schweingruber, N., Reichardt, S. D., Luhder, F. & Reichardt, H. M. Mechanisms of glucocorticoids in the control of neuroinflammation. J. Neuroendocrinol. 24, 174–182 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Joyce, D. A., Steer, J. H. & Abraham, L. J. Glucocorticoid modulation of human monocyte/macrophage function: control of TNF-α secretion. Inflamm. Res. 46, 447–451 (1997).

    Article  CAS  PubMed  Google Scholar 

  143. Parrillo, J. E. & Fauci, A. S. Mechanisms of glucocorticoid action on immune processes. Annu. Rev. Pharmacol. Toxicol. 19, 179–201 (1979).

    Article  CAS  PubMed  Google Scholar 

  144. DeKruyff, R. H., Fang, Y. & Umetsu, D. T. Corticosteroids enhance the capacity of macrophages to induce Th2 cytokine synthesis in CD4+ lymphocytes by inhibiting IL-12 production. J. Immunol. 160, 2231–2237 (1998).

    CAS  PubMed  Google Scholar 

  145. Schweingruber, N. et al. Liposomal encapsulation of glucocorticoids alters their mode of action in the treatment of experimental autoimmune encephalomyelitis. J. Immunol. 187, 4310–4318 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Lee, D. H. et al. Glutathione PEGylated liposomal methylprednisolone (2B3-201) attenuates CNS inflammation and degeneration in murine myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalomyelitis. J. Neuroimmunol. 274, 96–101 (2014).

    Article  CAS  PubMed  Google Scholar 

  147. Frisullo, G. et al. Glucocorticoid treatment reduces T-bet and pSTAT1 expression in mononuclear cells from relapsing remitting multiple sclerosis patients. Clin. Immunol. 124, 284–293 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Krystyna, M. S. et al. Changes in circulating dendritic cells and B-cells in patients with multiple sclerosis relapse during corticosteroid therapy. J. Neuroimmunol. 207, 107–110 (2009).

    Article  CAS  PubMed  Google Scholar 

  149. Gayo, A. et al. Glucocorticoids increase IL-10 expression in multiple sclerosis patients with acute relapse. J. Neuroimmunol. 85, 122–130 (1998).

    Article  CAS  PubMed  Google Scholar 

  150. Wee Yong, V. Inflammation in neurological disorders: a help or a hindrance? Neuroscientist 16, 408–420 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' research is supported by grants from the Canadian Institutes of Health Research, the Alberta Innovates–Health Solutions CRIO Team programme, and the Multiple Sclerosis Society of Canada.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to V. Wee Yong.

Ethics declarations

Competing interests

V.W.Y. acknowledges previous unrestricted operating grant funding from EMD-Serono, Novartis and Teva Pharmaceuticals, and previous and current unrestricted educational grants from Biogen-Idec, EMD-Serono, Genyzme, Novartis, Roche and Teva Neuroscience. V.W.Y. has received honoraria for seminar presentations from Biogen-Idec, Genzyme, Novartis and Teva Neuroscience. M.K.M. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, M., Yong, V. Myeloid cells — targets of medication in multiple sclerosis. Nat Rev Neurol 12, 539–551 (2016). https://doi.org/10.1038/nrneurol.2016.110

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2016.110

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing