Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fluid biomarkers for mild traumatic brain injury and related conditions

Key Points

  • Traumatic brain injury (TBI) is caused by an external mechanical force that injures the brain parenchyma; however, most patients with mild TBI show no signs of injury on a CT scan

  • Given that mild TBI cannot usually be diagnosed objectively, accurate fluid biomarkers would be a welcome addition to the diagnostic toolbox

  • Repetitive mild TBI can cause progressive neurodegeneration, known as chronic traumatic encephalopathy (CTE); however, estimating the risk of CTE is difficult, and the condition cannot be diagnosed in living patients

  • In future, biomarkers for mild TBI, postconcussive syndrome and CTE might help us predict the risk of long-term sequelae and improve our understanding of the underlying pathophysiology

  • Brain specificity or brain-enhanced expression is an important characteristic of blood-based biomarkers for mild TBI and related conditions, as extracerebral sources for biomarker molecules can compromise the interpretability of the test results

  • In mild TBI, fluid biomarkers for axonal injury and astroglial activation show the greatest promise at the moment, and several other promising biomarker candidates exist

Abstract

Diagnostic and prognostic biomarkers for mild traumatic brain injury (TBI), also known as concussion, remain a major unmet clinical need. Moderate to severe TBI can be diagnosed definitively by clinical assessment and standard neuroimaging techniques that detect the gross damage to the brain parenchyma. Diagnostic tools for mild TBI are lacking and, currently, the diagnosis has to be made on clinical grounds alone, because most patients show no gross pathological changes on CT. Most patients with mild TBI recover quickly, but about 15% develop an ill-defined condition called postconcussive syndrome (PCS). Repeated concussions have been associated with a chronic neurodegenerative disorder called chronic traumatic encephalopathy (CTE), which can only currently be diagnosed post mortem. Fluid biomarkers are needed to better define and detect mild TBI and related conditions. Here, we review the literature on fluid biomarkers for neuronal, axonal, oligodendrocytic, astroglial and blood–brain barrier injury, as well as markers for neuroinflammation and metabolic dysregulation, in the context of mild TBI, PCS and CTE. We also discuss technical and standardization issues and potential pathways to advance the most promising biomarker candidates into clinical laboratory practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Candidate fluid biomarkers for pathophysiological processes related to traumatic brain injury.
Figure 2: Hypothetical model of temporal brain changes in traumatic brain injury not complicated by secondary insults.

Similar content being viewed by others

References

  1. Easter, J. S., Haukoos, J. S., Meehan, W. P., Novack, V. & Edlow, J. A. Will neuroimaging reveal a severe intracranial injury in this adult with minor head trauma? The Rational Clinical Examination systematic review. JAMA 314, 2672–2681 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Teasdale, G. & Jennett, B. Assessment of coma and impaired consciousness. A practical scale. Lancet 2, 81–84 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Sandsmark, D. K. Clinical outcomes after traumatic brain injury. Curr. Neurol. Neurosci. Rep. 16, 52 (2016).

    Article  PubMed  Google Scholar 

  4. Borg, J. et al. Diagnostic procedures in mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J. Rehabil. Med. 43, 61–75 (2004).

    Article  Google Scholar 

  5. Levin, H. S. & Diaz-Arrastia, R. R. Diagnosis, prognosis, and clinical management of mild traumatic brain injury. Lancet Neurol. 14, 506–517 (2015). An extensive review on clinical aspects of mild TBI.

    Article  PubMed  Google Scholar 

  6. McCrory, P. et al. Consensus statement on concussion in sport: the Third International Conference on Concussion in Sport held in Zurich, November 2008. Phys. Sportsmed. 37, 141–159 (2009).

    Article  PubMed  Google Scholar 

  7. Mu, W., Catenaccio, E. & Lipton, M. L. Neuroimaging in blast-related mild traumatic brain injury. J. Head Trauma Rehabil. http://dx.doi.org/10.1097/HTR.0000000000000213 (2016).

  8. Delouche, A. et al. Diffusion MRI: pitfalls, literature review and future directions of research in mild traumatic brain injury. Eur. J. Radiol. 85, 25–30 (2016).

    Article  PubMed  Google Scholar 

  9. Eisenberg, M. A., Andrea, J., Meehan, W. & Mannix, R. Time interval between concussions and symptom duration. Pediatrics 132, 8–17 (2013).

    Article  PubMed  Google Scholar 

  10. Williams, W. H., Potter, S. & Ryland, H. Mild traumatic brain injury and postconcussion syndrome: a neuropsychological perspective. J. Neurol. Neurosurg. Psychiatry 81, 1116–1122 (2010).

    Article  PubMed  Google Scholar 

  11. Broshek, D. K., De Marco, A. P. & Freeman, J. R. A review of post-concussion syndrome and psychological factors associated with concussion. Brain Inj. 29, 228–237 (2015).

    Article  PubMed  Google Scholar 

  12. Ryan, L. M. & Warden, D. L. Post concussion syndrome. Int. Rev. Psychiatry 15, 310–316 (2003).

    Article  PubMed  Google Scholar 

  13. Iverson, G. L. & Lange, R. T. Examination of “postconcussion-like” symptoms in a healthy sample. Appl. Neuropsychol. 10, 137–144 (2003).

    Article  PubMed  Google Scholar 

  14. Rathbone, A. T., Tharmaradinam, S., Jiang, S., Rathbone, M. P. & Kumbhare, D. A. A review of the neuro- and systemic inflammatory responses in post concussion symptoms: introduction of the “post-inflammatory brain syndrome” PIBS. Brain Behav. Immun. 46, 1–16 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Corsellis, J. A., Bruton, C. J. & Freeman-Browne, D. The aftermath of boxing. Psychol. Med. 3, 270–303 (1973). The first study describing the neuropathology of the condition that is now known as chronic traumatic encephalopathy.

    Article  CAS  PubMed  Google Scholar 

  16. Stein, T. D., Alvarez, V. E. & McKee, A. C. Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel. Alzheimers Res. Ther. 6, 4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. DeKosky, S. T., Blennow, K., Ikonomovic, M. D. & Gandy, S. Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers. Nat. Rev. Neurol. 9, 192–200 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johanson, C. E. et al. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 5, 10 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl Med. 4, 147ra111 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Blennow, K., Hampel, H., Weiner, M. & Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat. Rev. Neurol. 6, 131–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Duits, F. H. et al. Performance and complications of lumbar puncture in memory clinics: results of the multicenter lumbar puncture feasibility study. Alzheimers Dement. 12, 154–163 (2016).

    Article  PubMed  Google Scholar 

  23. Blennow, K. & Nellgård, B. Amyloid beta 1–42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 62, 159 (2004).

    Article  PubMed  Google Scholar 

  24. Uhlen, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Apweiler, R. et al. Approaching clinical proteomics: current state and future fields of application in fluid proteomics. Clin. Chem. Lab. Med. 47, 724–744 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Bolstad, N., Warren, D. J. & Nustad, K. Heterophilic antibody interference in immunometric assays. Best Pract. Res. Clin. Endocrinol. Metab. 27, 647–661 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Yoshimura, T. et al. Stability of pro-gastrin-releasing peptide in serum versus plasma. Tumour Biol. 29, 224–230 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Plog, B. A. et al. Biomarkers of traumatic injury are transported from brain to blood via the glymphatic system. J. Neurosci. 35, 518–526 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Shi, M. et al. Salivary tau species are potential biomarkers of Alzheimer's disease. J. Alzheimers Dis. 27, 299–305 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Devic, I. et al. Salivary α-synuclein and DJ-1: potential biomarkers for Parkinson's disease. Brain 134, e178 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen, A. et al. Multiplex analyte assays to characterize different dementias: brain inflammatory cytokines in poststroke and other dementias. Neurobiol. Aging 38, 56–67 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Todd, J. et al. Ultrasensitive flow-based immunoassays using single-molecule counting. Clin. Chem. 53, 1990–1995 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Lundberg, M., Eriksson, A., Tran, B., Assarsson, E. & Fredriksson, S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 39, e102 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kricka, L. J. Human anti-animal antibody interferences in immunological assays. Clin. Chem. 45, 942–956 (1999).

    CAS  PubMed  Google Scholar 

  36. Strathmann, F. G. & Hoofnagle, A. N. Current and future applications of mass spectrometry to the clinical laboratory. Am. J. Clin. Pathol. 136, 609–616 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Sabbagh, B., Mindt, S., Neumaier, M. & Findeisen, P. Clinical applications of MS-based protein quantification. Proteom. Clin. Appl. 10, 323–345 (2016).

    Article  CAS  Google Scholar 

  38. Algattas, H. & Huang, J. H. Traumatic brain injury pathophysiology and treatments: early, intermediate, and late phases post-injury. Int. J. Mol. Sci. 15, 309–341 (2014).

    Article  CAS  Google Scholar 

  39. Schmechel, D., Marangos, P. J. & Brightman, M. Neurone-specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature 276, 834–836 (1978).

    Article  CAS  PubMed  Google Scholar 

  40. Olsson, B., Zetterberg, H., Hampel, H. & Blennow, K. Biomarker-based dissection of neurodegenerative diseases. Prog. Neurobiol. 95, 520–534 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Dash, P. K., Zhao, J., Hergenroeder, G. & Moore, A. N. Biomarkers for the diagnosis, prognosis, and evaluation of treatment efficacy for traumatic brain injury. Neurotherapeutics 7, 100–114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ramont, L. et al. Effects of hemolysis and storage condition on neuron-specific enolase (NSE) in cerebrospinal fluid and serum: implications in clinical practice. Clin. Chem. Lab. Med. 43, 1215–1217 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Bohmer, A. E. et al. Neuron-specific enolase, S100B, and glial fibrillary acidic protein levels as outcome predictors in patients with severe traumatic brain injury. Neurosurgery 68, 1624–1630; discussion 1630–1621 (2011).

    Article  PubMed  Google Scholar 

  44. Chiaretti, A. et al. NGF, DCX, and NSE upregulation correlates with severity and outcome of head trauma in children. Neurology 72, 609–616 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Varma, S. et al. F2-isoprostane and neuron-specific enolase in cerebrospinal fluid after severe traumatic brain injury in infants and children. J. Neurotrauma 20, 781–786 (2003).

    Article  PubMed  Google Scholar 

  46. Berger, R. P. et al. Neuron-specific enolase and S100B in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatrics 109, E31 (2002).

    Article  PubMed  Google Scholar 

  47. Ross, S. A., Cunningham, R. T., Johnston, C. F. & Rowlands, B. J. Neuron-specific enolase as an aid to outcome prediction in head injury. Br. J. Neurosurg. 10, 471–476 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Pelsers, M. M. et al. Brain- and heart-type fatty acid-binding proteins in the brain: tissue distribution and clinical utility. Clin. Chem. 50, 1568–1575 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Skogseid, I. M., Nordby, H. K., Urdal, P., Paus, E. & Lilleaas, F. Increased serum creatine kinase BB and neuron specific enolase following head injury indicates brain damage. Acta Neurochir. (Wien) 115, 106–111 (1992).

    Article  CAS  Google Scholar 

  50. de Kruijk, J. R., Leffers, P., Menheere, P. P., Meerhoff, S. & Twijnstra, A. S-100B and neuron-specific enolase in serum of mild traumatic brain injury patients. A comparison with health controls. Acta Neurol. Scand. 103, 175–179 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Wolf, H. et al. Predictive value of neuromarkers supported by a set of clinical criteria in patients with mild traumatic brain injury: S100B protein and neuron-specific enolase on trial: clinical article. J. Neurosurg. 118, 1298–1303 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Shahim, P. et al. Blood biomarkers for brain injury in concussed professional ice hockey players. JAMA Neurol. 71, 684–692 (2014). A pilot study demonstrating the potential of plasma tau as a biomarker for axonal injury in sports-related concussion.

    Article  PubMed  Google Scholar 

  53. Chen, F., Sugiura, Y., Myers, K. G., Liu, Y. & Lin, W. Ubiquitin carboxyl-terminal hydrolase L1 is required for maintaining the structure and function of the neuromuscular junction. Proc. Natl Acad. Sci. USA 107, 1636–1641 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Thompson, R. J., Doran, J. F., Jackson, P., Dhillon, A. P. & Rode, J. PGP. 9.5 — a new marker for vertebrate neurons and neuroendocrine cells. Brain Res. 278, 224–228 (1983).

    Article  CAS  PubMed  Google Scholar 

  55. Takami, Y. et al. Ubiquitin carboxyl-terminal hydrolase L1, a novel deubiquitinating enzyme in the vasculature, attenuates NF-κB activation. Arterioscler. Thromb. Vasc. Biol. 27, 2184–2190 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Campbell, L. K., Thomas, J. R., Lamps, L. W., Smoller, B. R. & Folpe, A. L. Protein gene product 9.5 (PGP 9.5) is not a specific marker of neural and nerve sheath tumors: an immunohistochemical study of 95 mesenchymal neoplasms. Mod. Pathol. 16, 963–969 (2003).

    Article  PubMed  Google Scholar 

  57. Brophy, G. M. et al. Biokinetic analysis of ubiquitin C-terminal hydrolase-L1 (UCH-L1) in severe traumatic brain injury patient biofluids. J. Neurotrauma 28, 861–870 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kulbe, J. R. & Geddes, J. W. Current status of fluid biomarkers in mild traumatic brain injury. Exp. Neurol. 275, 334–352 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Papa, L. et al. Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. J. Trauma Acute Care Surg. 72, 1335–1344 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Diaz-Arrastia, R. et al. Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-terminal hydrolase-L1 and glial fibrillary acidic protein. J. Neurotrauma 31, 19–25 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kaplan, G. B., Vasterling, J. J. & Vedak, P. C. Brain-derived neurotrophic factor in traumatic brain injury, post-traumatic stress disorder, and their comorbid conditions: role in pathogenesis and treatment. Behav. Pharmacol. 21, 427–437 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Korley, F. K. et al. Circulating brain-derived neurotrophic factor has diagnostic and prognostic value in traumatic brain injury. J. Neurotrauma 33, 215–225 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Simon, D., Nascimento, R. I., Filho, E. M., Bencke, J. & Regner, A. Plasma brain-derived neurotrophic factor levels after severe traumatic brain injury. Brain Inj. 30, 23–28 (2016).

    Article  PubMed  Google Scholar 

  64. Zetterberg, H., Smith, D. H. & Blennow, K. Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nat. Rev. Neurol. 9, 201–210 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Morris, M., Maeda, S., Vossel, K. & Mucke, L. The many faces of tau. Neuron 70, 410–426 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Goedert, M., Spillantini, M. G. & Crowther, R. A. Cloning of a big tau microtubule-associated protein characteristic of the peripheral nervous system. Proc. Natl Acad. Sci. USA 89, 1983–1987 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Trojanowski, J. Q., Schuck, T., Schmidt, M. L. & Lee, V. M. Distribution of tau proteins in the normal human central and peripheral nervous system. J. Histochem. Cytochem. 37, 209–215 (1989).

    Article  CAS  PubMed  Google Scholar 

  68. Friede, R. L. & Samorajski, T. Axon caliber related to neurofilaments and microtubules in sciatic nerve fibers of rats and mice. Anat. Rec. 167, 379–387 (1970).

    Article  CAS  PubMed  Google Scholar 

  69. Ost, M. et al. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 67, 1600–1604 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Franz, G. et al. Amyloid beta 1–42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 60, 1457–1461 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Zemlan, F. P. et al. C-Tau biomarker of neuronal damage in severe brain injured patients: association with elevated intracranial pressure and clinical outcome. Brain Res. 947, 131–139 (2002).

    Article  CAS  PubMed  Google Scholar 

  72. Hesse, C. et al. Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci. Lett. 297, 187–190 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Neselius, S. et al. CSF-biomarkers in Olympic boxing: diagnosis and effects of repetitive head trauma. PLoS ONE 7, e33606 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zetterberg, H. et al. Neurochemical aftermath of amateur boxing. Arch. Neurol. 63, 1277–1280 (2006).

    Article  PubMed  Google Scholar 

  75. Neselius, S., Zetterberg, H., Blennow, K., Marcusson, J. & Brisby, H. Increased CSF levels of phosphorylated neurofilament heavy protein following bout in amateur boxers. PLoS ONE 8, e81249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guzel, A., Karasalihoglu, S., Aylanc, H., Temizoz, O. & Hicdonmez, T. Validity of serum tau protein levels in pediatric patients with minor head trauma. Am. J. Emerg. Med. 28, 399–403 (2010).

    Article  PubMed  Google Scholar 

  77. Bulut, M. et al. Tau protein as a serum marker of brain damage in mild traumatic brain injury: preliminary results. Adv. Ther. 23, 12–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Kavalci, C. et al. The value of serum tau protein for the diagnosis of intracranial injury in minor head trauma. Am. J. Emerg. Med. 25, 391–395 (2007).

    Article  PubMed  Google Scholar 

  79. Al Nimer, F. et al. Comparative assessment of the prognostic value of biomarkers in traumatic brain injury reveals an independent role for serum levels of neurofilament light. PLoS ONE 10, e0132177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Randall, J. et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study. Resuscitation 84, 351–356 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Kuhle, J. et al. Comparison of three analytical platforms for quantification of the neurofilament light chain in blood samples: ELISA, electrochemiluminescence immunoassay and Simoa. Clin. Chem. Lab. Med. http://dx.doi.org/10.1515/cclm-2015-1195 (2016).

  82. Zetterberg, H. et al. Plasma tau levels in Alzheimer's disease. Alzheimers Res. Ther. 5, 9 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bogoslovsky, T. et al. Increases of plasma levels of glial fibrillary acidic protein, tau, and amyloid β up to 90 days after traumatic brain injury. J. Neurotrauma http://dx.doi.org/10.1089/neu.2015.4333 (2016).

  84. Olivera, A. et al. Peripheral total tau in military personnel who sustain traumatic brain injuries during deployment. JAMA Neurol. 72, 1109–1116 (2015).

    Article  PubMed  Google Scholar 

  85. Shahim, P. et al. Serum tau fragments predict return to play in concussed professional ice hockey players. J. Neurotrauma http://dx.doi.org/10.1089/neu.2014.3741 (2016).

  86. Bazarian, J. J., Zemlan, F. P., Mookerjee, S. & Stigbrand, T. Serum S-100B and cleaved-tau are poor predictors of long-term outcome after mild traumatic brain injury. Brain Inj. 20, 759–765 (2006).

    Article  PubMed  Google Scholar 

  87. Ma, M., Lindsell, C. J., Rosenberry, C. M., Shaw, G. J. & Zemlan, F. P. Serum cleaved tau does not predict postconcussion syndrome after mild traumatic brain injury. Am. J. Emerg. Med. 26, 763–768 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gisslen, M. et al. Plasma concentration of the neurofilament light protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-sectional study. EBioMedicine 3, 135–140 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Oliver, J. et al. Serum neurofilament light in american football athletes over the course of a season. J. Neurotrauma http://dx.doi.org/10.1089/neu.2015.4295 (2016).

  90. Gatson, J. W. et al. Detection of neurofilament-H in serum as a diagnostic tool to predict injury severity in patients who have suffered mild traumatic brain injury. J. Neurosurg. 121, 1232–1238 (2014).

    Article  PubMed  Google Scholar 

  91. Pike, B. R. et al. Accumulation of non-erythroid αII-spectrin and calpain-cleaved αII-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J. Neurochem. 78, 1297–1306 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Pineda, J. A. et al. Clinical significance of α II-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J. Neurotrauma 24, 354–366 (2007).

    Article  PubMed  Google Scholar 

  93. Farkas, O. et al. Spectrin breakdown products in the cerebrospinal fluid in severe head injury — preliminary observations. Acta Neurochir. (Wien) 147, 855–861 (2005).

    Article  CAS  Google Scholar 

  94. Mondello, S. et al. alphaII-spectrin breakdown products (SBDPs): diagnosis and outcome in severe traumatic brain injury patients. J. Neurotrauma 27, 1203–1213 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Czeiter, E. et al. Brain injury biomarkers may improve the predictive power of the IMPACT outcome calculator. J. Neurotrauma 29, 1770–1778 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Siman, R. et al. A panel of neuron-enriched proteins as markers for traumatic brain injury in humans. J. Neurotrauma 26, 1867–1877 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Siman, R. et al. Evidence that the blood biomarker SNTF predicts brain imaging changes and persistent cognitive dysfunction in mild TBI patients. Front. Neurol. 4, 190 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Siman, R. et al. Serum SNTF increases in concussed professional ice hockey players and relates to the severity of post-concussion symptoms. J. Neurotrauma 32, 1294–1300 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Barbarese, E. et al. Expression and localization of myelin basic protein in oligodendrocytes and transfected fibroblasts. J. Neurochem. 51, 1737–1745 (1988).

    Article  CAS  PubMed  Google Scholar 

  100. Cerri, C. G., Silani, V. & Scarlato, G. Oligoclonal immunoglobulins and immunoreactive myelin basic protein in the cerebrospinal fluid of patients with multiple sclerosis and other neurological diseases. Acta Neurol. (Napoli) 7, 311–314 (1985).

    CAS  Google Scholar 

  101. Su, E. et al. Increased CSF concentrations of myelin basic protein after TBI in infants and children: absence of significant effect of therapeutic hypothermia. Neurocrit. Care 17, 401–407 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Berger, R. P. et al. Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J. Neurosurg. 103, 61–68 (2005).

    PubMed  Google Scholar 

  103. Yan, E. B. et al. Post-traumatic hypoxia is associated with prolonged cerebral cytokine production, higher serum biomarker levels, and poor outcome in patients with severe traumatic brain injury. J. Neurotrauma 31, 618–629 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Unden, J., Ingebrigtsen, T. & Romner, B. Scandinavian guidelines for initial management of minimal, mild and moderate head injuries in adults: an evidence and consensus-based update. BMC Med. 11, 50 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  105. McMahon, P. J. et al. Measurement of the GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging. J. Neurotrauma 32, 527–533 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Papa, L. et al. GFAP out-performs S100β in detecting traumatic intracranial lesions on computed tomography in trauma patients with mild traumatic brain injury and those with extracranial lesions. J. Neurotrauma 31, 1815–1822 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Korfias, S. et al. Slight and short-lasting increase of serum S-100B protein in extra-cranial trauma. Brain Inj. 20, 867–872 (2006).

    Article  PubMed  Google Scholar 

  108. Hay, J. R., Johnson, V. E., Young, A. M., Smith, D. H. & Stewart, W. Blood–brain barrier disruption is an early event that may persist for many years after traumatic brain injury in humans. J. Neuropathol. Exp. Neurol. 74, 1147–1157 (2015).

    CAS  PubMed  Google Scholar 

  109. Rodriguez-Baeza, A., Reina-de la Torre, F., Poca, A., Marti, M. & Garnacho, A. Morphological features in human cortical brain microvessels after head injury: a three-dimensional and immunocytochemical study. Anat. Rec. 273, 583–593 (2003).

    Article  Google Scholar 

  110. Reiber, H. & Peter, J. B. Cerebrospinal fluid analysis: disease-related data patterns and evaluation programs. J. Neurol. Sci. 184, 101–122 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Brouns, R., Wauters, A., De Surgeloose, D., Marien, P. & De Deyn, P. P. Biochemical markers for blood–brain barrier dysfunction in acute ischemic stroke correlate with evolution and outcome. Eur. Neurol. 65, 23–31 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Csuka, E. et al. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-α, TGF-β1 and blood–brain barrier function. J. Neuroimmunol. 101, 211–221 (1999).

    Article  CAS  PubMed  Google Scholar 

  113. Kossmann, T. et al. Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 4, 311–317 (1995).

    Article  CAS  PubMed  Google Scholar 

  114. Blennow, K. et al. No neurochemical evidence of brain injury after blast overpressure by repeated explosions or firing heavy weapons. Acta Neurol. Scand. 123, 245–251 (2011).

    Article  CAS  PubMed  Google Scholar 

  115. Cummins, P. M. Occludin: one protein, many forms. Mol. Cell. Biol. 32, 242–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Saitou, M. et al. Mammalian occludin in epithelial cells: its expression and subcellular distribution. Eur. J. Cell Biol. 73, 222–231 (1997).

    CAS  PubMed  Google Scholar 

  117. Shan, R. et al. A new panel of blood biomarkers for the diagnosis of mild traumatic brain injury/concussion in adults. J. Neurotrauma 33, 49–57 (2016).

    Article  PubMed  Google Scholar 

  118. Semple, B. D., Bye, N., Rancan, M., Ziebell, J. M. & Morganti-Kossmann, M. C. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2−/− mice. J. Cereb. Blood Flow Metab. 30, 769–782 (2010).

    Article  PubMed  Google Scholar 

  119. Kirchhoff, C. et al. Cerebrospinal IL-10 concentration is elevated in non-survivors as compared to survivors after severe traumatic brain injury. Eur. J. Med. Res. 13, 464–468 (2008).

    CAS  PubMed  Google Scholar 

  120. Goodman, J. C., Van, M., Gopinath, S. P. & Robertson, C. S. Pro-inflammatory and pro-apoptotic elements of the neuroinflammatory response are activated in traumatic brain injury. Acta Neurochir. Suppl. 102, 437–439 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Buttram, S. D. et al. Multiplex assessment of cytokine and chemokine levels in cerebrospinal fluid following severe pediatric traumatic brain injury: effects of moderate hypothermia. J. Neurotrauma 24, 1707–1717 (2007).

    Article  PubMed  Google Scholar 

  122. Phillips, D. J. et al. Activin a release into cerebrospinal fluid in a subset of patients with severe traumatic brain injury. J. Neurotrauma 23, 1283–1294 (2006).

    Article  PubMed  Google Scholar 

  123. Maier, B. et al. Delayed elevation of soluble tumor necrosis factor receptors p75 and p55 in cerebrospinal fluid and plasma after traumatic brain injury. Shock 26, 122–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Shiozaki, T. et al. Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury. Shock 23, 406–410 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Singhal, A. et al. Association between cerebrospinal fluid interleukin-6 concentrations and outcome after severe human traumatic brain injury. J. Neurotrauma 19, 929–937 (2002).

    Article  CAS  PubMed  Google Scholar 

  126. Stahel, P. F. et al. Intrathecal levels of complement-derived soluble membrane attack complex (sC5b-9) correlate with blood–brain barrier dysfunction in patients with traumatic brain injury. J. Neurotrauma 18, 773–781 (2001).

    Article  CAS  PubMed  Google Scholar 

  127. Bell, M. J. et al. Interleukin-6 and interleukin-10 in cerebrospinal fluid after severe traumatic brain injury in children. J. Neurotrauma 14, 451–457 (1997).

    Article  CAS  PubMed  Google Scholar 

  128. Kumar, R. G. et al. Acute CSF interleukin-6 trajectories after TBI: associations with neuroinflammation, polytrauma, and outcome. Brain Behav. Immun. 45, 253–262 (2015).

    Article  CAS  PubMed  Google Scholar 

  129. Csajbok, L. Z., Nylen, K., Ost, M., Sonander, H. & Nellgard, B. In-hospital C-reactive protein predicts outcome after aneurysmal subarachnoid haemorrhage treated by endovascular coiling. Acta Anaesthesiol. Scand. 59, 255–264 (2015).

    Article  CAS  PubMed  Google Scholar 

  130. Berger, R. P., Ta'asan, S., Rand, A., Lokshin, A. & Kochanek, P. Multiplex assessment of serum biomarker concentrations in well-appearing children with inflicted traumatic brain injury. Pediatr. Res. 65, 97–102 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Lorente, L. New prognostic biomarkers in patients with traumatic brain injury. Arch. Trauma Res. 4, e30165 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Timofeev, I. et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain 134, 484–494 (2011).

    Article  PubMed  Google Scholar 

  133. Yi, L. et al. Serum metabolic profiling reveals altered metabolic pathways in patients with post-traumatic cognitive impairments. Sci. Rep. 6, 21320 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hergenroeder, G. et al. Identification of serum biomarkers in brain-injured adults: potential for predicting elevated intracranial pressure. J. Neurotrauma 25, 79–93 (2008).

    Article  PubMed  Google Scholar 

  135. Gao, W., Lu, C., Kochanek, P. M. & Berger, R. P. Serum amyloid A is increased in children with abusive head trauma: a gel-based proteomic analysis. Pediatr. Res. 76, 280–286 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Villapol, S. et al. Hepatic expression of serum amyloid A1 is induced by traumatic brain injury and modulated by telmisartan. Am. J. Pathol. 185, 2641–2652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Raad, M. et al. Auto-antibodies in traumatic brain injury and central nervous system trauma. Neuroscience 281, 16–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  138. Marchi, N. et al. Consequences of repeated blood–brain barrier disruption in football players. PLoS ONE 8, e56805 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nekludov, M., Mobarrez, F., Gryth, D., Bellander, B. M. & Wallen, H. Formation of microparticles in the injured brain of patients with severe isolated traumatic brain injury. J. Neurotrauma 31, 1927–1933 (2014).

    Article  PubMed  Google Scholar 

  140. Sheth, S. A., Iavarone, A. T., Liebeskind, D. S., Won, S. J. & Swanson, R. A. Targeted lipid profiling discovers plasma biomarkers of acute brain injury. PLoS ONE 10, e0129735 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Redell, J. B., Moore, A. N., Ward, N. H., 3rd, Hergenroeder, G. W. & Dash, P. K. Human traumatic brain injury alters plasma microRNA levels. J. Neurotrauma 27, 2147–2156 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Yang, T. et al. Elevated serum miR-93, miR-191, and miR-499 are noninvasive biomarkers for the presence and progression of traumatic brain injury. J. Neurochem. 137, 122–129 (2016).

    Article  CAS  PubMed  Google Scholar 

  143. Losoi, H. et al. Recovery from mild traumatic brain injury in previously healthy adults. J. Neurotrauma 33, 766–776 (2016).

    Article  PubMed  Google Scholar 

  144. Babcock, L., Byczkowski, T., Wade, S. L., Ho, M. & Bazarian, J. J. Inability of S100B to predict postconcussion syndrome in children who present to the emergency department with mild traumatic brain injury: a brief report. Pediatr. Emerg. Care 29, 458–461 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Shahim, P. et al. Neurochemical aftermath of repetitive mild traumatic brain injury. JAMA Neurol. (in the press).

  146. Sundman, M., Doraiswamy, P. M. & Morey, R. A. Neuroimaging assessment of early and late neurobiological sequelae of traumatic brain injury: implications for CTE. Front. Neurosci. 9, 334 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Corsellis, J. A. Boxing and the brain. BMJ 298, 105–109 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Small, G. W. et al. PET scanning of brain tau in retired national football league players: preliminary findings. Am. J. Geriatr. Psychiatry 21, 138–144 (2013).

    Article  PubMed  Google Scholar 

  149. Barrio, J. R. et al. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proc. Natl Acad. Sci. USA 112, E2039–E2047 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kawai, N. et al. Detection of brain amyloid β deposition in patients with neuropsychological impairment after traumatic brain injury: PET evaluation using Pittsburgh Compound-B. Brain Inj. 27, 1026–1031 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Work in the authors' laboratories is supported by the European Research Council, the Swedish Research Council, Swedish State Support for Clinical Research, the Torsten Söderberg Foundation, the Knut and Alice Wallenberg Foundation, VINNOVA and the Wolfson Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching literature for the article, and provided substantial contributions to discussion of the content, and to writing, reviewing and editing of the manuscript.

Corresponding authors

Correspondence to Henrik Zetterberg or Kaj Blennow.

Ethics declarations

Competing interests

H.Z. and K.B. are listed as co-inventors on a US patent application for plasma tau as a brain injury marker, and are co-founders of Brain Biomarker Solutions in Gothenburg AB, a GU Venture-based platform company at the University of Gothenburg. K.B. has served on advisory boards for Eli Lilly, Kyowa Kirin Pharma, Pfizer and Roche.

Related links

PowerPoint slides

Glossary

Glymphatic system

A recently discovered 'waste clearance' pathway from the vertebrate CNS into the bloodstream. Clearance of compounds that accumulate after mild traumatic brain injury through this pathway could influence blood biomarker concentrations.

Wallerian degeneration

When a nerve fibre is injured, the part of the axon separated from the neuron's cell body degenerates distal to the injury — this phenomenon is termed Wallerian degeneration.

CSF:serum albumin ratio

Albumin is produced by the liver, so it has to cross the blood–brain barrier to reach the cerebrospinal fluid (CSF). In healthy humans, the ratio of albumin in CSF versus blood is very small, but if the blood–brain barrier is compromised, the CSF:serum albumin ratio increases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zetterberg, H., Blennow, K. Fluid biomarkers for mild traumatic brain injury and related conditions. Nat Rev Neurol 12, 563–574 (2016). https://doi.org/10.1038/nrneurol.2016.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2016.127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing