Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Rare neurological channelopathies — networks to study patients, pathogenesis and treatment

Key Points

  • Consortium for Clinical Investigations of Neurological Channelopathies (CINCH) and Clinical Research Consortium for Spinocerebellar Ataxias (CRC-SCA) are multicentre networks that engage patients who have rare neurological channelopathies with investigators, as well as advocacy groups

  • Shared goals of the networks are to improve diagnosis, characterize the natural history, understand disease mechanisms, develop outcome measures that can be assessed in clinical trials, and devise novel treatment

  • Patients, advocacy groups and investigators are partners in network activities, including teleconferences for study organization and training, steering committee meetings, and annual face-to-face research workshops and scientific symposia

  • CINCH and CRC-SCA have invested in mentoring of junior investigators to pursue patient-oriented research on rare channelopathies

  • The two networks have created and maintained patient registries, stratified patients on the basis of genetic characteristics, collected longitudinal clinical data to identify disease-relevant outcome measures, and conducted Phase I and II trials

  • The two networks illustrate the collaborative approach that is necessary for the growing list of rare neurological channelopathies in need of treatment and further investigation

Abstract

Each of the thousands of rare neurological diseases requires a widely distributed network of centres, investigators and patients, so as to foster multidisciplinary investigations and involve sufficient numbers of patients in the discovery of disease pathogenesis and novel treatment. In this Review, we highlight the value of this collaborative approach in patient-oriented research into rare neurological channelopathies. Two networks, the Consortium for Clinical Investigations of Neurological Channelopathies (CINCH) and the Clinical Research Consortium for Studies of Cerebellar Ataxias (CRC-SCA), provide a link between patients with rare channelopathies and investigators who are studying disease pathogenesis and developing novel treatments. Interactions between patients, researchers and advocacy groups promote shared agendas that benefit patient education and recruitment, research collaboration and funding, and training and mentoring of junior investigators who are attracted to the study of the diseases that provide the focus for the two networks. Here, we discuss how linkage of national and international centres has enabled recruitment of study participants, provided opportunities for novel studies of pathogenesis, and facilitated successful clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline of molecular and clinical research in SCA.
Figure 2: Timeline of molecular and clinical research in neurological channelopathies.

Similar content being viewed by others

References

  1. Griggs, R. C. et al. Clinical research for rare disease: opportunities, challenges, and solutions. Mol. Genet. Metab. 96, 20–26 (2009).

    Article  CAS  Google Scholar 

  2. Murphy, S. M., Puwanant, A. & Griggs, R. C. Unintended effects of orphan product designation for rare neurological diseases. Ann. Neurol. 72, 481–490 (2012).

    Article  Google Scholar 

  3. Venance, S. L., Herr, B. E. & Griggs, R. C. Challenges in the design and conduct of therapeutic trials in channel disorders. Neurotherapeutics 4, 199–204 (2007).

    Article  Google Scholar 

  4. Cleland, J. C. & Griggs, R. C. Treatment of neuromuscular channelopathies: current concepts and future prospects. Neurotherapeutics 5, 607–612 (2008).

    Article  Google Scholar 

  5. Venance, S. L. et al. The primary periodic paralyses: diagnosis, pathogenesis and treatment. Brain 129, 8–17 (2006).

    Article  CAS  Google Scholar 

  6. Ptácek, L. J. et al. Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell 67, 1021–1027 (1991).

    Article  Google Scholar 

  7. Ptácek, L. J. et al. Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 77, 863–868 (1994).

    Article  Google Scholar 

  8. Plaster, N. M. et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 105, 511–519 (2001).

    Article  CAS  Google Scholar 

  9. Kokunai, Y. et al. A Kir3.4 mutation causes Andersen–Tawil syndrome by an inhibitory effect on Kir2.1. Neurology 82, 1058–1064 (2014).

    Article  CAS  Google Scholar 

  10. Koch, M. C. et al. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257, 797–800 (1992).

    Article  CAS  Google Scholar 

  11. Ptácek, L. J. et al. Mutations in an S4 segment of the adult skeletal muscle sodium channel cause paramyotonia congenita. Neuron 8, 891–897 (1992).

    Article  Google Scholar 

  12. Brook, J. D. et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68, 799–808 (1992).

    Article  CAS  Google Scholar 

  13. Mankodi, A. et al. Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy. Mol. Cell 10, 35–44 (2002).

    Article  CAS  Google Scholar 

  14. Charlet-B., N. et al. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol. Cell 10, 45–53 (2002).

    Article  CAS  Google Scholar 

  15. Chen, W. et al. Haploinsuffciency for Znf9 in Znf9+/− mice is associated with multiorgan abnormalities resembling myotonic dystrophy. J. Mol. Biol. 368, 8–17 (2007).

    Article  CAS  Google Scholar 

  16. Jen, J. C. et al. Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 130, 2484–2493 (2007).

    Article  CAS  Google Scholar 

  17. Conroy, J. et al. A novel locus for episodic ataxia: UBR4 the likely candidate. Eur. J. Hum. Genet. 22, 505–510 (2014).

    Article  CAS  Google Scholar 

  18. Julien, J. et al. Sporadic late onset paroxysmal cerebellar ataxia in four unrelated patients: a new disease? J. Neurol. 248, 209–214 (2001).

    Article  CAS  Google Scholar 

  19. Damak, M. et al. Late onset hereditary episodic ataxia. J. Neurol. Neurosurg. Psychiatry 80, 566–568 (2009).

    Article  CAS  Google Scholar 

  20. Browne, D. L. et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat. Genet. 8, 136–140 (1994).

    Article  CAS  Google Scholar 

  21. Ophoff, R. A. et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87, 543–552 (1996).

    Article  CAS  Google Scholar 

  22. Harding, A. E. The clinical features and classification of the late onset autosomal dominant cerebellar ataxias: a study of 11 families, including descendants of 'the Drew family of Walworth'. Brain 105, 1–28 (1982).

    Article  CAS  Google Scholar 

  23. Zhuchenko, O. et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α1A-voltage-dependent calcium channel. Nat. Genet. 15, 62–69 (1997).

    Article  CAS  Google Scholar 

  24. Waters, M. F. et al. Mutations in voltage-gated potassium channel KCNC3 cause degenerative and developmental central nervous system phenotypes. Nat. Genet. 38, 447–451 (2006).

    Article  CAS  Google Scholar 

  25. Duarri, A. et al. Mutations in potassium channel kcnd3 cause spinocerebellar ataxia type 19. Ann. Neurol. 72, 870–880 (2012).

    Article  CAS  Google Scholar 

  26. Lee, Y. C. et al. Mutations in KCND3 cause spinocerebellar ataxia type 22. Ann. Neurol. 72, 859–869 (2012).

    Article  CAS  Google Scholar 

  27. van de Leemput, J. et al. Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet. 3, e108 (2007).

    Article  Google Scholar 

  28. Huang, L. et al. Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J. Rare Dis. 7, 67 (2012).

    Article  Google Scholar 

  29. Iwaki, A. et al. Heterozygous deletion of ITPR1, but not SUMF1, in spinocerebellar ataxia type 16. J. Med. Genet. 45, 32–35 (2008).

    Article  CAS  Google Scholar 

  30. Ke, Q. et al. Rare disease centers for periodic paralysis: China versus the United States and United Kingdom. Muscle Nerve 49, 171–174 (2014).

    Article  Google Scholar 

  31. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–423 (2015).

    Article  Google Scholar 

  32. Subramony, S. H. et al. Comprehensive phenotype of the p.Arg420his allelic form of spinocerebellar ataxia type 13. Cerebellum 12, 932–936 (2013).

    Article  CAS  Google Scholar 

  33. Waters, M. F., Subramony, S. H., Advincula, J., Perlman, S. & Ashizawa, T. Oculomotor and visual axis systems sparing in spinocerebellar ataxia type 13R420H. Neurology 79, 1181–1182 (2012).

    Article  Google Scholar 

  34. Figueroa, K. P. et al. Frequency of KCNC3 DNA variants as causes of spinocerebellar ataxia 13 (SCA13). PLoS ONE 6, e17811 (2011).

    Article  CAS  Google Scholar 

  35. Figueroa, K. P. et al. KCNC3: phenotype, mutations, channel biophysics — a study of 260 familial ataxia patients. Hum. Mutat. 31, 191–196 (2010).

    Article  CAS  Google Scholar 

  36. Kerem, B. et al. Identification of the cystic fibrosis gene: genetic analysis. Science 245, 1073–1080 (1989).

    Article  CAS  Google Scholar 

  37. Graves, T. D. et al. Episodic ataxia type 1: clinical characterization, quality of life and genotype–phenotype correlation. Brain 137, 1009–1018 (2014).

    Article  Google Scholar 

  38. Labrum, R. W. et al. Large scale calcium channel gene rearrangements in episodic ataxia and hemiplegic migraine: implications for diagnostic testing. J. Med. Genet. 46, 786–791 (2009).

    Article  CAS  Google Scholar 

  39. Wan, J. et al. Large genomic deletions in CACNA1A cause episodic ataxia type 2. Front. Neurol. 2, 51 (2011).

    Article  Google Scholar 

  40. Pyle, A. et al. Exome sequencing in undiagnosed inherited and sporadic ataxias. Brain 138, 276–283 (2015).

    Article  Google Scholar 

  41. Fogel, B. L. et al. Exome sequencing in the clinical diagnosis of sporadic or familial cerebellar ataxia. JAMA Neurol. 71, 1237–1246 (2014).

    Article  Google Scholar 

  42. Escayg, A. et al. Coding and noncoding variation of the human calcium-channel β4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am. J. Hum. Genet. 66, 1531–1539 (2000).

    Article  CAS  Google Scholar 

  43. Jen, J. C., Wan, J., Palos, T. P., Howard, B. D. & Baloh, R. W. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 65, 529–534 (2005).

    Article  CAS  Google Scholar 

  44. de Vries, B. et al. Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake. Arch. Neurol. 66, 97–101 (2009).

    Article  Google Scholar 

  45. Kerber, K. A., Jen, J. C., Lee, H., Nelson, S. F. & Baloh, R. W. A new episodic ataxia syndrome with linkage to chromosome 19q13. Arch. Neurol. 64, 749–752 (2007).

    Article  Google Scholar 

  46. Jen, J. C., Lee, H., Cha, Y. H., Nelson, S. F. & Baloh, R. W. Genetic heterogeneity of autosomal dominant nonprogressive congenital ataxia. Neurology 67, 1704–1706 (2006).

    Article  CAS  Google Scholar 

  47. Cha, Y. H. et al. Episodic vertical oscillopsia with progressive gait ataxia: clinical description of a new episodic syndrome and evidence of linkage to chromosome 13q. J. Neurol. Neurosurg. Psychiatry 78, 1273–1275 (2007).

    Article  CAS  Google Scholar 

  48. Silva, G. S., Farrell, S., Shandra, E., Viswanathan, A. & Schwamm, L. H. The status of telestroke in the United States: a survey of currently active stroke telemedicine programs. Stroke 43, 2078–2085 (2012).

    Article  Google Scholar 

  49. Wechsler, L. R. et al. Teleneurology applications: report of the Telemedicine Work Group of the American Academy of Neurology. Neurology 80, 670–676 (2013).

    Article  Google Scholar 

  50. Guyatt, G. et al. Determining optimal therapy — randomized trials in individual patients. N. Engl. J. Med. 314, 889–892 (1986).

    Article  CAS  Google Scholar 

  51. Duan, N., Kravitz, R. L. & Schmid, C. H. Single-patient (n-of-1) trials: a pragmatic clinical decision methodology for patient-centered comparative effectiveness research. J. Clin. Epidemiol. 66, S21–S28 (2013).

    Article  Google Scholar 

  52. Statland, J. M. et al. Mexiletine for symptoms and signs of myotonia in nondystrophic myotonia: a randomized controlled trial. JAMA 308, 1357–1365 (2012).

    Article  CAS  Google Scholar 

  53. Hoffman, E. P. & Kaminski, H. J. Mexiletine for treatment of myotonia: a trial triumph for rare disease networks. JAMA 308, 1377–1378 (2012).

    Article  CAS  Google Scholar 

  54. Tawil, R. et al. Randomized trials of dichlorphenamide in the periodic paralyses. Working Group on Periodic Paralysis. Ann. Neurol. 47, 46–53 (2000).

    Article  CAS  Google Scholar 

  55. Ashizawa, T. et al. Clinical characteristics of patients with spinocerebellar ataxias 1, 2, 3 and 6 in the US; a prospective observational study. Orphanet J. Rare Dis. 8, 177 (2013).

    Article  Google Scholar 

  56. Schmitz-Hubsch, T. et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66, 1717–1720 (2006).

    Article  CAS  Google Scholar 

  57. Jacobi, H. et al. The natural history of spinocerebellar ataxia type 1, 2, 3, and 6: a 2-year follow-up study. Neurology 77, 1035–1041 (2011).

    Article  CAS  Google Scholar 

  58. Tezenas du Montcel, S. et al. Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes. Brain 137, 2444–2455 (2014).

    Article  Google Scholar 

  59. Shi, Y. et al. High serum GFAP levels in SCA3/MJD may not correlate with disease progression. Cerebellum 14, 677–681 (2015).

    Article  CAS  Google Scholar 

  60. Teive, H. A. et al. Spinocerebellar ataxias: genotype–phenotype correlations in 104 Brazilian families. Clinics (Sao Paulo) 67, 443–449 (2012).

    Article  Google Scholar 

  61. Matthews, E. et al. The non-dystrophic myotonias: molecular pathogenesis, diagnosis and treatment. Brain 133, 9–22 (2010).

    Article  CAS  Google Scholar 

  62. Statland, J. M. et al. An interactive voice response diary for patients with non-dystrophic myotonia. Muscle Nerve 44, 30–35 (2011).

    Article  Google Scholar 

  63. Trivedi, J. R. et al. Non-dystrophic myotonia: prospective study of objective and patient reported outcomes. Brain 136, 2189–2200 (2013).

    Article  Google Scholar 

  64. Stunnenberg, B. C. et al. Combined N-of-1 trials to investigate mexiletine in non-dystrophic myotonia using a Bayesian approach; study rationale and protocol. BMC Neurol. 15, 43 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The CINCH and CRC-SCA consortia were participants of the Rare Disease Clinical Research Network supported by the Office of Rare Disease Research and the National Center for Advancing Translational Sciences of the NIH. Both consortia were supported by the National Institute of Neurological Disorders and Stroke. CINCH received support from the Muscular Dystrophy Association. CRC-SCA received support from the National Ataxia Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, made substantial contributions to discussions of the content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Joanna C. Jen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jen, J., Ashizawa, T., Griggs, R. et al. Rare neurological channelopathies — networks to study patients, pathogenesis and treatment. Nat Rev Neurol 12, 195–203 (2016). https://doi.org/10.1038/nrneurol.2016.18

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2016.18

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing