Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenesis of Parkinson disease—the gut–brain axis and environmental factors

Key Points

  • Nonmotor symptoms, particularly hyposmia and constipation, precede the motor symptoms of Parkinson disease (PD) by many years, and the lifetime risk of PD negatively correlates with the frequency of bowel movements

  • Neurodegeneration in PD seems to start in the olfactory bulb, the enteric nervous system, the dorsal motor nucleus of the vagus nerve and the intermediolateral nucleus in the thoracic and sacral spinal cord

  • Evidence suggests that environmental factors have an important role in triggering and/or propagating the pathology of PD; the olfactory and gastrointestinal systems are gateways to the environment

  • Chronic intragastral administration of rotenone in mice has resulted in neuropathology and symptoms typical of PD that developed in a chronological and regional sequence that corresponds to the Braak staging system

  • PD pathology that involves α-synuclein spreads from the enteric nervous system to the CNS by trans-synaptic cell-to-cell transmission in intact sympathetic and parasympathetic nerves

  • α-Synuclein impairs mitochondrial activity and causes oxidative stress in neurons, especially dopaminergic neurons in the substantia nigra and noradrenergic neurons in the locus coeruleus

Abstract

Parkinson disease (PD) follows a defined clinical pattern, and a range of nonmotor symptoms precede the motor phase. The predominant early nonmotor manifestations are olfactory impairment and constipation. The pathology that accompanies these symptoms is consistent with the Braak staging system: α-synuclein in the dorsal motor nucleus of the vagus nerve, the olfactory bulb, the enteric nervous system (ENS) and the submandibular gland, each of which is a gateway to the environment. The neuropathological process that leads to PD seems to start in the ENS or the olfactory bulb and spreads via rostrocranial transmission to the substantia nigra and further into the CNS, raising the intriguing possibility that environmental substances can trigger pathogenesis. Evidence from epidemiological studies and animal models supports this hypothesis. For example, in mice, intragastric administration of the pesticide rotenone can almost completely reproduce the typical pathological and clinical features of PD. In this Review, we present clinical and pathological evidence to support the hypothesis that PD starts in the gut and spreads via trans-synaptic cell-to-cell transfer of pathology through the sympathetic and parasympathetic nervous systems to the substantia nigra and the CNS. We also consider how environmental factors might trigger pathogenesis, and the potential for therapeutically targeting the mechanisms of these initial stages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vagal parasympathetic innervation of the gastrointestinal tract and connection of the ENS and CNS.
Figure 2: Enteric nervous system of the gut.
Figure 3: Hemivagotomy prevents α-synuclein accumulation in the ipsilateral DMNV.

Similar content being viewed by others

References

  1. Hughes, A. J., Daniel, S. E., Kilford, L. & Lees, A. J. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55, 181–184 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Haehner, A., Hummel, T. & Reichmann, H. Olfactory dysfunction as a diagnostic marker for Parkinson's disease. Expert Rev. Neurother. 9, 1773–1779 (2009).

    CAS  PubMed  Google Scholar 

  3. Iranzo, A. et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol. 5, 572–577 (2006).

    PubMed  Google Scholar 

  4. Abbott, R. D. et al. Frequency of bowel movements and the future risk of Parkinson's disease. Neurology 57, 456–462 (2001).

    CAS  PubMed  Google Scholar 

  5. Jost, W. H. Gastrointestinal dysfunction in Parkinson's disease. J. Neurol. Sci. 289, 69–73 (2010).

    CAS  PubMed  Google Scholar 

  6. Savica, R. et al. Medical records documentation of constipation preceding Parkinson disease: a case–control study. Neurology 73, 1752–1758 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cersosimo, M. G. et al. Gastrointestinal manifestations in Parkinson's disease: prevalence and occurrence before motor symptoms. J. Neurol. 260, 1332–1338 (2013).

    CAS  PubMed  Google Scholar 

  8. Reichmann, H., Schneider, C. & Löhle, M. Non-motor features of Parkinson's disease: depression and dementia. Parkinsonism Relat. Disord. 15 (Suppl. 3), S87–S92 (2009).

    PubMed  Google Scholar 

  9. Schrag, A., Jahanshahi, M. & Quinn, N. How does Parkinson's disease affect quality of life? A comparison with quality of life in the general population. Mov. Disord. 15, 1112–1118 (2000).

    CAS  PubMed  Google Scholar 

  10. Martinez-Martin, P., Rodriguez-Blazquez, C., Kurtis, M. M. & Chaudhuri, K. R. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson's disease. Mov. Disord. 26, 399–406 (2011).

    PubMed  Google Scholar 

  11. Müller, B., Assmus, J., Herlofson, K., Larsen, J. P. & Tysnes, O. B. Importance of motor vs. non-motor symptoms for health-related quality of life in early Parkinson's disease. Parkinsonism Relat. Disord. 19, 1027–1032 (2013).

    PubMed  Google Scholar 

  12. O'Sullivan, S. S. et al. Nonmotor symptoms as presenting complaints in Parkinson's disease: a clinicopathological study. Mov. Disord. 23, 101–106 (2008).

    PubMed  Google Scholar 

  13. Gallagher, D. A., Lees, A. J. & Schrag, A. What are the most important nonmotor symptoms in patients with Parkinson's disease and are we missing them? Mov. Disord. 25, 2493–2500 (2010).

    PubMed  Google Scholar 

  14. Gibb, W. R. & Lees, A. J. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 54, 388–396 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24 (2013).

    CAS  PubMed  Google Scholar 

  16. Halliday, G., McCann, H. & Shepherd, C. Evaluation of the Braak hypothesis: how far can it explain the pathogenesis of Parkinson's disease? Expert Rev. Neurother. 12, 673–686 (2012).

    CAS  PubMed  Google Scholar 

  17. Reichmann, H. View point: etiology in Parkinson's disease. Dual hit or spreading intoxication. J. Neurol. Sci. 310, 9–11 (2011).

    PubMed  Google Scholar 

  18. Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 2, 107–116 (2003).

    PubMed  Google Scholar 

  19. Martinez-Martin, P. The importance of non-motor disturbances to quality of life in Parkinson's disease. J. Neurol. Sci. 310, 12–16 (2011).

    PubMed  Google Scholar 

  20. Rodríguez-Violante, M., Cervantes-Arriaga, A., Villar-Velarde, A. & Corona, T. Prevalence of non-motor dysfunction among Parkinson's disease patients from a tertiary referral center in Mexico City. Clin. Neurol. Neurosurg. 112, 883–885 (2010).

    PubMed  Google Scholar 

  21. Stern, M. B. & Siderowf, A. Parkinson's at risk syndrome: can Parkinson's disease be predicted? Mov. Disord. 25 (Suppl. 1), S89–S93 (2010).

    PubMed  Google Scholar 

  22. Lang, A. E. A critical appraisal of the premotor symptoms of Parkinson's disease: potential usefulness in early diagnosis and design of neuroprotective trials. Mov. Disord. 26, 775–783 (2011).

    PubMed  Google Scholar 

  23. Edwards, L. L., Pfeiffer, R. F., Quigley, E. M., Hofman, R. & Balluff, M. Gastrointestinal symptoms in Parkinson's disease. Mov. Disord. 6, 151–156 (1991).

    CAS  PubMed  Google Scholar 

  24. Kaye, J., Gage, H., Kimber, A., Storey, L. & Trend, P. Excess burden of constipation in Parkinson's disease: a pilot study. Mov. Disord. 21, 1270–1273 (2006).

    PubMed  Google Scholar 

  25. Chaudhuri, K. R., Healy, D. G. & Schapira, A. H. Non-motor symptoms of Parkinson's disease: diagnosis and management. Lancet Neurol. 5, 235–245 (2006).

    PubMed  Google Scholar 

  26. Verbaan, D. et al. Patient-reported autonomic symptoms in Parkinson disease. Neurology 69, 333–341 (2007).

    CAS  PubMed  Google Scholar 

  27. Goetze, O. et al. Predictors of gastric emptying in Parkinson's disease. Neurogastroenterol. Motil. 18, 369–375 (2006).

    CAS  PubMed  Google Scholar 

  28. Chaudhuri, K. R. et al. International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson's disease: the NMSQuest study. Mov. Disord. 21, 916–923 (2006).

    PubMed  Google Scholar 

  29. Martinez-Martin, P. et al. Prevalence of nonmotor symptoms in Parkinson's disease in an international setting; study using nonmotor symptoms questionnaire in 545 patients. Mov. Disord. 22, 1623–1629 (2007).

    PubMed  Google Scholar 

  30. Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson's disease. Parkinsonism Relat. Disord. 17, 10–15 (2011).

    PubMed  Google Scholar 

  31. Jost, W. H. Gastrointestinal motility problems in patients with Parkinson's disease. Effects of antiparkinsonian treatment and guidelines for management. Drugs Aging 10, 249–258 (1997).

    CAS  PubMed  Google Scholar 

  32. Barone, P. et al. The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson's disease. Mov. Disord. 24, 1641–1649 (2009).

    PubMed  Google Scholar 

  33. Korczyn, A. D. Autonomic nervous system disturbances in Parkinson's disease. Adv. Neurol. 53, 463–468 (1990).

    CAS  PubMed  Google Scholar 

  34. Ashraf, W., Pfeiffer, R. F., Park, F., Lof, J. & Quigley, E. M. Constipation in Parkinson's disease: objective assessment and response to psyllium. Mov. Disord. 12, 946–951 (1997).

    CAS  PubMed  Google Scholar 

  35. Adams-Carr, K. L. et al. Constipation preceding Parkinson's disease: a systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry (2015).

  36. Cersosimo, M. G. & Benarroch, E. E. Neural control of the gastrointestinal tract: implications for Parkinson disease. Mov Disord. 23, 1065–1075 (2008).

    PubMed  Google Scholar 

  37. Jost, W. H. & Schrank, B. Defecatory disorders in de novo Parkinsonians—colonic transit and electromyogram of the external anal sphincter. Wien Klin. Wochenschr. 110, 535–537 (1998).

    CAS  PubMed  Google Scholar 

  38. Sakakibara, R. et al. Colonic transit time and rectoanal videomanometry in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 74, 268–272 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sakakibara, R. et al. Bladder, bowel, and sexual dysfunction in Parkinson's disease. Parkinsons Dis. 2011, 924605 (2011).

    PubMed  PubMed Central  Google Scholar 

  40. Wang, C. P., Sung, W. H., Wang, C. C. & Tsai, P. Y. Early recognition of pelvic floor dyssynergia and colorectal assessment in Parkinson's disease associated with bowel dysfunction. Colorectal Dis. 15, e130–e137 (2013).

    PubMed  Google Scholar 

  41. Cersosimo, M. G. & Benarroch, E. E. Pathological correlates of gastrointestinal dysfunction in Parkinson's disease. Neurobiol. Dis. 46, 559–564 (2012).

    PubMed  Google Scholar 

  42. Edwards, L. L., Quigley, E. M., Harned, R. K., Hofman, R. & Pfeiffer, R. F. Characterization of swallowing and defecation in Parkinson's disease. Am. J. Gastroenterol. 89, 15–25 (1994).

    CAS  PubMed  Google Scholar 

  43. Jost, W. H. & Schimrigk, K. Constipation in Parkinson's disease. Klin. Wochenschr. 69, 906–909 (1991).

    CAS  PubMed  Google Scholar 

  44. Edwards, L. L., Quigley, E. M. & Pfeiffer, R. F. Gastrointestinal dysfunction in Parkinson's disease: frequency and pathophysiology. Neurology 42, 726–732 (1992).

    CAS  PubMed  Google Scholar 

  45. Bassotti, G. et al. Manometric investigation of anorectal function in early and late stage Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 68, 768–770 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Mathers, S. E., Kempster, P. A., Swash, M. & Lees, A. J. Constipation and paradoxical puborectalis contraction in anismus and Parkinson's disease: a dystonic phenomenon? J. Neurol. Neurosurg. Psychiatry 51, 1503–1507 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ashraf, W., Pfeiffer, R. F. & Quigley, E. M. Anorectal manometry in the assessment of anorectal function in Parkinson's disease: a comparison with chronic idiopathic constipation. Mov. Disord. 9, 655–663 (1994).

    CAS  PubMed  Google Scholar 

  48. Jost, W. H., Schrank, B., Herold, A. & Leiss, O. Functional outlet obstruction: anismus, spastic pelvic floor syndrome, and dyscoordination of the voluntary sphincter muscles. Definition, diagnosis, and treatment from the neurologic point of view. Scand. J. Gastroenterol. 34, 449–453 (1999).

    CAS  PubMed  Google Scholar 

  49. Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    CAS  PubMed  Google Scholar 

  50. Gaspar, P. & Gray, F. Dementia in idiopathic Parkinson's disease. A neuropathological study of 32 cases. Acta Neuropathol. 64, 43–52 (1984).

    CAS  PubMed  Google Scholar 

  51. Braak, H. et al. Pattern of brain destruction in Parkinson's and Alzheimer's diseases. J. Neural Transm. 103, 455–490 (1996).

    CAS  PubMed  Google Scholar 

  52. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    PubMed  Google Scholar 

  53. Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H. & Del Tredici, K. Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res. 318, 121–134 (2004).

    PubMed  Google Scholar 

  54. Del Tredici, K., Rub, U., De Vos, R. A., Bohl, J. R. & Braak, H. Where does parkinson disease pathology begin in the brain? J. Neuropathol. Exp. Neurol. 61, 413–426 (2002).

    PubMed  Google Scholar 

  55. Braak, H. & Del Tredici, K. Neuroanatomy and pathology of sporadic Parkinson's disease. Adv. Anat. Embryol. Cell Biol. 201, 1–119 (2009).

    PubMed  Google Scholar 

  56. Braak, H., Rub, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 110, 517–536 (2003).

    CAS  PubMed  Google Scholar 

  57. Hawkes, C. H., Del Tredici, K. & Braak, H. Parkinson's disease: a dual-hit hypothesis. Neuropathol. Appl. Neurobiol. 33, 599–614 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Beach, T. G. et al. Olfactory bulb α-synucleinopathy has high specificity and sensitivity for Lewy body disorders. Acta Neuropathol. 117, 169–174 (2009).

    CAS  PubMed  Google Scholar 

  59. Braak, H., de Vos, R. A., Bohl, J. & Del Tredici, K. Gastric α-synuclein immunoreactive inclusions in Meissner's and Auerbach's plexuses in cases staged for Parkinson's disease-related brain pathology. Neurosci. Lett. 396, 67–72 (2006).

    CAS  PubMed  Google Scholar 

  60. Del Tredici, K., Hawkes, C. H., Ghebremedhin, E. & Braak, H. Lewy pathology in the submandibular gland of individuals with incidental Lewy body disease and sporadic Parkinson's disease. Acta Neuropathol. 119, 703–713 (2010).

    PubMed  Google Scholar 

  61. Orimo, S. et al. Cardiac sympathetic denervation precedes neuronal loss in the sympathetic ganglia in Lewy body disease. Acta Neuropathol. 109, 583–588 (2005).

    PubMed  Google Scholar 

  62. Minguez-Castellanos, A. et al. Do α-synuclein aggregates in autonomic plexuses predate Lewy body disorders?: a cohort study. Neurology 68, 2012–2018 (2007).

    CAS  PubMed  Google Scholar 

  63. Wakabayashi, K., Takahashi, H., Ohama, E. & Ikuta, F. Parkinson's disease: an immunohistochemical study of Lewy body-containing neurons in the enteric nervous system. Acta Neuropathol. 79, 581–583 (1990).

    CAS  PubMed  Google Scholar 

  64. Braak, H., Sastre, M., Bohl, J. R., de Vos, R. A. & Del Tredici, K. Parkinson's disease: lesions in dorsal horn layer I, involvement of parasympathetic and sympathetic pre- and postganglionic neurons. Acta Neuropathol. 113, 421–429 (2007).

    PubMed  Google Scholar 

  65. Wakabayashi, K., Takahashi, H., Takeda, S., Ohama, E. & Ikuta, F. Parkinson's disease: the presence of Lewy bodies in Auerbach's and Meissner's plexuses. Acta Neuropathol. 76, 217–221 (1988).

    CAS  PubMed  Google Scholar 

  66. Kupsky, W. J., Grimes, M. M., Sweeting, J., Bertsch, R. & Cote, L. J. Parkinson's disease and megacolon: concentric hyaline inclusions (Lewy bodies) in enteric ganglion cells. Neurology 37, 1253–1255 (1987).

    CAS  PubMed  Google Scholar 

  67. Lebouvier, T. et al. Pathological lesions in colonic biopsies during Parkinson's disease. Gut 57, 1741–1743 (2008).

    CAS  PubMed  Google Scholar 

  68. Qualman, S. J., Haupt, H. M., Yang, P. & Hamilton, S. R. Esophageal Lewy bodies associated with ganglion cell loss in achalasia. Similarity to Parkinson's disease. Gastroenterology 87, 848–856 (1984).

    CAS  PubMed  Google Scholar 

  69. Abbott, R. D. et al. Bowel movement frequency in late-life and incidental Lewy bodies. Mov. Disord. 22, 1581–1586 (2007).

    PubMed  Google Scholar 

  70. Petrovitch, H. et al. Bowel movement frequency in late-life and substantia nigra neuron density at death. Mov. Disord. 24, 371–376 (2009).

    PubMed  PubMed Central  Google Scholar 

  71. Del Tredici, K. & Braak, H. Spinal cord lesions in sporadic Parkinson's disease. Acta Neuropathol. 124, 643–664 (2012).

    CAS  PubMed  Google Scholar 

  72. Bloch, A., Probst, A., Bissig, H., Adams, H. & Tolnay, M. α-Synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol. Appl. Neurobiol. 32, 284–295 (2006).

    CAS  PubMed  Google Scholar 

  73. Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375 (1989).

    CAS  PubMed  Google Scholar 

  74. Klingelhoefer, L. & Reichmann, H. Dementia—the real problem for patients with Parkinson's disease Basal Ganglia 4, 9–13 (2014).

    Google Scholar 

  75. Kalaitzakis, M. E., Graeber, M. B., Gentleman, S. M. & Pearce, R. K. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson's disease: a critical analysis of α-synuclein staging. Neuropathol. Appl. Neurobiol. 34, 284–295 (2008).

    CAS  PubMed  Google Scholar 

  76. Attems, J. & Jellinger, K. A. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson's disease. Neuropathol. Appl. Neurobiol. 34, 466–467 (2008).

    CAS  PubMed  Google Scholar 

  77. Zaccai, J., Brayne, C., McKeith, I., Matthews, F. & Ince, P. G. Patterns and stages of α-synucleinopathy: Relevance in a population-based cohort. Neurology 70, 1042–1048 (2008).

    CAS  PubMed  Google Scholar 

  78. Parkkinen, L., Pirttila, T. & Alafuzoff, I. Applicability of current staging/categorization of α-synuclein pathology and their clinical relevance. Acta Neuropathol. 115, 399–407 (2008).

    PubMed  PubMed Central  Google Scholar 

  79. Jellinger, K. A. Lewy body-related α-synucleinopathy in the aged human brain. J. Neural Transm. 111, 1219–1235 (2004).

    CAS  PubMed  Google Scholar 

  80. Jellinger, K. A. α-Synuclein pathology in Parkinson's and Alzheimer's disease brain: incidence and topographic distribution--a pilot study. Acta Neuropathol. 106, 191–201 (2003).

    PubMed  Google Scholar 

  81. Beach, T. G. et al. Multi-organ distribution of phosphorylated α-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol. 119, 689–702 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gelpi, E. et al. Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders. Mov. Disord. 29, 1010–1018 (2014).

    PubMed  Google Scholar 

  83. Annerino, D. M. et al. Parkinson's disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol. 124, 665–680 (2012).

    PubMed  PubMed Central  Google Scholar 

  84. Lebouvier, T. et al. Colonic biopsies to assess the neuropathology of Parkinson's disease and its relationship with symptoms. PLoS ONE 5, e12728 (2010).

    PubMed  PubMed Central  Google Scholar 

  85. De Giorgio, R. et al. Enteric glia and neuroprotection: basic and clinical aspects. Am. J. Physiol. Gastrointest Liver Physiol. 303, G887–G893 (2012).

    CAS  PubMed  Google Scholar 

  86. Devos, D. et al. Colonic inflammation in Parkinson's disease. Neurobiol. Dis. 50, 42–48 (2013).

    CAS  PubMed  Google Scholar 

  87. Clairembault, T. et al. Enteric GFAP expression and phosphorylation in Parkinson's disease. J. Neurochem. 130, 805–815 (2014).

    CAS  PubMed  Google Scholar 

  88. Bassotti, G. et al. The role of glial cells and apoptosis of enteric neurones in the neuropathology of intractable slow transit constipation. Gut 55, 41–46 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Forsyth, C. B. et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLoS ONE 6, e28032 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Clairembault, T., Leclair-Visonneau, L., Neunlist, M. & Derkinderen, P. Enteric glial cells: new players in Parkinson's disease? Mov. Disord. 30, 494–498 (2015).

    PubMed  Google Scholar 

  91. Singaram, C. et al. Dopaminergic defect of enteric nervous system in Parkinson's disease patients with chronic constipation. Lancet 346, 861–864 (1995).

    CAS  PubMed  Google Scholar 

  92. Parkkinen, L., Soininen, H., Laakso, M. & Alafuzoff, I. α-Synuclein pathology is highly dependent on the case selection. Neuropathol. Appl. Neurobiol. 27, 314–325 (2001).

    CAS  PubMed  Google Scholar 

  93. Saito, Y. et al. Lewy body-related α-synucleinopathy in aging. J. Neuropathol. Exp. Neurol. 63, 742–749 (2004).

    PubMed  Google Scholar 

  94. Lai, B. C., Marion, S. A., Teschke, K. & Tsui, J. K. Occupational and environmental risk factors for Parkinson's disease. Parkinsonism Relat. Disord. 8, 297–309 (2002).

    CAS  PubMed  Google Scholar 

  95. Priyadarshi, A., Khuder, S. A., Schaub, E. A. & Priyadarshi, S. S. Environmental risk factors and Parkinson's disease: a metaanalysis. Environ. Res. 86, 122–127 (2001).

    CAS  PubMed  Google Scholar 

  96. Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L. & Richardson, R. J. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living. Neurology 50, 1346–1350 (1998).

    CAS  PubMed  Google Scholar 

  97. Gatto, N. M., Cockburn, M., Bronstein, J., Manthripragada, A. D. & Ritz, B. Well-water consumption and Parkinson's disease in rural California. Environ. Health Perspect. 117, 1912–1918 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Seidler, A. et al. Possible environmental, occupational, and other etiologic factors for Parkinson's disease: a case–control study in Germany. Neurology 46, 1275–1284 (1996).

    CAS  PubMed  Google Scholar 

  99. Fleming, L., Mann, J. B., Bean, J., Briggle, T. & Sanchez-Ramos, J. R. Parkinson's disease and brain levels of organochlorine pesticides. Ann. Neurol. 36, 100–103 (1994).

    CAS  PubMed  Google Scholar 

  100. Semchuk, K. M., Love, E. J. & Lee, R. G. Parkinson's disease and exposure to agricultural work and pesticide chemicals. Neurology 42, 1328–1335 (1992).

    CAS  PubMed  Google Scholar 

  101. Manning-Bog, A. B. et al. The herbicide paraquat causes up-regulation and aggregation of α-synuclein in mice: paraquat and α-synuclein. J. Biol. Chem. 277, 1641–1644 (2002).

    CAS  PubMed  Google Scholar 

  102. Huang, C. C. et al. Progression after chronic manganese exposure. Neurology 43, 1479–1483 (1993).

    CAS  PubMed  Google Scholar 

  103. Tanner, C. M. et al. Rotenone, paraquat, and Parkinson's disease. Environ. Health Perspect. 119, 866–872 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Baron, J. A. Cigarette smoking and Parkinson's disease. Neurology 36, 1490–1496 (1986).

    CAS  PubMed  Google Scholar 

  105. Ascherio, A. et al. Prospective study of caffeine consumption and risk of Parkinson's disease in men and women. Ann. Neurol. 50, 56–63 (2001).

    CAS  PubMed  Google Scholar 

  106. Derkinderen, P., Shannon, K. M. & Brundin, P. Gut feelings about smoking and coffee in Parkinson's disease. Mov. Disord. 29, 976–979 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Scheperjans, F., Pekkonen, E., Kaakkola, S. & Auvinen, P. Linking smoking, coffee, urate, and Parkinson's disease—a role for gut microbiota? J. Parkinsons Dis. (2015).

  108. Scheperjans, F. et al. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov. Disord. 30, 350–358 (2015).

    PubMed  Google Scholar 

  109. Forsythe, P. & Kunze, W. A. Voices from within: gut microbes and the CNS. Cell. Mol. Life Sci. 70, 55–69 (2013).

    CAS  PubMed  Google Scholar 

  110. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    CAS  PubMed  Google Scholar 

  111. Marras, C. & Lang, A. Parkinson's disease subtypes: lost in translation? J. Neurol. Neurosurg. Psychiatry 84, 409–415 (2013).

    PubMed  Google Scholar 

  112. van Rooden, S. M. et al. Clinical subtypes of Parkinson's disease. Mov. Disord. 26, 51–58 (2011).

    PubMed  Google Scholar 

  113. Ulusoy, A. et al. Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO Mol. Med. 5, 1051–1059 (2013).

    CAS  PubMed Central  Google Scholar 

  114. Perez-Burgos, A. et al. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents. Am. J. Physiol. Gastrointest Liver Physiol. 304, G211–G220 (2013).

    CAS  PubMed  Google Scholar 

  115. Bravo, J. A. et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl Acad. Sci. USA 108, 16050–16055 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Svensson, E. et al. Vagotomy and subsequent risk of Parkinson's disease. Ann. Neurol. 78, 522–529 (2015).

    PubMed  Google Scholar 

  117. Tan, A. H. et al. Small intestinal bacterial overgrowth in Parkinson's disease. Parkinsonism Relat. Disord. 20, 535–540 (2014).

    PubMed  Google Scholar 

  118. Fasano, A. et al. The role of small intestinal bacterial overgrowth in Parkinson's disease. Mov. Disord. 28, 1241–1249 (2013).

    CAS  PubMed  Google Scholar 

  119. Tan, A. H. et al. Helicobacter pylori infection is associated with worse severity of Parkinson's disease. Parkinsonism Relat. Disord. 21, 221–225 (2015).

    PubMed  Google Scholar 

  120. Rees, K. et al. Helicobacter pylori eradication for Parkinson's disease. Cochrane Database of Systematic Reviews, Issue 11 Art. No.: CD008453. http://dx.doi.org/10.1002/14651858.CD008453.pub2.

  121. Lee, W. Y., Yoon, W. T., Shin, H. Y., Jeon, S. H. & Rhee, P. L. Helicobacter pylori infection and motor fluctuations in patients with Parkinson's disease. Mov. Disord. 23, 1696–1700 (2008).

    PubMed  Google Scholar 

  122. Narozanska, E. et al. Pharmacokinetics of levodopa in patients with Parkinson disease and motor fluctuations depending on the presence of Helicobacter pylori infection. Clin. Neuropharmacol. 37, 96–99 (2014).

    CAS  PubMed  Google Scholar 

  123. Logroscino, G. et al. Dietary lipids and antioxidants in Parkinson's disease: a population-based, case–control study. Ann. Neurol. 39, 89–94 (1996).

    CAS  PubMed  Google Scholar 

  124. Anderson, C. et al. Dietary factors in Parkinson's disease: the role of food groups and specific foods. Mov. Disord. 14, 21–27 (1999).

    CAS  PubMed  Google Scholar 

  125. Abbott, R. D. et al. Environmental, life-style, and physical precursors of clinical Parkinson's disease: recent findings from the Honolulu–Asia Aging Study. J. Neurol. 250 (Suppl. 3), III30–III39 (2003).

    PubMed  Google Scholar 

  126. Chen, H., Zhang, S. M., Hernan, M. A., Willett, W. C. & Ascherio, A. Dietary intakes of fat and risk of Parkinson's disease. Am. J. Epidemiol. 157, 1007–1014 (2003).

    PubMed  Google Scholar 

  127. de Lau, L. M. et al. Dietary fatty acids and the risk of Parkinson disease: the Rotterdam study. Neurology 64, 2040–2045 (2005).

    CAS  PubMed  Google Scholar 

  128. Powers, K. M. et al. Dietary fats, cholesterol and iron as risk factors for Parkinson's disease. Parkinsonism Relat. Disord. 15, 47–52 (2009).

    PubMed  Google Scholar 

  129. Miyake, Y. et al. Dietary fat intake and risk of Parkinson's disease: a case-control study in Japan. J. Neurol. Sci. 288, 117–122 (2010).

    CAS  PubMed  Google Scholar 

  130. Kamel, F. et al. Dietary fat intake, pesticide use, and Parkinson's disease. Parkinsonism Relat. Disord. 20, 82–87 (2014).

    PubMed  Google Scholar 

  131. Bove, J., Prou, D., Perier, C. & Przedborski, S. Toxin-induced models of Parkinson's disease. NeuroRx 2, 484–494 (2005).

    PubMed  PubMed Central  Google Scholar 

  132. McDowell, K. & Chesselet, M. F. Animal models of the non-motor features of Parkinson's disease. Neurobiol. Dis. 46, 597–606 (2012).

    PubMed  PubMed Central  Google Scholar 

  133. Hisahara, S. & Shimohama, S. Toxin-induced and genetic animal models of Parkinson's disease. Parkinsons Dis. 2011, 951709 (2010).

    PubMed  PubMed Central  Google Scholar 

  134. Betarbet, R. et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat. Neurosci. 3, 1301–1306 (2000).

    CAS  PubMed  Google Scholar 

  135. Hoglinger, G. U. et al. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J. Neurochem. 84, 491–502 (2003).

    CAS  PubMed  Google Scholar 

  136. Rojo, A. I., Cavada, C., de Sagarra, M. R. & Cuadrado, A. Chronic inhalation of rotenone or paraquat does not induce Parkinson's disease symptoms in mice or rats. Exp. Neurol. 208, 120–126 (2007).

    CAS  PubMed  Google Scholar 

  137. Pan-Montojo, F. et al. Progression of Parkinson's disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS ONE 5, e8762 (2010).

    PubMed  PubMed Central  Google Scholar 

  138. Inden, M. et al. Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone. J. Neurochem. 101, 1491–1504 (2007).

    CAS  PubMed  Google Scholar 

  139. Tasselli, M. et al. Effects of oral administration of rotenone on gastrointestinal functions in mice. Neurogastroenterol. Motil. 25, e183–e193 (2013).

    CAS  PubMed  Google Scholar 

  140. Sherer, T. B., Kim, J. H., Betarbet, R. & Greenamyre, J. T. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. Exp. Neurol. 179, 9–16 (2003).

    CAS  PubMed  Google Scholar 

  141. Silva, B. A., Einarsdottir, O., Fink, A. L. & Uversky, V. N. Biophysical characterization of α-synuclein and rotenone interaction. Biomolecules 3, 703–732 (2013).

    PubMed  PubMed Central  Google Scholar 

  142. Yuan, Y. H. et al. The molecular mechanism of rotenone-induced α-synuclein aggregation: emphasizing the role of the calcium/GSK3β pathway. Toxicol. Lett. 233, 163–171 (2015).

    CAS  PubMed  Google Scholar 

  143. Chorfa, A. et al. A variety of pesticides trigger in vitro α-synuclein accumulation, a key event in Parkinson's disease. Arch. Toxicol. http://dx.doi.org/10.1007/s00204-014-1388-2.

  144. Danzer, K. M. et al. Exosomal cell-to-cell transmission of alpha synuclein oligomers. Mol. Neurodegener. 7, 42 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Angot, E. et al. Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS ONE 7, e39465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Desplats, P. et al. Inclusion formation and neuronal cell death through neuron-to-neuron transmission of α-synuclein. Proc. Natl Acad. Sci. USA 106, 13010–13015 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Brundin, P., Li, J. Y., Holton, J. L., Lindvall, O. & Revesz, T. Research in motion: the enigma of Parkinson's disease pathology spread. Nat. Rev. Neurosci. 9, 741–745 (2008).

    CAS  PubMed  Google Scholar 

  148. Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).

    CAS  PubMed  Google Scholar 

  149. Kordower, J. H. & Brundin, P. Lewy body pathology in long-term fetal nigral transplants: is Parkinson's disease transmitted from one neural system to another? Neuropsychopharmacology 34, 254 (2009).

    PubMed  Google Scholar 

  150. Pan-Montojo, F. et al. Environmental toxins trigger PD-like progression via increased α-synuclein release from enteric neurons in mice. Sci. Rep. 2, 898 (2012).

    PubMed  PubMed Central  Google Scholar 

  151. Ling, E. A., Shieh, J. Y., Wen, C. Y., Yick, T. Y. & Wong, W. C. The dorsal motor nucleus of the vagus nerve of the hamster: ultrastructure of vagal neurons and their responses to vagotomy. J. Anat. 152, 161–172 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Holmqvist, S. et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 128, 805–820 (2014).

    PubMed  Google Scholar 

  153. Hardy, J. Expression of normal sequence pathogenic proteins for neurodegenerative disease contributes to disease risk: 'permissive templating' as a general mechanism underlying neurodegeneration. Biochem. Soc. Trans. 33, 578–581 (2005).

    CAS  PubMed  Google Scholar 

  154. Schapira, A. H. Disease modification in Parkinson's disease. Lancet Neurol. 3, 362–368 (2004).

    CAS  PubMed  Google Scholar 

  155. Mizuno, Y. et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem. Biophys. Res. Commun. 163, 1450–1455 (1989).

    CAS  PubMed  Google Scholar 

  156. Franco-Iborra, S., Vila, M. & Perier, C. The Parkinson disease mitochondrial hypothesis: where are we at? Neuroscientist http://dx.doi.org/10.1177/1073858415574600.

  157. Jenner, P. Oxidative stress in Parkinson's disease. Ann. Neurol. 53 (Suppl. 3), S26–S36 (2003).

    CAS  PubMed  Google Scholar 

  158. McGeer, P. L. & McGeer, E. G. Inflammation and neurodegeneration in Parkinson's disease. Parkinsonism Relat. Disord. 10 (Suppl. 1), S3–S7 (2004).

    PubMed  Google Scholar 

  159. Gao, H. M., Hong, J. S., Zhang, W. & Liu, B. Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease. J. Neurosci. 23, 1228–1236 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Alvarez-Erviti, L. et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol. Dis. 42, 360–367 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Hasegawa, T. et al. The AAA-ATPase VPS4 regulates extracellular secretion and lysosomal targeting of α-synuclein. PLoS ONE 6, e29460 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Luk, K. C. et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Lee, H. J. et al. Assembly-dependent endocytosis and clearance of extracellular α-synuclein. Int. J. Biochem. Cell Biol. 40, 1835–1849 (2008).

    CAS  PubMed  Google Scholar 

  164. Braidy, N. et al. Alpha-synuclein transmission and mitochondrial toxicity in primary human foetal enteric neurons in vitro. Neurotox. Res. 25, 170–182 (2014).

    CAS  PubMed  Google Scholar 

  165. Esteves, A. R., Arduino, D. M., Silva, D. F., Oliveira, C. R. & Cardoso, S. M. Mitochondrial dysfunction: the road to alpha-synuclein oligomerization in PD. Parkinsons Dis. 2011, 693761 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Choi, W. S., Palmiter, R. D. & Xia, Z. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson's disease model. J. Cell Biol. 192, 873–882 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Greenamyre, J. T., Betarbet, R. & Sherer, T. B. The rotenone model of Parkinson's disease: genes, environment and mitochondria. Parkinsonism Relat. Disord. 9 (Suppl. 2), S59–S64 (2003).

    PubMed  Google Scholar 

  168. Klegeris, A. et al. Alpha-synuclein and its disease-causing mutants induce ICAM-1 and IL-6 in human astrocytes and astrocytoma cells. FASEB J. 20, 2000–2008 (2006).

    CAS  PubMed  Google Scholar 

  169. McGeer, P. L. & McGeer, E. G. The α-synuclein burden hypothesis of Parkinson disease and its relationship to Alzheimer disease. Exp. Neurol. 212, 235–238 (2008).

    CAS  PubMed  Google Scholar 

  170. Hunot, S. et al. FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J. Neurosci. 19, 3440–3447 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Wagner, J. et al. Anle138b: a novel oligomer modulator for disease-modifying therapy of neurodegenerative diseases such as prion and Parkinson's disease. Acta Neuropathol. 125, 795–813 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Zhu, M., Han, S. & Fink, A. L. Oxidized quercetin inhibits α-synuclein fibrillization. Biochim. Biophys. Acta 1830, 2872–2881 (2013).

    CAS  PubMed  Google Scholar 

  173. Horvath, I. et al. Modulation of α-synuclein fibrillization by ring-fused 2-pyridones: templation and inhibition involve oligomers with different structure. Arch. Biochem. Biophys. 532, 84–90 (2013).

    CAS  PubMed  Google Scholar 

  174. Shaltiel-Karyo, R. et al. Differential inhibition of α-synuclein oligomeric and fibrillar assembly in parkinson's disease model by cinnamon extract. Biochim. Biophys. Acta 1820, 1628–1635 (2012).

    CAS  PubMed  Google Scholar 

  175. McLean, P. J. et al. TorsinA and heat shock proteins act as molecular chaperones: suppression of α-synuclein aggregation. J. Neurochem. 83, 846–854 (2002).

    CAS  PubMed  Google Scholar 

  176. Du, Y. et al. Histone deacetylase 6 regulates cytotoxic α-synuclein accumulation through induction of the heat shock response. Neurobiol. Aging 35, 2316–2328 (2014).

    CAS  PubMed  Google Scholar 

  177. Faria, C. et al. Inhibition of formation of α-synuclein inclusions by mannosylglycerate in a yeast model of Parkinson's disease. Biochim. Biophys. Acta 1830, 4065–4072 (2013).

    CAS  PubMed  Google Scholar 

  178. Spencer, B. et al. ESCRT-mediated uptake and degradation of brain-targeted α-synuclein single chain antibody attenuates neuronal degeneration in vivo. Mol. Ther. 22, 1753–1767 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Games, D. et al. Reducing C-terminal-truncated alpha-ynuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson's disease-like models. J. Neurosci. 34, 9441–9454 (2014).

    PubMed  PubMed Central  Google Scholar 

  180. Besong-Agbo, D. et al. Naturally occurring α-synuclein autoantibody levels are lower in patients with Parkinson disease. Neurology 80, 169–175 (2013).

    CAS  PubMed  Google Scholar 

  181. Lindstrom, V. et al. Immunotherapy targeting α-synuclein protofibrils reduced pathology in (Thy-1)-h[A30P] α-synuclein mice. Neurobiol. Dis. 69, 134–143 (2014).

    PubMed  Google Scholar 

  182. Tran, H. T. et al. α-Synuclein immunotherapy blocks uptake and templated propagation of misfolded α-synuclein and neurodegeneration. Cell Rep. 7, 2054–2065 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Menke, T. et al. Coenzyme Q10 reduces the toxicity of rotenone in neuronal cultures by preserving the mitochondrial membrane potential. Biofactors 18, 65–72 (2003).

    CAS  PubMed  Google Scholar 

  184. Storch, A. et al. Randomized, double-blind, placebo-controlled trial on symptomatic effects of coenzyme Q10 in Parkinson disease. Arch. Neurol. 64, 938–944 (2007).

    PubMed  Google Scholar 

  185. Sandoval-Acuna, C., Ferreira, J. & Speisky, H. Polyphenols and mitochondria: an update on their increasingly emerging ROS-scavenging independent actions. Arch. Biochem. Biophys. 559, 75–90 (2014).

    CAS  PubMed  Google Scholar 

  186. Sakakibara, R. et al. Questionnaire-based assessment of pelvic organ dysfunction in Parkinson's disease. Auton. Neurosci. 92, 76–85 (2001).

    CAS  PubMed  Google Scholar 

  187. Edwards, L., Quigley, E. M., Hofman, R. & Pfeiffer, R. F. Gastrointestinal symptoms in Parkinson disease: 18-month follow-up study. Mov. Disord. 8, 83–86 (1993).

    CAS  PubMed  Google Scholar 

  188. Jost, W. H., Jung, G. & Schimrigk, K. Colonic transit time in nonidiopathic Parkinson's syndrome. Eur. Neurol. 34, 329–331 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very thankful for the provision of Figure 1c by M. Meinhardt and G. Baretton at Neuropathology, Institute of Pathologie, Technical University Dresden, Germany and of Figure 2b and 2c by W. J. Schulz-Schaeffer at the Prion and Dementia Research Unit, Neuropathology, University Medical Center Göttingen, Germany.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Heinz Reichmann.

Ethics declarations

Competing interests

H.R. has served on the advisory boards of, given lectures for and received research grants from Abbott, Abbvie, Bayer Health Care, Boehringer Ingelheim, Brittania Pharmaceuticals, Cephalon, Desitin, GlaxoSmithKline, Lundbeck, Medtronic, MerckSerono, Novartis, Orion Pharma, Pfizer, Teva Pharmaceutical Industries, UCB, Valeant Pharmaceutical International, and Zambon. L.K declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klingelhoefer, L., Reichmann, H. Pathogenesis of Parkinson disease—the gut–brain axis and environmental factors. Nat Rev Neurol 11, 625–636 (2015). https://doi.org/10.1038/nrneurol.2015.197

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing