Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

The promise of futility trials in neurological diseases

Abstract

Double-blinded randomized controlled trials (RCTs) have contributed much important evidence to guide treatment decisions in neurology. RCTs are relatively straightforward to conduct, provided that they investigate common diseases, have clearly defined outcome measures, and are of short duration. In neurology, however, many diseases are uncommon, have no consensus outcome measures, and develop over decades. Basic research into neurological diseases continues to identify candidate therapies faster than they can be tested for their clinical utility, leading to a 'translational gap'. Futility trials were initially developed in oncology to efficiently test candidate therapies in phase II trials. As single-arm unblinded studies, futility trials are relatively easy to conduct, and they generally require smaller sample sizes than RCTs. In this article, we discuss futility models, highlighting their advantages as well as challenges to their application in several neurological diseases, including Parkinson disease, stroke and multiple sclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Van Glabbeke, M. et al. Progression-free rate as the principal end-point for phase II trials in soft-tissue sarcomas. Eur. J. Cancer 38, 543–549 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. A'Hern, R. P. Sample size tables for exact single-stage phase II designs. Stat. Med. 20, 859–866 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Gehan, E. A. The determination of the number of patients required in a preliminary and a follow-up trial of a new chemotherapeutic agent. J. Chronic Dis. 13, 346–353 (1961).

    Article  CAS  PubMed  Google Scholar 

  4. Fleming, T. R. One-sample multiple testing procedure for phase II clinical trials. Biometrics 38, 143–151 (1982).

    Article  CAS  PubMed  Google Scholar 

  5. Simon, R. Optimal two-stage designs for phase II clinical trials. Control. Clin. Trials 10, 1–10 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. NINDS NET-PD Investigators. A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson disease. Neurology 66, 664–671 (2006).

  7. Fahn, S. et al. in Recent Developments in Parkinson's Disease Vol. 2 (eds Fahn, S. et al.) 153–163 (Macmillan Healthcare Information, 1987).

    Google Scholar 

  8. [No authors listed] DATATOP: a multicenter controlled clinical trial in early Parkinson's disease. Parkinson Study Group. Arch. Neurol. 46, 1052–1060 (1989).

  9. Elm, J. J. et al. A responsive outcome for Parkinson's disease neuroprotection futility studies. Ann. Neurol. 57, 197–203 (2005).

    Article  PubMed  Google Scholar 

  10. Tilley, B. C. et al. Optimizing the ongoing search for new treatments for Parkinson disease: using futility designs. Neurology 66, 628–633 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. D'Agostino, R., Chase, W. & Belanger, A. The appropriateness of some common procedures for testing the equality of two independent binomial populations. The American Statistician 42, 198–202 (1988).

    Google Scholar 

  12. Schwid, S. R. & Cutter, G. R. Futility studies: spending a little to save a lot. Neurology 66, 626–627 (2006).

    Article  PubMed  Google Scholar 

  13. Tabrizi, S. J. et al. Potential endpoints for clinical trials in premanifest and early Huntington's disease in the TRACK-HD study: analysis of 24 month observational data. Lancet Neurol. 11, 42–53 (2012).

    Article  PubMed  Google Scholar 

  14. Tabrizi, S. J. et al. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data. Lancet Neurol. 12, 637–649 (2013).

    Article  PubMed  Google Scholar 

  15. Huntington Study Group HART Investigators. A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington's disease. Mov. Disord. 28, 1407–1415 (2013).

  16. Walker, F. O. Huntington's disease. Lancet 369, 218–228 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Schrag, A., Ben-Shlomo, Y. & Quinn, N. P. Prevalence of progressive supranuclear palsy and multiple system atrophy: a cross-sectional study. Lancet 354, 1771–1775 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. O'Collins, V. E. et al. 1,026 experimental treatments in acute stroke. Ann. Neurol. 59, 467–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Diener, H. C. et al. NXY-059 for the treatment of acute stroke: pooled analysis of the SAINT I and II Trials. Stroke 39, 1751–1758 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Green, A. R. & Shuaib, A. Therapeutic strategies for the treatment of stroke. Drug Discov. Today 11, 681–693 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Sacchetti, M. L. Is it time to definitely abandon neuroprotection in acute ischemic stroke? Stroke 39, 1659–1660 (2008).

    Article  PubMed  Google Scholar 

  22. Neuhaus, A. A. et al. Importance of preclinical research in the development of neuroprotective strategies for ischemic stroke. JAMA Neurol. 71, 634–639 (2014).

    Article  PubMed  Google Scholar 

  23. Tymianski, M. Novel approaches to neuroprotection trials in acute ischemic stroke. Stroke 44, 2942–2950 (2013).

    Article  PubMed  Google Scholar 

  24. Brott, T. et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke 20, 864–870 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Van Swieten, J. C., Koudstaal, P. J., Visser, M. C., Schouten, H. J. & van Gijn, J. Interobserver agreement for the assessment of handicap in stroke patients. Stroke 19, 604–607 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Mahoney, F. I. & Barthel, D. W. Functional evaluation: the Barthel Index. Md State Med. J. 14, 61–65 (1965).

    CAS  PubMed  Google Scholar 

  27. Tilley, B. C. & Galpern, W. R. Screening potential therapies: lessons learned from new paradigms used in Parkinson disease. Stroke 38, 800–803 (2007).

    Article  PubMed  Google Scholar 

  28. [No authors listed] Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N. Engl. J. Med. 333, 1581–1587 (1995).

  29. Palesch, Y. Y., Tilley, B. C., Sackett, D. L., Johnston, K. C. & Woolson, R. Applying a phase II futility study design to therapeutic stroke trials. Stroke 36, 2410–2414 (2005).

    Article  PubMed  Google Scholar 

  30. Kiernan, M. C. et al. Amyotrophic lateral sclerosis. Lancet 377, 942–955 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Bensimon, G., Lacomblez, L. & Meininger, V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N. Engl. J. Med. 330, 585–591 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Cudkowicz, M. E. et al. Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, phase 3 trial. Lancet Neurol. 12, 1059–1067 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. UKMND-LiCALS Study Group et al. Lithium in patients with amyotrophic lateral sclerosis (LiCALS): a phase 3 multicentre, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 12, 339–345 (2013).

  34. Gordon, P. H. et al. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol. 6, 1045–1053 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Palesch, Y. Y. & Tilley, B. C. An efficient multi-stage, single-arm Phase II futility design for ALS. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 5 (Suppl. 1), 55–56 (2004).

    Article  PubMed  Google Scholar 

  36. Zerres, K. & Rudnik-Schöneborn, S. Natural history in proximal spinal muscular atrophy. Clinical analysis of 445 patients and suggestions for a modification of existing classifications. Arch. Neurol. 52, 518–523 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Finkel, R. S. et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology 83, 810–817 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Markowitz, J. A., Singh, P. & Darras, B. T. Spinal muscular atrophy: a clinical and research update. Pediatr. Neurol. 46, 1–12 (2012).

    Article  PubMed  Google Scholar 

  39. Hirtz, D. et al. Challenges and opportunities in clinical trials for spinal muscular atrophy. Neurology 65, 1352–1357 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Swoboda, K. J. et al. Perspectives on clinical trials in spinal muscular atrophy. J. Child Neurol. 22, 957–966 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mercuri, E., Bertini, E. & Iannaccone, S. T. Childhood spinal muscular atrophy: controversies and challenges. Lancet Neurol. 11, 443–452 (2012).

    Article  PubMed  Google Scholar 

  42. Weinshenker, B. G. et al. The natural history of multiple sclerosis: a geographically based study. I. Clinical course and disability. Brain 112, 133–146 (1989).

    Article  PubMed  Google Scholar 

  43. Koch, M. W., Cutter, G., Stys, P. K., Yong, V. W. & Metz, L. M. Treatment trials in progressive MS—current challenges and future directions. Nat. Rev. Neurol. 9, 496–503 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Kurtzke, J. F. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33, 1444–1452 (1983).

    Article  CAS  PubMed  Google Scholar 

  45. Ontaneda, D. et al. Revisiting the multiple sclerosis functional composite: proceedings from the National Multiple Sclerosis Society (NMSS) Task Force on Clinical Disability Measures. Mult. Scler. 18, 1074–1080 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Cutter, G. R. et al. Development of a multiple sclerosis functional composite as a clinical trial outcome measure. Brain 122, 871–882 (1999).

    Article  PubMed  Google Scholar 

  47. Bosma, L. V. et al. The search for responsive clinical endpoints in primary progressive multiple sclerosis. Mult. Scler. 15, 715–720 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Wolinsky, J. S. et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann. Neurol. 61, 14–24 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Cohen, J. A. et al. Benefit of interferon β-1a on MSFC progression in secondary progressive MS. Neurology 59, 679–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Freedman, M. S. et al. A phase III study evaluating the efficacy and safety of MBP8298 in secondary progressive MS. Neurology 77, 1551–1560 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Koch, M., Uyttenboogaart, M., van Harten, A., Heerings, M. & De Keyser, J. Fatigue, depression and progression in multiple sclerosis. Mult. Scler. 14, 815–822 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Koch, M. W. et al. Depression in multiple sclerosis: a long-term longitudinal study. Mult. Scler. 21, 76–82 (2015).

    Article  PubMed  Google Scholar 

  53. Marson, A. et al. Immediate versus deferred antiepileptic drug treatment for early epilepsy and single seizures: a randomised controlled trial. Lancet 365, 2007–2013 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Marson, A. G. et al. The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial. Lancet 369, 1000–1015 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marson, A. G. et al. The SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy: an unblinded randomised controlled trial. Lancet 369, 1016–1026 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kwan, P., Schachter, S. C. & Brodie, M. J. Drug-resistant epilepsy. N. Engl. J. Med. 365, 919–926 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Arzimanoglou, A. et al. Lennox–Gastaut syndrome: a consensus approach on diagnosis, assessment, management, and trial methodology. Lancet Neurol. 8, 82–93 (2009).

    Article  PubMed  Google Scholar 

  58. Wheless, J. W. & Constantinou, J. E. Lennox–Gastaut syndrome. Pediatr. Neurol. 17, 203–211 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Chiron, C. Current therapeutic procedures in Dravet syndrome. Dev. Med. Child Neurol. 53 (Suppl. 2), 16–18 (2011).

    Article  PubMed  Google Scholar 

  60. Mikati, M. A. & Shamseddine, A. N. Management of Landau–Kleffner syndrome. Paediatr. Drugs 7, 377–389 (2005).

    Article  PubMed  Google Scholar 

  61. [No authors listed] Considerations on designing clinical trials to evaluate the place of new antiepileptic drugs in the treatment of newly diagnosed and chronic patients with epilepsy. Epilepsia 39, 799–803 (1998).

  62. Rosen, W. G., Mohs, R. C. & Davis, K. L. A new rating scale for Alzheimer's disease. Am. J. Psychiatry 141, 1356–1364 (1984).

    Article  CAS  PubMed  Google Scholar 

  63. Birks, J. Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database of Systematic Reviews, Issue 1. Art. No.: CD005593. http://dx.doi.org/10.1002/14651858.CD005593.

  64. Schrag, A. et al. What is the clinically relevant change on the ADAS-cog? J. Neurol. Neurosurg. Psychiatry 83, 171–173 (2012).

    Article  PubMed  Google Scholar 

  65. Rascovsky, K. et al. Rate of progression differs in frontotemporal dementia and Alzheimer disease. Neurology 65, 397–403 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Roberson, E. D. et al. Frontotemporal dementia progresses to death faster than Alzheimer disease. Neurology 65, 719–725 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Haywood, A. M. Transmissible spongiform encephalopathies. N. Engl. J. Med. 337, 1821–1828 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Pocchiari, M. et al. Predictors of survival in sporadic Creutzfeldt–Jakob disease and other human transmissible spongiform encephalopathies. Brain 127, 2348–2359 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.W.K. researched data for the article. All the authors made substantial contributions to the discussion of content, to writing the article, and to revising and editing the article before submission.

Corresponding author

Correspondence to Marcus W. Koch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, M., Korngut, L., Patry, D. et al. The promise of futility trials in neurological diseases. Nat Rev Neurol 11, 300–305 (2015). https://doi.org/10.1038/nrneurol.2015.34

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.34

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing