Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of FUS gene variants in neurodegenerative diseases

Key Points

  • Variants in the FUS gene are causative or risk factors for several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), and essential tremor

  • Abnormal aggregation of the FUS protein has been reported in ALS, FTLD and polyglutamine diseases, suggesting an important role for this protein pathology in neurodegenerative diseases

  • Under physiological conditions, FUS is mainly found in the nuclear compartment, where it is involved in the regulation of various cellular processes

  • In neurodegenerative diseases, FUS is primarily found in cytoplasmic inclusions that have variable morphology and distribution across distinct disease entities

  • Functional and animal studies have led to improved understanding of the pathogenetic mechanisms of FUS-related disorders; the results identify this protein as a promising therapeutic target

Abstract

The neurodegenerative diseases are a diverse group of disorders characterized by progressive loss of specific groups of neurons. These diseases affect different populations, and have a variable age of onset, clinical symptoms, and pathological findings. Variants in the FUS gene, which encodes an RNA-binding protein, have been identified as causative or risk factors for amyotrophic lateral sclerosis (ALS), essential tremor and rare forms of frontotemporal lobar degeneration (FTLD). Additionally, abnormal aggregation of FUS protein has been reported in multiple neurodegenerative diseases, including ALS, FTLD and the polyglutamine diseases, suggesting a role for FUS in the pathogenesis of these neurodegenerative diseases. This Review summarizes current understanding of the normal function of FUS, and describes its role in the pathology of ALS, FTLD, essential tremor and other neurodegenerative diseases. Comments on the underlying pathogenetic mechanisms of these FUS-related disorders are included. Finally, the clinical implications of recent advances in FUS research are discussed. Further understanding of the role of FUS in neurodegenerative diseases might lead to improvements in the treatment and prevention of these disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the FUS transcript, and functional domains of the FUS protein with gene mutations identified in patients with neurodegenerative diseases.
Figure 2: Subcellular distribution, seeding aggregation and prion-like transmission of FUS.

Similar content being viewed by others

References

  1. Soto, C. Unfolding the role of protein misfolding in neurodegenerative diseases. Nat. Rev. Neurosci. 4, 49–60 (2003).

    CAS  PubMed  Google Scholar 

  2. Sleegers, K., Cruts, M. & Van Broeckhoven, C. Molecular pathways of frontotemporal lobar degeneration. Annu. Rev. Neurosci. 33, 71–88 (2010).

    CAS  PubMed  Google Scholar 

  3. Neumann, M. et al. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain 132, 2922–2931 (2009).

    PubMed  PubMed Central  Google Scholar 

  4. Deng, H. X. et al. FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann. Neurol. 67, 739–748 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Neumann, M. et al. Abundant FUS-immunoreactive pathology in neuronal intermediate filament inclusion disease. Acta Neuropathol. 118, 605–616 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Doi, H., Koyano, S., Suzuki, Y., Nukina, N. & Kuroiwa, Y. The RNA-binding protein FUS/TLS is a common aggregate-interacting protein in polyglutamine diseases. Neurosci. Res. 66, 131–133 (2010).

    CAS  PubMed  Google Scholar 

  7. Woulfe, J., Gray, D. A. & Mackenzie, I. R. FUS-immunoreactive intranuclear inclusions in neurodegenerative disease. Brain Pathol. 20, 589–597 (2010).

    CAS  PubMed  Google Scholar 

  8. Crozat, A., Aman, P., Mandahl, N. & Ron, D. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature 363, 640–644 (1993).

    CAS  PubMed  Google Scholar 

  9. Rabbitts, T. H., Forster, A., Larson, R. & Nathan, P. Fusion of the dominant negative transcription regulator CHOP with a novel gene FUS by translocation t(12;16) in malignant liposarcoma. Nat. Genet. 4, 175–180 (1993).

    CAS  PubMed  Google Scholar 

  10. Tan, A. Y. & Manley, J. L. The TET family of proteins: functions and roles in disease. J. Mol. Cell Biol. 1, 82–92 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Lagier-Tourenne, C., Polymenidou, M. & Cleveland, D. W. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum. Mol. Genet. 19, R46–R64 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kwiatkowski, T. J. Jr et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208 (2009).

    CAS  PubMed  Google Scholar 

  13. Vance, C. et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Broustal, O. et al. FUS mutations in frontotemporal lobar degeneration with amyotrophic lateral sclerosis. J. Alzheimers Dis. 22, 765–769 (2010).

    CAS  PubMed  Google Scholar 

  15. Van Langenhove, T. et al. Genetic contribution of FUS to frontotemporal lobar degeneration. Neurology 74, 366–371 (2010).

    CAS  PubMed  Google Scholar 

  16. Merner, N. D. et al. Exome sequencing identifies FUS mutations as a cause of essential tremor. Am. J. Hum. Genet. 91, 313–319 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zinszner, H., Sok, J., Immanuel, D., Yin, Y. & Ron, D. TLS (FUS) binds RNA in vivo and engages in nucleo-cytoplasmic shuttling. J. Cell Sci. 110, 1741–1750 (1997).

    CAS  PubMed  Google Scholar 

  18. Iko, Y. et al. Domain architectures and characterization of an RNA-binding protein, TLS. J. Biol. Chem. 279, 44834–44840 (2004).

    CAS  PubMed  Google Scholar 

  19. Dormann, D. et al. ALS-associated fused in sarcoma (FUS) mutations disrupt Transportin-mediated nuclear import. EMBO J. 29, 2841–2857 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dormann, D. et al. Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO J. 31, 4258–4275 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Baechtold, H. et al. Human 75-kDa DNA-pairing protein is identical to the pro-oncoprotein TLS/FUS and is able to promote D-loop formation. J. Biol. Chem. 274, 34337–34342 (1999).

    CAS  PubMed  Google Scholar 

  22. Hicks, G. G. et al. Fus deficiency in mice results in defective B-lymphocyte development and activation, high levels of chromosomal instability and perinatal death. Nat. Genet. 24, 175–179 (2000).

    CAS  PubMed  Google Scholar 

  23. Kuroda, M. et al. Male sterility and enhanced radiation sensitivity in TLS−/− mice. EMBO J. 19, 453–462 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Mastrocola, A. S., Kim, S. H., Trinh, A. T., Rodenkirch, L. A. & Tibbetts, R. S. The RNA binding protein fused in sarcoma (FUS) functions downstream of PARP in response to DNA damage. J. Biol. Chem. 288, 24731–24741 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, W. Y. et al. Interaction of FUS and HDAC1 regulates DNA damage response and repair in neurons. Nat. Neurosci. 16, 1383–1391 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rulten, S. L. et al. PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage. Nucleic Acids Res. 42, 307–314 (2014).

    CAS  PubMed  Google Scholar 

  27. Bertolotti, A., Lutz, Y., Heard, D. J., Chambon, P. & Tora, L. hTAF(II)68, a novel RNA/ssDNA-binding protein with homology to the pro-oncoproteins TLS/FUS and EWS is associated with both TFIID and RNA polymerase II. EMBO J. 15, 5022–5031 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hallier, M., Lerga, A., Barnache, S., Tavitian, A. & Moreau-Gachelin, F. The transcription factor Spi-1/PU.1 interacts with the potential splicing factor TLS. J. Biol. Chem. 273, 4838–4842 (1998).

    CAS  PubMed  Google Scholar 

  29. Uranishi, H. et al. Involvement of the pro-oncoprotein TLS (translocated in liposarcoma) in nuclear factor-κB p65-mediated transcription as a coactivator. J. Biol. Chem. 276, 13395–13401 (2001).

    CAS  PubMed  Google Scholar 

  30. Wang, X. et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454, 126–130 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tan, A. Y. & Manley, J. L. TLS inhibits RNA polymerase III transcription. Mol. Cell. Biol. 30, 186–196 (2010).

    CAS  PubMed  Google Scholar 

  32. Schwartz, J. C. et al. FUS binds the CTD of RNA polymerase II and regulates its phosphorylation at Ser2. Genes Dev. 26, 2690–2695 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155, 1049–1060 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tan, A. Y., Riley, T. R., Coady, T., Bussemaker, H. J. & Manley, J. L. TLS/FUS (translocated in liposarcoma/fused in sarcoma) regulates target gene transcription via single-stranded DNA response elements. Proc. Natl Acad. Sci. USA 109, 6030–6035 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ishigaki, S. et al. Position-dependent FUS–RNA interactions regulate alternative splicing events and transcriptions. Sci. Rep. 2, 529 (2012).

    PubMed  PubMed Central  Google Scholar 

  36. Fujioka, Y. et al. FUS-regulated region- and cell-type-specific transcriptome is associated with cell selectivity in ALS/FTLD. Sci. Rep. 3, 2388 (2013).

    PubMed  PubMed Central  Google Scholar 

  37. Zinszner, H., Albalat, R. & Ron, D. A novel effector domain from the RNA-binding protein TLS or EWS is required for oncogenic transformation by CHOP. Genes Dev. 8, 2513–2526 (1994).

    CAS  PubMed  Google Scholar 

  38. Zhang, W. J. & Wu, J. Y. Sip1, a novel RS domain-containing protein essential for pre-mRNA splicing. Mol. Cell. Biol. 18, 676–684 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chansky, H. A., Hu, M., Hickstein, D. D. & Yang, L. Oncogenic TLS/ERG and EWS/Fli-1 fusion proteins inhibit RNA splicing mediated by YB-1 protein. Cancer Res. 61, 3586–3590 (2001).

    CAS  PubMed  Google Scholar 

  40. Hartmuth, K. et al. Protein composition of human prespliceosomes isolated by a tobramycin affinity-selection method. Proc. Natl Acad. Sci. USA 99, 16719–16724 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rappsilber, J., Ryder, U., Lamond, A. I. & Mann, M. Large-scale proteomic analysis of the human spliceosome. Genome Res. 12, 1231–1245 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Camats, M., Guil, S., Kokolo, M. & Bach-Elias, M. P68 RNA helicase (DDX5) alters activity of cis- and trans-acting factors of the alternative splicing of H-Ras. PLoS ONE 3, e2926 (2008).

    PubMed  PubMed Central  Google Scholar 

  43. Orozco, D. & Edbauer, D. FUS-mediated alternative splicing in the nervous system: consequences for ALS and FTLD. J. Mol. Med. (Berl.) 91, 1343–1354 (2013).

    Google Scholar 

  44. Orozco, D. et al. Loss of fused in sarcoma (FUS) promotes pathological Tau splicing. EMBO Rep. 13, 759–764 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou, Y., Liu, S., Liu, G., Ozturk, A. & Hicks, G. G. ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation. PLoS Genet. 9, e1003895 (2013).

    PubMed  PubMed Central  Google Scholar 

  46. Fujii, R. et al. The RNA binding protein TLS is translocated to dendritic spines by mGluR5 activation and regulates spine morphology. Curr. Biol. 15, 587–593 (2005).

    CAS  PubMed  Google Scholar 

  47. Fujii, R. & Takumi, T. TLS facilitates transport of mRNA encoding an actin-stabilizing protein to dendritic spines. J. Cell Sci. 118, 5755–5765 (2005).

    CAS  PubMed  Google Scholar 

  48. Gregory, R. I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    CAS  PubMed  Google Scholar 

  49. Morlando, M. et al. FUS stimulates microRNA biogenesis by facilitating co-transcriptional Drosha recruitment. EMBO J. 31, 4502–4510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Mackenzie, I. R., Rademakers, R. & Neumann, M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 9, 995–1007 (2010).

    CAS  PubMed  Google Scholar 

  51. Mitchell, J. D. & Borasio, G. D. Amyotrophic lateral sclerosis. Lancet 369, 2031–2041 (2007).

    CAS  PubMed  Google Scholar 

  52. Chiò, A. et al. A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. Hum. Mol. Genet. 18, 1524–1532 (2009).

    PubMed  PubMed Central  Google Scholar 

  53. Rosen, D. R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    CAS  PubMed  Google Scholar 

  54. van Blitterswijk, M., DeJesus-Hernandez, M. & Rademakers, R. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: can we learn from other noncoding repeat expansion disorders? Curr. Opin. Neurol. 25, 689–700 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bruijn, L. I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1854 (1998).

    CAS  PubMed  Google Scholar 

  56. Belzil, V. V. et al. Mutations in FUS cause FALS and SALS in French and French Canadian populations. Neurology 73, 1176–1179 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Bäumer, D. et al. Juvenile ALS with basophilic inclusions is a FUS proteinopathy with FUS mutations. Neurology 75, 611–618 (2010).

    PubMed  PubMed Central  Google Scholar 

  58. Rademakers, R. et al. FUS gene mutations in familial and sporadic amyotrophic lateral sclerosis. Muscle Nerve 42, 170–176 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mackenzie, I. R. et al. Pathological heterogeneity in amyotrophic lateral sclerosis with FUS mutations: two distinct patterns correlating with disease severity and mutation. Acta Neuropathol. 122, 87–98 (2011).

    PubMed  PubMed Central  Google Scholar 

  60. Mochizuki, Y. et al. Familial ALS with FUS P525L mutation: two Japanese sisters with multiple systems involvement. J. Neurol. Sci. 323, 85–92 (2012).

    CAS  PubMed  Google Scholar 

  61. Suzuki, N. et al. FUS/TLS-immunoreactive neuronal and glial cell inclusions increase with disease duration in familial amyotrophic lateral sclerosis with an R521C FUS/TLS mutation. J. Neuropathol. Exp. Neurol. 71, 779–788 (2012).

    CAS  PubMed  Google Scholar 

  62. Blair, I. P. et al. FUS mutations in amyotrophic lateral sclerosis: clinical, pathological, neurophysiological and genetic analysis. J. Neurol. Neurosurg. Psychiatry 81, 639–645 (2010).

    PubMed  Google Scholar 

  63. Hewitt, C. et al. Novel FUS/TLS mutations and pathology in familial and sporadic amyotrophic lateral sclerosis. Arch. Neurol. 67, 455–461 (2010).

    PubMed  Google Scholar 

  64. Suzuki, N. et al. FALS with FUS mutation in Japan, with early onset, rapid progress and basophilic inclusion. J. Hum. Genet. 55, 252–254 (2010).

    CAS  PubMed  Google Scholar 

  65. Tateishi, T. et al. Multiple system degeneration with basophilic inclusions in Japanese ALS patients with FUS mutation. Acta Neuropathol. 119, 355–364 (2010).

    PubMed  Google Scholar 

  66. Huang, E. J. et al. Extensive FUS-immunoreactive pathology in juvenile amyotrophic lateral sclerosis with basophilic inclusions. Brain Pathol. 20, 1069–1076 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kobayashi, Z. et al. Occurrence of basophilic inclusions and FUS-immunoreactive neuronal and glial inclusions in a case of familial amyotrophic lateral sclerosis. J. Neurol. Sci. 293, 6–11 (2010).

    PubMed  Google Scholar 

  68. Matsuoka, T. et al. An autopsied case of sporadic adult-onset amyotrophic lateral sclerosis with FUS-positive basophilic inclusions. Neuropathology 31, 71–76 (2011).

    PubMed  Google Scholar 

  69. Groen, E. J. et al. FUS mutations in familial amyotrophic lateral sclerosis in the Netherlands. Arch. Neurol. 67, 224–230 (2010).

    PubMed  Google Scholar 

  70. Troakes, C. et al. Transportin 1 colocalization with Fused in Sarcoma (FUS) inclusions is not characteristic for amyotrophic lateral sclerosis-FUS confirming disrupted nuclear import of mutant FUS and distinguishing it from frontotemporal lobar degeneration with FUS inclusions. Neuropathol. Appl. Neurobiol. 39, 553–561 (2013).

    CAS  PubMed  Google Scholar 

  71. Oketa, Y., Higashida, K., Fukasawa, H., Tsukie, T. & Ono, S. Abundant FUS-immunoreactive pathology in the skin of sporadic amyotrophic lateral sclerosis. Acta Neurol. Scand. 128, 257–264 (2013).

    CAS  PubMed  Google Scholar 

  72. Sieben, A. et al. The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol. 124, 353–372 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. McKhann, G. M. et al. Clinical and pathological diagnosis of frontotemporal dementia: report of the Work Group on Frontotemporal Dementia and Pick's Disease. Arch. Neurol. 58, 1803–1809 (2001).

    CAS  PubMed  Google Scholar 

  74. Forman, M. S. et al. Frontotemporal dementia: clinicopathological correlations. Ann. Neurol. 59, 952–962 (2006).

    PubMed  PubMed Central  Google Scholar 

  75. Arai, T. et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 351, 602–611 (2006).

    CAS  PubMed  Google Scholar 

  76. Neumann, M. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133 (2006).

    CAS  PubMed  Google Scholar 

  77. Mackenzie, I. R. et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Ann. Neurol. 61, 427–434 (2007).

    CAS  PubMed  Google Scholar 

  78. Dormann, D. & Haass, C. Fused in sarcoma (FUS): an oncogene goes awry in neurodegeneration. Mol. Cell. Neurosci. 56, 475–486 (2013).

    CAS  PubMed  Google Scholar 

  79. Mackenzie, I. R., Foti, D., Woulfe, J. & Hurwitz, T. A. Atypical frontotemporal lobar degeneration with ubiquitin-positive, TDP-43-negative neuronal inclusions. Brain 131, 1282–1293 (2008).

    PubMed  Google Scholar 

  80. Mackenzie, I. R. et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 119, 1–4 (2010).

    PubMed  Google Scholar 

  81. Rademakers, R., Neumann, M. & Mackenzie, I. R. Advances in understanding the molecular basis of frontotemporal dementia. Nat. Rev. Neurol. 8, 423–434 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Kobayashi, Z. et al. Pathological features of FTLD-FUS in a Japanese population: analyses of nine cases. J. Neurol. Sci. 335, 89–95 (2013).

    CAS  PubMed  Google Scholar 

  83. Cairns, N. J. et al. Clinical and neuropathologic variation in neuronal intermediate filament inclusion disease. Neurology 63, 1376–1384 (2004).

    CAS  PubMed  Google Scholar 

  84. Yokota, O. et al. Basophilic inclusion body disease and neuronal intermediate filament inclusion disease: a comparative clinicopathological study. Acta Neuropathol. 115, 561–575 (2008).

    PubMed  Google Scholar 

  85. Munoz, D. G. et al. FUS pathology in basophilic inclusion body disease. Acta Neuropathol. 118, 617–627 (2009).

    CAS  PubMed  Google Scholar 

  86. Lee, E. B. et al. Topography of FUS pathology distinguishes late-onset BIBD from aFTLD-U. Acta Neuropathol. Commun. 1, 1–11 (2013).

    CAS  PubMed  Google Scholar 

  87. Mackenzie, I. R. et al. Distinct pathological subtypes of FTLD-FUS. Acta Neuropathol. 121, 207–218 (2011).

    PubMed  Google Scholar 

  88. Chen-Plotkin, A. S., Lee, V. M. & Trojanowski, J. Q. TAR DNA-binding protein 43 in neurodegenerative disease. Nat. Rev. Neurol. 6, 211–220 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Doi, H. et al. RNA-binding protein TLS is a major nuclear aggregate-interacting protein in huntingtin exon 1 with expanded polyglutamine-expressing cells. J. Biol. Chem. 283, 6489–6500 (2008).

    CAS  PubMed  Google Scholar 

  90. Chiò, A. et al. Two Italian kindreds with familial amyotrophic lateral sclerosis due to FUS mutation. Neurobiol. Aging 30, 1272–1275 (2009).

    PubMed  PubMed Central  Google Scholar 

  91. Ticozzi, N. et al. Analysis of FUS gene mutation in familial amyotrophic lateral sclerosis within an Italian cohort. Neurology 73, 1180–1185 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bosco, D. A. et al. Mutant FUS proteins that cause amyotrophic lateral sclerosis incorporate into stress granules. Hum. Mol. Genet. 19, 4160–4175 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Corrado, L. et al. Mutations of FUS gene in sporadic amyotrophic lateral sclerosis. J. Med. Genet. 47, 190–194 (2010).

    CAS  PubMed  Google Scholar 

  94. Damme, P. V. et al. The occurrence of mutations in FUS in a Belgian cohort of patients with familial ALS. Eur. J. Neurol. 17, 754–756 (2010).

    PubMed  Google Scholar 

  95. DeJesus-Hernandez, M. et al. De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis. Hum. Mutat. 31, E1377–E1389 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Millecamps, S. et al. SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype-phenotype correlations. J. Med. Genet. 47, 554–560 (2010).

    CAS  PubMed  Google Scholar 

  97. Waibel, S., Neumann, M., Rabe, M., Meyer, T. & Ludolph, A. C. Novel missense and truncating mutations in FUS/TLS in familial ALS. Neurology 75, 815–817 (2010).

    CAS  PubMed  Google Scholar 

  98. Yamamoto-Watanabe, Y. et al. A Japanese ALS6 family with mutation R521C in the FUS/TLS gene: a clinical, pathological and genetic report. J. Neurol. Sci. 296, 59–63 (2010).

    CAS  PubMed  Google Scholar 

  99. Yan, J. et al. Frameshift and novel mutations in FUS in familial amyotrophic lateral sclerosis and ALS/dementia. Neurology 75, 807–814 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Belzil, V. V. et al. Identification of novel FUS mutations in sporadic cases of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 12, 113–117 (2011).

    CAS  PubMed  Google Scholar 

  101. Chiò, A. et al. A de novo missense mutation of the FUS gene in a “true” sporadic ALS case. Neurobiol. Aging 32, 553.e23–553.e26 (2011).

    Google Scholar 

  102. Drepper, C., Herrmann, T., Wessig, C., Beck, M. & Sendtner, M. C-terminal FUS/TLS mutations in familial and sporadic ALS in Germany. Neurobiol. Aging 32, 548.e1–548.e4 (2011).

    Google Scholar 

  103. Fecto, F. & Siddique, T. Making connections: pathology and genetics link amyotrophic lateral sclerosis with frontotemporal lobe dementia. J. Mol. Neurosci. 45, 663–675 (2011).

    PubMed  Google Scholar 

  104. Lai, S. L. et al. FUS mutations in sporadic amyotrophic lateral sclerosis. Neurobiol. Aging 32, 550.e1–550.e4 (2011).

    Google Scholar 

  105. Robertson, J. et al. A novel double mutation in FUS gene causing sporadic ALS. Neurobiol. Aging 32, 553.e27–553.e30 (2011).

    CAS  Google Scholar 

  106. Syriani, E., Morales, M. & Gamez, J. FUS/TLS gene mutations are the second most frequent cause of familial ALS in the Spanish population. Amyotroph. Lateral Scler. 12, 118–123 (2011).

    CAS  PubMed  Google Scholar 

  107. Tsai, C. P. et al. FUS, TARDBP, and SOD1 mutations in a Taiwanese cohort with familial ALS. Neurobiol. Aging 32, 553.e13–553.e21 (2011).

    Google Scholar 

  108. Belzil, V. V. et al. Novel FUS deletion in a patient with juvenile amyotrophic lateral sclerosis. Arch. Neurol. 69, 653–656 (2012).

    PubMed  Google Scholar 

  109. Brown, J. A. et al. SOD1, ANG, TARDBP and FUS mutations in amyotrophic lateral sclerosis: a United States clinical testing lab experience. Amyotroph. Lateral Scler. 13, 217–222 (2012).

    CAS  PubMed  Google Scholar 

  110. Chiò, A. et al. Extensive genetics of ALS: a population-based study in Italy. Neurology 79, 1983–1989 (2012).

    PubMed  PubMed Central  Google Scholar 

  111. Hara, M. et al. Lower motor neuron disease caused by a novel FUS/TLS gene frameshift mutation. J. Neurol. 259, 2237–2239 (2012).

    PubMed  Google Scholar 

  112. Kwon, M. J. et al. Screening of the SOD1, FUS, TARDBP, ANG, and OPTN mutations in Korean patients with familial and sporadic ALS. Neurobiol. Aging 33, 1017.e17–1017.e23 (2012).

    CAS  Google Scholar 

  113. Lattante, S. et al. Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease. Neurology 79, 66–72 (2012).

    CAS  PubMed  Google Scholar 

  114. Nagayama, S. et al. Novel FUS mutation in patients with sporadic amyotrophic lateral sclerosis and corticobasal degeneration. J. Clin. Neurosci. 19, 1738–1739 (2012).

    CAS  PubMed  Google Scholar 

  115. Sproviero, W. et al. FUS mutations in sporadic amyotrophic lateral sclerosis: clinical and genetic analysis. Neurobiol. Aging 33, 837.e1–837.e5 (2012).

    CAS  Google Scholar 

  116. van Blitterswijk, M. et al. Evidence for an oligogenic basis of amyotrophic lateral sclerosis. Hum. Mol. Genet. 21, 3776–3784 (2012).

    CAS  PubMed  Google Scholar 

  117. Yamashita, S. et al. Sporadic juvenile amyotrophic lateral sclerosis caused by mutant FUS/TLS: possible association of mental retardation with this mutation. J. Neurol. 259, 1039–1044 (2012).

    PubMed  Google Scholar 

  118. Zou, Z. Y. et al. Screening of the FUS gene in familial and sporadic amyotrophic lateral sclerosis patients of Chinese origin. Eur. J. Neurol. 19, 977–983 (2012).

    PubMed  Google Scholar 

  119. Zou, Z. Y. et al. De novo FUS gene mutations are associated with juvenile-onset sporadic amyotrophic lateral sclerosis in China. Neurobiol. Aging 34, 1312.e1–1312.e8 (2013).

    CAS  Google Scholar 

  120. Sabatelli, M. et al. Mutations in the 3′ untranslated region of FUS causing FUS overexpression are associated with amyotrophic lateral sclerosis. Hum. Mol. Genet. 22, 4748–4755 (2013).

    CAS  PubMed  Google Scholar 

  121. Dormann, D. & Haass, C. TDP-43 and FUS: a nuclear affair. Trends Neurosci. 34, 339–348 (2011).

    CAS  PubMed  Google Scholar 

  122. Gal, J. et al. Nuclear localization sequence of FUS and induction of stress granules by ALS mutants. Neurobiol. Aging 32, 2323.e27–2323.e40 (2011).

    CAS  Google Scholar 

  123. Ito, D., Seki, M., Tsunoda, Y., Uchiyama, H. & Suzuki, N. Nuclear transport impairment of amyotrophic lateral sclerosis-linked mutations in FUS/TLS. Ann. Neurol. 69, 152–162 (2011).

    CAS  PubMed  Google Scholar 

  124. Kino, Y. et al. Intracellular localization and splicing regulation of FUS/TLS are variably affected by amyotrophic lateral sclerosis-linked mutations. Nucleic Acids Res. 39, 2781–2798 (2011).

    CAS  PubMed  Google Scholar 

  125. Niu, C. et al. FUS-NLS/Transportin 1 complex structure provides insights into the nuclear targeting mechanism of FUS and the implications in ALS. PLoS ONE 7, e47056 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhang, Z. C. & Chook, Y. M. Structural and energetic basis of ALS-causing mutations in the atypical proline-tyrosine nuclear localization signal of the fused in sarcoma protein (FUS). Proc. Natl Acad. Sci. USA 109, 12017–12021 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Nomura, T. et al. Intranuclear aggregation of mutant FUS/TLS as a molecular pathomechanism of amyotrophic lateral sclerosis. J. Biol. Chem. 289, 1192–1202 (2014).

    CAS  PubMed  Google Scholar 

  128. Huey, E. D. et al. FUS and TDP43 genetic variability in FTD and CBS. Neurobiol. Aging 33, 1016.e9–1016.e17 (2012).

    CAS  Google Scholar 

  129. Deng, H., Le, W. & Jankovic, J. Genetics of essential tremor. Brain 130, 1456–1464 (2007).

    PubMed  Google Scholar 

  130. Bermejo-Pareja, F. Essential tremor—a neurodegenerative disorder associated with cognitive defects? Nat. Rev. Neurol. 7, 273–282 (2011).

    PubMed  Google Scholar 

  131. Rajput, A. et al. Identification of FUS p.R377W in essential tremor. Eur. J. Neurol. 21, 361–363 (2014).

    CAS  PubMed  Google Scholar 

  132. Wu, Y. R. et al. Identification of a novel risk variant in the FUS gene in essential tremor. Neurology 81, 541–544 (2013).

    PubMed  Google Scholar 

  133. Zheng, W. et al. Genetic analysis of the fused in sarcoma gene in Chinese Han patients with essential tremor. Neurobiol. Aging 34, 2078.e3–2078.e4 (2013).

    CAS  Google Scholar 

  134. Hedera, P., Davis, T. L., Phibbs, F. T., Charles, P. D. & Ledoux, M. S. FUS in familial essential tremor—the search for common causes is still on. Parkinsonism Relat. Disord. 19, 818–820 (2013).

    PubMed  Google Scholar 

  135. Labbe, C. et al. Investigating the role of FUS exonic variants in essential tremor. Parkinsonism Relat. Disord. 19, 755–757 (2013).

    PubMed  PubMed Central  Google Scholar 

  136. Ortega-Cubero, S. et al. Fused in Sarcoma (FUS) gene mutations are not a frequent cause of essential tremor in Europeans. Neurobiol. Aging 34, 2441.e9–2441.e11 (2013).

    CAS  Google Scholar 

  137. Parmalee, N. et al. Genetic analysis of the FUS/TLS gene in essential tremor. Eur. J. Neurol. 20, 534–539 (2013).

    CAS  PubMed  Google Scholar 

  138. Gao, K. et al. Genetic analysis of the fused in sarcoma gene in Chinese Han patients with Parkinson's disease. Parkinsonism Relat. Disord. 20, 119–121 (2014).

    PubMed  Google Scholar 

  139. Fekete, R. & Jankovic, J. Revisiting the relationship between essential tremor and Parkinson's disease. Mov. Disord. 26, 391–398 (2011).

    CAS  PubMed  Google Scholar 

  140. Stamper, C. et al. Neuronal gene expression correlates of Parkinson's disease with dementia. Mov. Disord. 23, 1588–1595 (2008).

    PubMed  PubMed Central  Google Scholar 

  141. Lee, E. B., Lee, V. M. & Trojanowski, J. Q. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat. Rev. Neurosci. 13, 38–50 (2012).

    CAS  Google Scholar 

  142. Ling, S. C. et al. ALS-associated mutations in TDP-43 increase its stability and promote TDP-43 complexes with FUS/TLS. Proc. Natl Acad. Sci. USA 107, 13318–13323 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Kabashi, E. et al. FUS and TARDBP but not SOD1 interact in genetic models of amyotrophic lateral sclerosis. PLoS Genet. 7, e1002214 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Kryndushkin, D., Wickner, R. B. & Shewmaker, F. FUS/TLS forms cytoplasmic aggregates, inhibits cell growth and interacts with TDP-43 in a yeast model of amyotrophic lateral sclerosis. Protein Cell 2, 223–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Lanson, N. A., Jr et al. A Drosophila model of FUS-related neurodegeneration reveals genetic interaction between FUS and TDP-43. Hum. Mol. Genet. 20, 2510–2523 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Wang, J. W., Brent, J. R., Tomlinson, A., Shneider, N. A. & McCabe, B. D. The ALS-associated proteins FUS and TDP-43 function together to affect Drosophila locomotion and life span. J. Clin. Invest. 121, 4118–4126 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Neumann, M. et al. FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain 134, 2595–2609 (2011).

    PubMed  PubMed Central  Google Scholar 

  148. Mackenzie, I. R. & Neumann, M. FET proteins in frontotemporal dementia and amyotrophic lateral sclerosis. Brain Res. 1462, 40–43 (2012).

    CAS  PubMed  Google Scholar 

  149. Thomsen, C., Grundevik, P., Elias, P., Stahlberg, A. & Aman, P. A conserved N-terminal motif is required for complex formation between FUS, EWSR1, TAF15 and their oncogenic fusion proteins. FASEB J. 27, 4965–4974 (2013).

    CAS  PubMed  Google Scholar 

  150. Couthouis, J. et al. A yeast functional screen predicts new candidate ALS disease genes. Proc. Natl Acad. Sci. USA 108, 20881–20890 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Couthouis, J. et al. Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum. Mol. Genet. 21, 2899–2911 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Ticozzi, N. et al. Mutational analysis reveals the FUS homolog TAF15 as a candidate gene for familial amyotrophic lateral sclerosis. Am. J. Med. Genet. B Neuropsychiatr. Genet. 156, 285–290 (2011).

    CAS  Google Scholar 

  153. Sen, A. et al. Genetic circuitry of Survival motor neuron, the gene underlying spinal muscular atrophy. Proc. Natl Acad. Sci. USA 110, E2371–E2380 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Yamazaki, T. et al. FUS–SMN protein interactions link the motor neuron diseases ALS and SMA. Cell Rep. 2, 799–806 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Groen, E. J. et al. ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN. Hum. Mol. Genet. 22, 3690–3704 (2013).

    CAS  PubMed  Google Scholar 

  156. Blokhuis, A. M., Groen, E. J., Koppers, M., van den Berg, L. H. & Pasterkamp, R. J. Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathol. 125, 777–794 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ling, S. C., Polymenidou, M. & Cleveland, D. W. Converging mechanisms in ALS and FTD: disrupted RNA and protein homeostasis. Neuron 79, 416–438 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Bentmann, E. et al. Requirements for stress granule recruitment of fused in sarcoma (FUS) and TAR DNA-binding protein of 43 kDa (TDP-43). J. Biol. Chem. 287, 23079–23094 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Kato, M. et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149, 753–767 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Daigle, J. G. et al. RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum. Mol. Genet. 22, 1193–1205 (2013).

    CAS  PubMed  Google Scholar 

  161. Vance, C. et al. ALS mutant FUS disrupts nuclear localization and sequesters wild-type FUS within cytoplasmic stress granules. Hum. Mol. Genet. 22, 2676–2688 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Andersson, M. K. et al. The multifunctional FUS, EWS and TAF15 proto-oncoproteins show cell type-specific expression patterns and involvement in cell spreading and stress response. BMC Cell Biol. 9, 37 (2008).

    PubMed  PubMed Central  Google Scholar 

  163. Blechingberg, J., Luo, Y., Bolund, L., Damgaard, C. K. & Nielsen, A. L. Gene expression responses to FUS, EWS, and TAF15 reduction and stress granule sequestration analyses identifies FET-protein non-redundant functions. PLoS ONE 7, e46251 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Bentmann, E., Haass, C. & Dormann, D. Stress granules in neurodegeneration—lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J. 280, 4348–4370 (2013).

    CAS  PubMed  Google Scholar 

  165. Aulas, A., Stabile, S. & Vande Velde, C. Endogenous TDP-43, but not FUS, contributes to stress granule assembly via G3BP. Mol. Neurodegener. 7, 54 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Li, Y. R., King, O. D., Shorter, J. & Gitler, A. D. Stress granules as crucibles of ALS pathogenesis. J. Cell Biol. 201, 361–372 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Fushimi, K. et al. Expression of human FUS/TLS in yeast leads to protein aggregation and cytotoxicity, recapitulating key features of FUS proteinopathy. Protein Cell 2, 141–149 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Baron, D. M. et al. Amyotrophic lateral sclerosis-linked FUS/TLS alters stress granule assembly and dynamics. Mol. Neurodegener. 8, 30 (2013).

    PubMed  PubMed Central  Google Scholar 

  169. Shelkovnikova, T. A., Robinson, H., Connor-Robson, N. & Buchman, V. L. Recruitment into stress granules prevents irreversible aggregation of FUS protein mislocalized to the cytoplasm. Cell Cycle 12, 3194–3202 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Cushman, M., Johnson, B. S., King, O. D., Gitler, A. D. & Shorter, J. Prion-like disorders: blurring the divide between transmissibility and infectivity. J. Cell Sci. 123, 1191–1201 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. King, O. D., Gitler, A. D. & Shorter, J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res. 1462, 61–80 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Gitler, A. D. & Shorter, J. RNA-binding proteins with prion-like domains in ALS and FTLD-U. Prion 5, 179–187 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Polymenidou, M. & Cleveland, D. W. The seeds of neurodegeneration: prion-like spreading in ALS. Cell 147, 498–508 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Sun, Z. et al. Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol. 9, e1000614 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Ju, S. et al. A yeast model of FUS/TLS-dependent cytotoxicity. PLoS Biol. 9, e1001052 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Han, T. W. et al. Cell-free formation of RNA granules: bound RNAs identify features and components of cellular assemblies. Cell 149, 768–779 (2012).

    CAS  PubMed  Google Scholar 

  177. Schwartz, J. C., Wang, X., Podell, E. R. & Cech, T. R. RNA seeds higher-order assembly of FUS protein. Cell Rep. 5, 918–925 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Frost, B. & Diamond, M. I. Prion-like mechanisms in neurodegenerative diseases. Nat. Rev. Neurosci. 11, 155–159 (2010).

    CAS  PubMed  Google Scholar 

  179. Hoell, J. I. et al. RNA targets of wild-type and mutant FET family proteins. Nat. Struct. Mol. Biol. 18, 1428–1431 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Lagier-Tourenne, C. et al. Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs. Nat. Neurosci. 15, 1488–1497 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Rogelj, B. et al. Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Sci. Rep. 2, 603 (2012).

    PubMed  PubMed Central  Google Scholar 

  182. Tradewell, M. L. et al. Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Hum. Mol. Genet. 21, 136–149 (2012).

    PubMed  Google Scholar 

  183. Scaramuzzino, C. et al. Protein arginine methyltransferase 1 and 8 interact with FUS to modify its sub-cellular distribution and toxicity in vitro and in vivo. PLoS ONE 8, e61576 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Yamaguchi, A. & Kitajo, K. The effect of PRMT1-mediated arginine methylation on the subcellular localization, stress granules, and detergent-insoluble aggregates of FUS/TLS. PLoS ONE 7, e49267 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Sama, R. R. et al. FUS/TLS assembles into stress granules and is a prosurvival factor during hyperosmolar stress. J. Cell. Physiol. 228, 2222–2231 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Xia, R. et al. Motor neuron apoptosis and neuromuscular junction perturbation are prominent features in a Drosophila model of Fus-mediated ALS. Mol. Neurodegener. 7, 10 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Sasayama, H. et al. Knockdown of the Drosophila fused in sarcoma (FUS) homologue causes deficient locomotive behavior and shortening of motoneuron terminal branches. PLoS ONE 7, e39483 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Armstrong, G. A. & Drapeau, P. Loss and gain of FUS function impair neuromuscular synaptic transmission in a genetic model of ALS. Hum. Mol. Genet. 22, 4282–4292 (2013).

    CAS  PubMed  Google Scholar 

  189. Chen, Y. et al. Expression of human FUS protein in Drosophila leads to progressive neurodegeneration. Protein Cell 2, 477–486 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Mitchell, J. C. et al. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol. 125, 273–288 (2013).

    CAS  PubMed  Google Scholar 

  191. Shelkovnikova, T. A. et al. Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. J. Biol. Chem. 288, 25266–25274 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Murakami, T. et al. ALS mutations in FUS cause neuronal dysfunction and death in Caenorhabditis elegans by a dominant gain-of-function mechanism. Hum. Mol. Genet. 21, 1–9 (2012).

    PubMed  Google Scholar 

  193. Vaccaro, A. et al. Methylene blue protects against TDP-43 and FUS neuronal toxicity in C. elegans and D. rerio. PLoS ONE 7, e42117 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Huang, C. et al. FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration. PLoS Genet. 7, e1002011 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Huang, C. et al. Entorhinal cortical neurons are the primary targets of FUS mislocalization and ubiquitin aggregation in FUS transgenic rats. Hum. Mol. Genet. 21, 4602–4614 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Vaccaro, A. et al. Mutant TDP-43 and FUS cause age-dependent paralysis and neurodegeneration in C. elegans. PLoS ONE 7, e31321 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Verbeeck, C. et al. Expression of Fused in sarcoma mutations in mice recapitulates the neuropathology of FUS proteinopathies and provides insight into disease pathogenesis. Mol. Neurodegener. 7, 53 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Andersen, P. M. & Al-Chalabi, A. Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nat. Rev. Neurol. 7, 603–615 (2011).

    CAS  PubMed  Google Scholar 

  199. Urwin, H. et al. FUS pathology defines the majority of tau- and TDP-43-negative frontotemporal lobar degeneration. Acta Neuropathol. 120, 33–41 (2010).

    PubMed  PubMed Central  Google Scholar 

  200. McClellan, J. & King, M. C. Genetic heterogeneity in human disease. Cell 141, 210–217 (2010).

    CAS  PubMed  Google Scholar 

  201. Deng, H., Gao, K. & Jankovic, J. The genetics of Tourette syndrome. Nat. Rev. Neurol. 8, 203–213 (2012).

    CAS  PubMed  Google Scholar 

  202. Cookson, M. R. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson's disease. Nat. Rev. Neurosci. 11, 791–797 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Da Cruz, S. & Cleveland, D. W. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr. Opin. Neurobiol. 21, 904–919 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Lanson, N. A. Jr & Pandey, U. B. FUS-related proteinopathies: lessons from animal models. Brain Res. 1462, 44–60 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.D.'s research was funded by National Natural Science Foundation of China (81271921, 81101339), the Sheng Hua Scholars Program of Central South University, the Fundamental Research Funds for the Central Universities (2011JQ014), Research Fund for the Doctoral Program of Higher Education of China (20110162110,026), and the Construction Fund for Key Subjects of the Third Xiangya Hospital, Central South University. K.G.'s research was supported by the Fundamental Research Funds for the Central Universities of Central South University (2012zzts120). J.J. receives support from the National Parkinson Foundation.

Author information

Authors and Affiliations

Authors

Contributions

H.D. and K.G. contributed equally to researching data for the article, discussions of the content, and writing the article. J.J. contributed to review and editing of the manuscript before submission.

Corresponding author

Correspondence to Hao Deng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Summary of clinical and genetic features of ALS patients with FUS mutations (DOC 154 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Gao, K. & Jankovic, J. The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol 10, 337–348 (2014). https://doi.org/10.1038/nrneurol.2014.78

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.78

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing