Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Toward stem cell-based phenotypic screens for neurodegenerative diseases

Key Points

  • Cellular 'phenotypic' screening is a powerful unbiased method for elucidating and developing drugs for poorly understood processes such as neurodegeneration

  • Neurons and glial cells can now be generated from patient-derived induced pluripotent stem cells (iPSCs)

  • Commensurate progress in our ability to manipulate ('edit') human genomes paves the way for iPSC technology to be used for unbiased genetic and small-molecule screening of patient-derived cells

  • The main roadblock for the neurodegeneration field is the identification of robust and disease-relevant cellular phenotypes

  • A path toward screening of patient-derived cells and target identification can be suggested by investigations in model organisms, including the most screenable eukaryotic cell, baker's yeast

Abstract

In the absence of a single preventive or disease-modifying strategy, neurodegenerative diseases are becoming increasingly prevalent in our ageing population. The mechanisms underlying neurodegeneration are poorly understood, making the target-based drug screening strategies that are employed by the pharmaceutical industry fraught with difficulty. However, phenotypic screening in neurons and glia derived from patients is now conceivable through unprecedented developments in reprogramming, transdifferentiation, and genome editing. We outline progress in this nascent field, but also consider the formidable hurdles to identifying robust, disease-relevant and screenable cellular phenotypes in patient-derived cells. We illustrate how analysis in the simple baker's yeast cell Saccharaomyces cerevisiae is driving discovery in patient-derived neurons, and how approaches in this model organism can establish a paradigm to guide the development of stem cell-based phenotypic screens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tipping the scales: phenotypic versus target-based drug discovery approaches for neurodegenerative diseases.
Figure 2: Phenotypic screening and target identification in baker's yeast.
Figure 3: Reprogramming, differentiation and transdifferentiation schemes relevant to neurodegenerative disease modelling.
Figure 4: Genome-editing techniques to create isogenic mutation-corrected controls.
Figure 5: A yeast and human stem cell dual discovery platform.
Figure 6: Pooled CRISPR-based screening.

Similar content being viewed by others

References

  1. 10 facts on dementia. World Health Organization [online], (2015).

  2. Lowe, J., Mirra, S. S., Hyman, B. T. & Dickson, D. W. in Greenfield's Neuropathology 8th edn (eds Love, S. et al.) 1031–1152 (CRC Press, 2008).

    Google Scholar 

  3. Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Yamanaka, S. Induced pluripotent stem cells: past, present, and future. Cell Stem Cell 10, 678–684 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Yang, N. et al. Generation of oligodendroglial cells by direct lineage conversion. Nat. Biotechnol. 31, 434–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Lee, B.-H., Finley, D. & King, R. W. A high-throughput screening method for identification of inhibitors of the deubiquitinating enzyme USP14. Curr. Protoc. Chem. Biol. 4, 311–330 (2012).

    PubMed  PubMed Central  Google Scholar 

  9. Lee, B.-H. et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179–184 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Taipale, M. et al. Chaperones as thermodynamic sensors of drug-target interactions reveal kinase inhibitor specificities in living cells. Nat. Biotechnol. 31, 630–637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Treusch, S. et al. Functional links between Aβ toxicity, endocytic trafficking, and Alzheimer's disease risk factors in yeast. Science 334, 1241–1245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Volpicelli-Daley, L. A. et al. Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chung, C. Y. et al. Identification and rescue of α-synuclein toxicity in Parkinson patient-derived neurons. Science 342, 983–987 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Khurana, V. & Lindquist, S. Modelling neurodegeneration in Saccharomyces cerevisiae: why cook with baker's yeast? Nat. Rev. Neurosci. 11, 436–449 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat. Genet. 45, 1452–1458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guerreiro, R., Brás, J. & Hardy, J. SnapShot: Genetics of ALS and FTD. Cell 160, 798–798e1 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Brás, J., Guerreiro, R. & Hardy, J. SnapShot: enetics of Parkinson's disease. Cell 160, 570–570e1 (2015).

    Article  PubMed  CAS  Google Scholar 

  18. Huang, Z. et al. A functional variomics tool for discovering drug-resistance genes and drug targets. Cell Rep. 3, 577–585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Narayan, P., Ehsani, S. & Lindquist, S. Combating neurodegenerative disease with chemical probes and model systems. Nat. Chem. Biol. 10, 911–920 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Yeger-Lotem, E. et al. Bridging high-throughput genetic and transcriptional data reveals cellular responses to alpha-synuclein toxicity. Nat. Genet. 41, 316–323 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cooper, A. A. et al. α-Synuclein blocks ER–Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science 313, 324–328 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gitler, A. D. et al. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat. Genet. 41, 308–315 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Treusch, S., Cyr, D. M. & Lindquist, S. Amyloid deposits: protection against toxic protein species? Cell Cycle 8, 1668–1674 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Gitler, A. D. et al. The Parkinson's disease protein α-synuclein disrupts cellular Rab homeostasis. Proc. Natl Acad. Sci. USA 105, 145–150 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Soper, J. H., Kehm, V., Burd, C. G., Bankaitis, V. A. & Lee, V. M. Aggregation of α-synuclein in S. cerevisiae is associated with defects in endosomal trafficking and phospholipid biosynthesis. J. Mol. Neurosci. 43, 391–405 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Thayanidhi, N. et al. α-Synuclein delays endoplasmic reticulum (ER)-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. Mol. Biol. Cell 21, 1850–1863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mazzulli, J. R. et al. Gaucher disease glucocerebrosidase and α-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell 146, 37–52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Macleod, D. A. et al. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson's disease risk. Neuron 77, 425–439 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matlack, K. E. et al. Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc. Natl Acad. Sci. USA 111, 4013–4018 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dhungel, N. et al. Parkinson's disease genes VPS35 and EIF4G1 interact genetically and converge on α-synuclein. Neuron 85, 76–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Elden, A. C. et al. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS. Nature 466, 1069–1075 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Krencik, R., Weick, J. P., Liu, Y., Zhang, Z.-J. & Zhang, S.-C. Specification of transplantable astroglial subtypes from human pluripotent stem cells. Nat. Biotechnol. 29, 528–534 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, S. et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell 12, 252–264 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Okita, K. et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells 31, 458–466 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Zhou, T. et al. Generation of human induced pluripotent stem cells from urine samples. Nat. Protoc. 7, 2080–2089 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Okita, K. et al. A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409–412 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, Y. et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 78, 785–798 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sandoe, J. & Eggan, K. Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat. Neurosci. 16, 780–789 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Ran, F. A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153, 910–918 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jack, C. R. Jr et al. Tracking pathophysiological processes in Alzheimer's disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12, 207–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shulman, J. M., De Jager, P. L. & Feany, M. B. Parkinson's disease: genetics and pathogenesis. Annu. Rev. Pathol. 6, 193–222 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Dickson, D. W. et al. Neuropathology of non-motor features of Parkinson disease. Parkinsonism Relat. Disord. 15 (Suppl. 3), S1–S5 (2009).

    Article  PubMed  Google Scholar 

  49. Cooper, O. et al. Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson's disease. Sci. Transl. Med. 4, 141ra90 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Nguyen, H. N. et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8, 267–280 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ryan, S. D. et al. Isogenic human iPSC Parkinson's model shows nitrosative stress-induced dysfunction in MEF2-PGC1α transcription. Cell 155, 1351–1364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Miller, J. D. et al. Human iPSC-based modeling of late-onset disease via progerin-induced aging. Cell Stem Cell 13, 691–705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee, G. et al. Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat. Biotechnol. 30, 1244–1248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ku, S. et al. Friedreich's ataxia induced pluripotent stem cells model intergenerational GAA·TTC triplet repeat instability. Cell Stem Cell 7, 631–637 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hick, A. et al. Neurons and cardiomyocytes derived from induced pluripotent stem cells as a model for mitochondrial defects in Friedreich's ataxia. Dis. Model. Mech. 6, 608–621 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Almeida, S. et al. Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects. Cell Rep. 2, 789–798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sanders, L. H. et al. LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson's disease patients: reversal by gene correction. Neurobiol. Dis. 62, 381–386 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Ebert, A. D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Sendtner, M. Therapy development in spinal muscular atrophy. Nat. Neurosci. 13, 795–799 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Naryshkin, N. A. et al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345, 688–693 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Harper, S. Q. et al. RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc. Natl Acad. Sci. USA 102, 5820–5825 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xia, H. et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med. 10, 816–820 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Keiser, M. S., Geoghegan, J. C., Boudreau, R. L., Lennox, K. A. & Davidson, B. L. RNAi or overexpression: alternative therapies for Spinocerebellar Ataxia Type 1. Neurobiol. Dis. 56, 6–13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sareen, D. et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci. Transl. Med. 5, 208ra149 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Xu, X. et al. Prevention of β-amyloid induced toxicity in human iPS cell-derived neurons by inhibition of Cyclin-dependent kinases and associated cell cycle events. Stem Cell Res. 10, 213–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  67. Yahata, N. et al. Anti-Aβ drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer's disease. PLoS ONE 6, e25788 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kondo, T. et al. Modeling Alzheimer's disease with iPSCs reveals stress phenotypes associated with Intracellular Aβ and differential drug responsiveness. Cell Stem Cell 12, 487–496 (2013).

    Article  CAS  PubMed  Google Scholar 

  69. Burkhardt, M. F. et al. A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol. Cell. Neurosci. 56, 355–364 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Barmada, S. J. et al. Autophagy induction enhances TDP43 turnover and survival in neuronal ALS models. Nat. Chem. Biol. 10, 677–685 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Skibinski, G. & Finkbeiner, S. Drug discovery in Parkinson's disease—update and developments in the use of cellular models. Int. J. High Throughput Screen. 2011, 15–25 (2011).

    PubMed  PubMed Central  Google Scholar 

  72. Egawa, N. et al. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci. Transl. Med. 4, 145ra104 (2012).

    Article  PubMed  CAS  Google Scholar 

  73. Yang, Y. M. et al. A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell 12, 713–726 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Höing, S. et al. Discovery of inhibitors of microglial neurotoxicity acting through multiple mechanisms using a stem-cell-based phenotypic assay. Cell Stem Cell 11, 620–632 (2012).

    Article  PubMed  CAS  Google Scholar 

  75. Tardiff, D. F., Khurana, V., Chung, C. Y. & Lindquist, S. From yeast to patient neurons and back again: powerful new discovery platforms. Mov. Disord. 10, 1231–1240 (2014).

    Article  CAS  Google Scholar 

  76. Tardiff, D. F. et al. Yeast reveal a “druggable” Rsp5/Nedd4 network that ameliorates α-synuclein toxicity in neurons. Science 342, 979–983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Auluck, P. K., Caraveo, G. & Lindquist, S. α-Synuclein: membrane interactions and toxicity in Parkinson's disease. Annu. Rev. Cell Dev. Biol. 26, 211–233 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Hu, G. & Luo, J. A primer on using pooled shRNA libraries for functional genomic screens. Acta Biochim. Biophys. Sin. (Shanghai) 44, 103–112 (2012).

    Article  CAS  Google Scholar 

  79. Hasson, S. A. et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504, 291–295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Seibler, P. et al. Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J. Neurosci. 31, 5970–5976 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shalem, O. et al. Genome-scale CRISPR–Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, T., Wei, J. J., Sabatini, D. M. & Lander, E. S. Genetic screens in human cells using the CRISPR–Cas9 system. Science 343, 80–84 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Leeb, M. & Wutz, A. Derivation of haploid embryonic stem cells from mouse embryos. Nature 479, 131–134 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Elling, U. et al. Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. Cell Stem Cell 9, 563–574 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Son, E. Y. et al. Conversion of mouse and human fibroblasts into functional spinal motor neurons. Cell Stem Cell 9, 205–218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gupta, R. M. & Musunuru, K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J. Clin. Invest. 124, 4154–4161 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

V.K. has received an American Brain and Parkinson's Disease Foundations Clinician–Scientist Development Award, and is also funded by the Harvard NeuroDiscovery Center and the Multiple System Atrophy Coalition. D.F.T. is the recipient of National Research Service Award fellowship F32NS061419, and is also funded by the Thome Memorial Foundation. C.Y.C. is funded by the National Institute on Aging. S.L. is funded by the Howard Hughes Medical Institute, the JPB Foundation and the Eleanor Schwartz Charitable Foundation. We thank Linda Clayton for comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

V.K., D.F.T. and C.Y.C. researched data for the article, and reviewed and edited the manuscript before submission. V.K., D.F.T. and S.L. made substantial contributions to discussions of the content. All authors contributed equally to writing the article.

Corresponding authors

Correspondence to Vikram Khurana or Susan Lindquist.

Ethics declarations

Competing interests

V.K., D.F.T., C.Y.C. and S.L. are scientific co-founders of Yumanity Therapeutics, a company involved in neurodegenerative disease drug discovery.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khurana, V., Tardiff, D., Chung, C. et al. Toward stem cell-based phenotypic screens for neurodegenerative diseases. Nat Rev Neurol 11, 339–350 (2015). https://doi.org/10.1038/nrneurol.2015.79

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.79

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing