Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A novel diagnostic approach to patients with myoclonus

Key Points

  • Myoclonus is characterized by sudden, involuntary jerks, and can be caused by a variety of acquired and genetic factors

  • Clinical neurophysiological tests help to determine the anatomical origin of the myoclonic jerks

  • Recognition of the reversible forms of myoclonus is important for prompt instigation of treatment

  • Next-generation sequencing techniques enable rapid diagnosis in genetic causes of myoclonus

  • Here, we provide a novel eight-step algorithm for myoclonus to aid clinical decision-making and facilitate mechanism-based treatment

Abstract

Myoclonus is a hyperkinetic movement disorder characterized by brief, involuntary muscular jerks. Recognition of myoclonus and determination of the underlying aetiology remains challenging given that both acquired and genetically determined disorders have varied manifestations. The diagnostic work-up in myoclonus is often time-consuming and costly, and a definitive diagnosis is reached in only a minority of patients. On the basis of a systematic literature review up to June 2015, we propose a novel diagnostic eight-step algorithm to help clinicians accurately, efficiently and cost-effectively diagnose myoclonus. The large number of genes implicated in myoclonus and the wide clinical variation of these genetic disorders emphasize the need for novel diagnostic techniques. Therefore, and for the first time, we incorporate next-generation sequencing (NGS) in a diagnostic algorithm for myoclonus. The initial step of the algorithm is to confirm whether the movement disorder phenotype is consistent with, myoclonus, and to define its anatomical subtype. The next steps are aimed at identification of both treatable acquired causes and those genetic causes of myoclonus that require a diagnostic approach other than NGS. Finally, other genetic diseases that could cause myoclonus can be investigated simultaneously by NGS techniques. To facilitate NGS diagnostics, we provide a comprehensive list of genes associated with myoclonus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A novel eight-step diagnostic algorithm for myoclonus.

Similar content being viewed by others

References

  1. van der Salm, S. M., de Haan, R. J., Cath, D. C., van Rootselaar, A. F. & Tijssen, M. A. The eye of the beholder: inter-rater agreement among experts on psychogenic jerky movement disorders. J. Neurol. Neurosurg. Psychiatry 7, 742–747 (2013).

    Google Scholar 

  2. Caviness, J. N. et al. The incidence and prevalence of myoclonus in Olmsted County, Minnesota. Mayo Clin. Proc. 74, 565–569 (1999).

    CAS  PubMed  Google Scholar 

  3. Marsden, C. D., Hallett, M. & Fahn, S. The nosology and patho-physiology of myoclonus. Mov. Disord. 3, 196–248 (1982).

    Google Scholar 

  4. Kojovic, M., Cordivari, C. & Bhatia, K. Myoclonic disorders: a practical approach for diagnosis and treatment. Ther. Adv. Neurol. Disord. 4, 47–62 (2011).

    PubMed  PubMed Central  Google Scholar 

  5. Caviness, J. N. & Brown, P. Myoclonus: current concepts and recent advances. Lancet Neurol. 3, 598–607 (2004).

    PubMed  Google Scholar 

  6. van der Salm, S. M. et al. Propriospinal myoclonus: clinical reappraisal and review of literature. Neurology 83, 1862–1870 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Zutt, R., Elting, J. W. & Tijssen M. A. in Parkinson Disease and Other Movement Disorders (eds Wolters, E. & Baumann, C.) 513–533 (VU Univ. Press, 2014).

    Google Scholar 

  8. de Koning, T. J., Jongbloed, J. D., Sikkema-Raddatz, B. & Sinke, R. J. Targeted next-generation sequencing panels for monogenetic disorders in clinical diagnostics: the opportunities and challenges. Expert Rev. Mol. Diagn. 15, 61–70 (2015).

    CAS  PubMed  Google Scholar 

  9. Keogh, M. J., Daud, D. & Chinnery, P. F. Exome sequencing: how to understand it. Pract. Neurol. 13, 399–407 (2013).

    CAS  PubMed  Google Scholar 

  10. Lemke, J. R. et al. Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 53, 1387–1398 (2012).

    CAS  PubMed  Google Scholar 

  11. Neveling, K. et al. A post-hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum. Mutat. 34, 1721–1726 (2013).

    CAS  PubMed  Google Scholar 

  12. Friedreich, N. Paramyoclonus multiplex. Neuropathologische Beobachtungen [German]. Virchows Arch. Pathol. Anat. 86, 421–434 (1881).

    Google Scholar 

  13. Lance, J. W. & Adams, R. D. Negative myoclonus in posthypoxic patients: historical note. Mov. Disord. 16, 162–163 (2001).

    CAS  PubMed  Google Scholar 

  14. Fahn, S., Marsden, C. D. & Van Woert, M. H. Definition and classification of myoclonus. Adv. Neurol. 43, 1–5 (1986).

    CAS  PubMed  Google Scholar 

  15. Frucht, S. & Fahn, S. The clinical spectrum of posthypoxic myoclonus. Mov. Disord. 15, S2–S7 (2000).

    Google Scholar 

  16. Andermann, F. & Tenembaum, S. Negative motor phenomena in generalized epilepsies. A study of atonic seizures. Adv. Neurol. 67, 9–28 (1995).

    CAS  PubMed  Google Scholar 

  17. Rubboli, G. & Tassinari, C. A. Negative myoclonus. An overview of its clinical features, pathophysiological mechanisms, and management. Neurophysiol. Clin. 36, 337–343 (2006).

    CAS  PubMed  Google Scholar 

  18. Spiro, A. J. Minipolymyoclonus: a neglected sign in childhood spinal muscular atrophy. Neurology 20, 1124–1126 (1970).

    Google Scholar 

  19. van der Salm, S. M., Koelman, J. H., Henneke, S., van Rootselaar, A. F. & Tijssen, M. A. Axial jerks: a clinical spectrum ranging from propriospinal to psychogenic myoclonus. J. Neurol. 257, 1349–1355 (2010).

    PubMed  PubMed Central  Google Scholar 

  20. Gruber, D. et al. Pallidal and thalamic deep brain stimulation in myoclonus-dystonia. Mov. Disord. 25, 1733–1743 (2010).

    PubMed  Google Scholar 

  21. Rughani, A. I. & Lozano, A. M. Surgical treatment of myoclonus dystonia syndrome. Mov. Disord. 28, 282–287 (2013).

    PubMed  Google Scholar 

  22. Ritz, K. et al. SGCE isoform characterization and expression in human brain: implications for myoclonus-dystonia pathogenesis? Eur. J. Hum. Genet. 19, 438–444 (2011).

    CAS  PubMed  Google Scholar 

  23. Caviness, J. N. & Brown, P. Myoclonus: current concepts and recent advances. Lancet Neurol. 3, 598–607 (2004).

    PubMed  Google Scholar 

  24. Shibasaki, H., Yamashita, Y., Neshige, R., Tobimatsu, S. & Fukui, R. Pathogenesis of giant somatosensory evoked potentials in progressive myoclonic epilepsy. Brain 108, 225–240 (1985).

    PubMed  Google Scholar 

  25. Shibasaki, H., Yamashita, Y. & Kuroiwa, Y. Electroencephalographic studies myoclonus. Brain 101, 447–460 (1978).

    CAS  PubMed  Google Scholar 

  26. Brown, P., Farmer, S. F., Halliday, D. M., Marsden, J. & Rosenberg, J. R. Coherent cortical and muscle discharge in cortical myoclonus. Brain 122, 461–472 (1999).

    PubMed  Google Scholar 

  27. Sutton, G. G. & Mayer, R. F. Focal reflex myoclonus. J. Neurol. Neurosurg. Psychiatry 37, 207–217 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Shibasaki, H. & Hallett, M. Electrophysiological studies of myoclonus. Muscle Nerve 31, 157–174 (2005).

    PubMed  Google Scholar 

  29. Ganos, C. et al. The role of the cerebellum in the pathogenesis of cortical myoclonus. Mov. Disord. 29, 437–443 (2014).

    PubMed  Google Scholar 

  30. van Rootselaar, A. F. et al. Decreased cortical inhibition and yet cerebellar pathology in 'familial cortical myoclonic tremor with epilepsy'. Mov. Disord. 22, 2378–2385 (2007).

    PubMed  Google Scholar 

  31. Banks, G., Nielsen, V. K., Short, M. P. & Kowal, C. D. Brachial plexus myoclonus. J. Neurol. Neurosurg. Psychiatry 48, 582–584 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Seidel, G., Vieregge, P., Wessel, K. & Kompf, D. Peripheral myoclonus due to spinal root lesion. Muscle Nerve 20, 1602–1603 (1997).

    CAS  PubMed  Google Scholar 

  33. Tyvaert, L. et al. Myoclonus of peripheral origin: two case reports. Mov. Disord. 24, 274–277 (2009).

    PubMed  Google Scholar 

  34. Calancie, B. Spinal myoclonus after spinal cord injury. J. Spinal Cord Med. 29, 413–424 (2006).

    PubMed  PubMed Central  Google Scholar 

  35. Nogues, M. A., Leiguarda, R. C., Rivero, A. D., Salvat, F. & Manes, F. Involuntary movements and abnormal spontaneous EMG activity in syringomyelia and syringobulbia. Neurology 52, 823–834 (1999).

    CAS  PubMed  Google Scholar 

  36. Nogues, M. A. Spontaneous electromyographic activity in spinal cord lesions. Muscle Nerve 11, S77–S82 (2002).

    PubMed  Google Scholar 

  37. Benatru, I. et al. Atypical propriospinal myoclonus with possible relationship to alpha interferon therapy. Mov. Disord. 18, 1564–1568 (2003).

    PubMed  Google Scholar 

  38. Post, B., Koelman, J. H. & Tijssen, M. A. Propriospinal myoclonus after treatment with ciprofloxacin. Mov. Disord. 19, 595–597 (2004).

    PubMed  Google Scholar 

  39. Zamidei, L., Bandini, M., Michelagnoli, G., Campostrini, R. & Consales, G. Propriospinal myoclonus following intrathecal bupivacaine in hip surgery: a case report. Minerva Anestesiol. 76, 290–293 (2010).

    CAS  PubMed  Google Scholar 

  40. Estraneo, A., Saltalamacchia, A. M. & Loreto, V. Spinal myoclonus following herpes zoster radiculitis. Neurology 68, E4 (2007).

    CAS  PubMed  Google Scholar 

  41. Jiménez-Jiménez, F. J., Puertas, I. & de Toledo-Heras, M. Drug-induced myoclonus: frequency, mechanisms and management. CNS Drugs 18, 93–104 (2004).

    PubMed  Google Scholar 

  42. Gordon, M. F. Toxin and drug-induced myoclonus. Adv. Neurol. 89, 49–76 (2002).

    PubMed  Google Scholar 

  43. Brefel-Courbon, C., Gardette, V., Ory, F. & Montastruc, J. L. Drug-induced myoclonus: a French pharmacovigilance database study. Neurophysiol. Clin. 36, 333–336 (2006).

    CAS  PubMed  Google Scholar 

  44. Dalmau, J., Lancaster, E., Martinez-Hernandez, E., Rosenfeld, M. R. & Balice-Gordon, R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 10, 63–74 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmitt, S. E. et al. Extreme delta brush: a unique EEG pattern in adults with anti-NMDA receptor encephalitis. Neurology 79, 1094–1100 (2012).

    PubMed  PubMed Central  Google Scholar 

  46. Dalmau, J. et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 7, 1091–1098 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Silveira-Moriyama, L. & Lin, J. P. A field guide to current advances in paediatric movement disorders. Curr. Opin. Neurol. 28, 437–446 (2015).

    PubMed  Google Scholar 

  48. Shugaiv, E. et al. Progressive encephalomyelitis with rigidity and myoclonus: a syndrome with diverse clinical features and antibody responses. Eur. Neurol. 69, 257–262 (2013).

    CAS  PubMed  Google Scholar 

  49. Balint, B. et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology 82, 1521–1528 (2014).

    CAS  PubMed  Google Scholar 

  50. Borg, M. Symptomatic myoclonus. Neurophysiol. Clin. 36, 309–318 (2006).

    CAS  PubMed  Google Scholar 

  51. Krug, P. et al. Opsoclonus-myoclonus in children associated or not with neuroblastoma. Eur. J. Paediatr. Neurol. 14, 400–409 (2010).

    PubMed  Google Scholar 

  52. Hersh, B. et al. Paraneoplastic opsoclonus-myoclonus associated with anti-Hu antibody. Neurology 44, 1754–1755 (1994).

    CAS  PubMed  Google Scholar 

  53. Gregory, A., Polster, B. J. & Hayflick, S. J. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J. Med. Genet. 46, 73–80 (2009).

    CAS  PubMed  Google Scholar 

  54. Pellecchia, M. T. et al. The diverse phenotype and genotype of pantothenate kinase-associated neurodegeneration. Neurology 64, 1810–1812 (2005).

    CAS  PubMed  Google Scholar 

  55. Schneider, S. A., Hardy, J. & Bhatia, K. P. Syndromes of neurodegeneration with brain iron accumulation (NBIA): an update on clinical presentations, histological and genetic underpinnings, and treatment considerations. Mov. Disord. 27, 42–53 (2012).

    CAS  PubMed  Google Scholar 

  56. Pareyson, D. et al. Adult-onset Alexander disease: a series of eleven unrelated cases with review of the literature. Brain 131, 2321–2331 (2008).

    PubMed  Google Scholar 

  57. van der Knaap, M. S. et al. Alexander disease: diagnosis with MR imaging. Am. J. Neuroradiol. 22, 541–552 (2001).

    CAS  PubMed  Google Scholar 

  58. van der Knaap, M. S. et al. Alexander disease: ventricular garlands and abnormalities of the medulla and spinal cord. Neurology 66, 494–498 (2006).

    CAS  PubMed  Google Scholar 

  59. Mancuso, M. et al. Myoclonus in mitochondrial disorders. Mov. Disord. 29, 722–728 (2014).

    CAS  PubMed  Google Scholar 

  60. DiMauro, S. et al. Clinical features and genetics of myoclonic epilepsy with ragged red fibers. Adv. Neurol. 89, 217–229 (2002).

    PubMed  Google Scholar 

  61. Caviness, J. N., Adler, C. H., Caselli, R. J. & Hernandez, J. L. Electrophysiology of the myoclonus in dementia with Lewy bodies. Neurology 60, 523–524 (2003).

    CAS  PubMed  Google Scholar 

  62. Caviness, J. N., Adler, C. H., Beach, T. G., Wetjen, K. L. & Caselli, R. J. Myoclonus in Lewy body disorders. Adv. Neurol. 89, 23–30 (2002).

    PubMed  Google Scholar 

  63. Caviness, J. N., Adler, C. H., Beach, T. G., Wetjen, K. L. & Caselli, R. J. Small-amplitude cortical myoclonus in Parkinson's disease: physiology and clinical observations. Mov. Disord. 17, 657–662 (2002).

    PubMed  Google Scholar 

  64. Salazar, G., Valls-Sole, J., Marti, M. J., Chang, H. & Tolosa, E. S. Postural and action myoclonus in patients with parkinsonian type multiple system atrophy. Mov. Disord. 15, 77–83 (2000).

    CAS  PubMed  Google Scholar 

  65. Glass, G. A., Ahlskog, J. E. & Matsumoto, J. Y. Orthostatic myoclonus: a contributor to gait decline in selected elderly. Neurology 68, 1826–1830 (2007).

    PubMed  Google Scholar 

  66. Leu-Semenescu, S. et al. Myoclonus or tremor in orthostatism: an under-recognized cause of unsteadiness in Parkinson's disease. Mov. Disord. 22, 2063–2069 (2007).

    PubMed  Google Scholar 

  67. de Ligt, J. et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921–1929 (2012).

    CAS  Google Scholar 

  68. Canafoglia, L. et al. Expanding sialidosis spectrum by genome-wide screening: NEU1 mutations in adult-onset myoclonus. Neurology 82, 2003–2006 (2014).

    CAS  PubMed  Google Scholar 

  69. Patterson, M. C. et al. Recommendations for the diagnosis and management of Niemann–Pick disease type C: an update. Mol. Genet. Metab. 106, 330–344 (2012).

    CAS  PubMed  Google Scholar 

  70. Lyseng-Williamson, K. A. Miglustat: a review of its use in Niemann–Pick disease type C. Drugs 74, 61–74 (2014).

    CAS  PubMed  Google Scholar 

  71. Taly, A. B., Meenakshi-Sundaram, S., Sinha, S., Swamy, H. S. & Arunodaya, G. R. Wilson disease: description of 282 patients evaluated over 3 decades. Medicine (Baltimore) 86, 112–121 (2007).

    Google Scholar 

  72. Bandmann, O., Weiss, K. H. & Kaler, S. G. Wilson's disease and other neurological copper disorders. Lancet Neurol. 14, 103–113 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Pearson, T. S., Akman, C., Hinton, V. J., Engelstad, K. & De Vivo, D. C. Phenotypic spectrum of glucose transporter type 1 deficiency syndrome (Glut1 DS). Curr. Neurol. Neurosci. Rep. 13, 342 (2013).

    PubMed  Google Scholar 

  74. Leen, W. G. et al. Cerebrospinal fluid analysis in the workup of GLUT1 deficiency syndrome: a systematic review. JAMA Neurol. 70, 1440–1444 (2013).

    PubMed  Google Scholar 

  75. Nie, S., Chen, G., Cao, X. & Zhang, Y. Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J. Rare Dis. 9, 179 (2014).

    PubMed  PubMed Central  Google Scholar 

  76. Federico, A. & Dotti, M. T. Cerebrotendinous xanthomatosis: clinical manifestations, diagnostic criteria, pathogenesis, and therapy. J. Child Neurol. 18, 633–638 (2003).

    PubMed  Google Scholar 

  77. Willemsen, M. A. et al. Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 133, 1810–1822 (2010).

    PubMed  Google Scholar 

  78. Dijk, J. M. & Tijssen, M. A. Management of patients with myoclonus: available therapies and the need for an evidence-based approach. Lancet Neurol. 9, 1028–1036 (2010).

    PubMed  Google Scholar 

  79. Orru, C. D. et al. A test for Creutzfeldt–Jakob disease using nasal brushings. N. Engl. J. Med. 371, 519–529 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like thank Jackie Senior and Kate McIntyre for editing this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.Z. wrote the article. R.Z., T.J.d.K. and M.A.T. researched data for article and provided substantial contributions to discussion of the content. All authors reviewed and/or edited manuscript before submission. T.J.d.K. and M.A.T. contributed equally to the manuscript.

Corresponding author

Correspondence to Marina A. Tijssen.

Ethics declarations

Competing interests

M.E.v.E. received a travel grant from Medtronic in 2014. O.F.B. is a member of an advisory committee for Viropharma (Shire) and presented lectures at sponsored meetings organize by UCB Pharma. T.J.d.K.has received a research grant from Actelion and presented a lecture at a meeting sponsored by Genzyme. M.A.T. has received educational grants from Actelion, Allergan, Ipsen, Medtronic and Merz. The other authors declare no competing interests.

Supplementary information

Supplementary Appendix 1

Full electronic search strategy for a systematic review of causes of myoclonus (DOCX 94 kb)

Supplementary Table 1

Comprehensive overview of genes associated with myoclonus (DOCX 300 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zutt, R., van Egmond, M., Elting, J. et al. A novel diagnostic approach to patients with myoclonus. Nat Rev Neurol 11, 687–697 (2015). https://doi.org/10.1038/nrneurol.2015.198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.198

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing