Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The hidden genetics of epilepsy—a clinically important new paradigm

Key Points

  • Many forms of epilepsy have long been suspected to have a genetic background, and improvements in sequencing technology have now enabled detailed dissection of their genetic basis

  • The likelihood of a genetic cause of epilepsy is easily underestimated in routine clinical practice

  • De novo mutagenesis is increasingly being recognized as an important mechanism in some epilepsies, particularly the epileptic encephalopathies

  • A genetic aetiology is not synonymous with generalized epilepsy; many focal epilepsies have a known genetic cause

  • Genetic diagnosis can facilitate appropriate counselling and, in some patients, can also have therapeutic implications

Abstract

Understanding the aetiology of epilepsy is essential both for clinical management of patients and for conducting neurobiological research that will direct future therapies. The aetiology of epilepsy was formerly regarded as unknown in about three-quarters of patients; however, massively parallel gene-sequencing studies, conducted in a framework of international collaboration, have yielded a bounty of discoveries that highlight the importance of gene mutations in the aetiology of epilepsy. These data, coupled with clinical genetic studies, suggest a new paradigm for use in the clinic: many forms of epilepsy are likely to have a genetic basis. Enquiry about a genetic cause of epilepsy is readily overlooked in the clinic for a number of understandable but remediable reasons, not least an incomplete understanding of its genetic architecture. In addition, the importance of de novo mutagenesis is often underappreciated, particularly in the epileptic encephalopathies. Other genomic surprises are worth emphasizing, such as the emerging evidence of a genetic contribution to focal epilepsies—long regarded as acquired conditions—and the complex role of copy number variation. The importance of improved understanding of the genetics of the epilepsies is confirmed by the positive outcomes, in terms of treatment selection and counselling, of receiving a genetic diagnosis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Advances in understanding the causes of epilepsy.
Figure 2: Inheritance patterns and phenotypic heterogeneity in familial epilepsies.

References

  1. Reynolds, J. R. Epilepsy: Its Symptoms, Treatment, and Relation to Other Chronic Convulsive Diseases (Churchill, 1861).

    Google Scholar 

  2. Lennox, W. G. Should they live? Certain economic aspects of medicine. American Scholar 7, 454–466 (1938).

    Google Scholar 

  3. Offen, M. L. Dealing with “defectives”. Foster Kennedy and William Lennox on eugenics. Neurology 61, 668–673 (2003).

    Article  PubMed  Google Scholar 

  4. Lennox, W. G. The heredity of epilepsy as told by relatives and twins. JAMA 146, 529–536 (1951).

    Article  CAS  Google Scholar 

  5. Yu, S. et al. Fragile X genotype characterized by an unstable region of DNA. Science 252, 1179–1181 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Mastrangelo, M., Celato, A. & Leuzzi, V. A diagnostic algorithm for the evaluation of early onset genetic-metabolic epileptic encephalopathies. Eur. J. Paediatr. Neurol. 16, 179–191 (2012).

    Article  PubMed  Google Scholar 

  7. Crino, P. B., Nathanson, K. L. & Henske, E. P. The tuberous sclerosis complex. N. Engl. J. Med. 355, 1345–1356 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Fischer, A., Zalvide, J., Faurobert, E., Albiges-Rizo, C. & Tournier-Lasserve, E. Cerebral cavernous malformations: from CCM genes to endothelial cell homeostasis. Trends Mol. Med. 19, 302–308 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Rett, A., Teubel, R. “Neugeborenenkrämpfe im Rahmen einer epileptisch belasteten Familie” [German]. Wien. Klin. Wochenschr. 74, 609–613 (1964).

    Google Scholar 

  10. Crompton, D. E. et al. Familial mesial temporal lobe epilepsy: a benign epilepsy syndrome showing complex inheritance. Brain 133, 3221–3231 (2010).

    Article  PubMed  Google Scholar 

  11. Helbig, I., Scheffer, I. E., Mulley, J. C. & Berkovic, S. F. Navigating the channels and beyond: unravelling the genetics of the epilepsies. Lancet Neurol. 7, 231–245 (2008).

    Article  PubMed  Google Scholar 

  12. Berkovic, S. F., Mulley, J. C., Scheffer, I. E. & Petrou, S. Human epilepsies: interaction of genetic and acquired factors. Trends Neurosci. 29, 391–397 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Christensen, J. et al. Long-term risk of epilepsy after traumatic brain injury in children and young adults: a population-based cohort study. Lancet 373, 1105–1110 (2009).

    Article  PubMed  Google Scholar 

  14. Kariuki, S. M. et al. The genetic risk of acute seizures in African children with falciparum malaria. Epilepsia 54, 990–1001 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hauser, W. A. & Kurland, L. T. The epidemiology of epilepsy in Rochester, Minnesota, 1935 through 1967. Epilepsia. 16, 1–66 (1975).

    Article  CAS  PubMed  Google Scholar 

  16. Shorvon, S. D., Andermann, F. & Guerrini, R. (Eds) The Causes of Epilepsy: Common and Uncommon Causes in Adults and Children (Cambridge University Press, 2011).

    Book  Google Scholar 

  17. Brenner, T. et al. Prevalence of neurologic autoantibodies in cohorts of patients with new and established epilepsy. Epilepsia 54, 1028–1035 (2013).

    Article  PubMed  Google Scholar 

  18. Quek, A. M. et al. Autoimmune epilepsy: clinical characteristics and response to immunotherapy. Arch. Neurol. 69, 582–593 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dichgans, M. Genetics of ischaemic stroke. Lancet Neurol. 6, 149–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Frattini, V. et al. The integrated landscape of driver genomic alterations in glioblastoma. Nat. Genet. 45, 1141–1149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barkovich, A. J., Guerrini, R., Kuzniecky, R. I., Jackson, G. D. & Dobyns, W. B. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 135, 1348–1369 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Otte, W. M., Singla, M., Sander, J. W. & Singh, G. Drug therapy for solitary cysticercus granuloma: a systematic review and meta-analysis. Neurology. 80, 152–162 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsuobi, T. Epidemiology of febrile and afebrile convulsions in children in Japan. Neurology 34, 175–181 (1984).

    Article  Google Scholar 

  24. Berg, A. T. et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51, 676–685 (2010).

    Article  PubMed  Google Scholar 

  25. King, M. A. et al. Epileptology of the first-seizure presentation: a clinical, electroencephalographic, and magnetic resonance imaging study of 300 consecutive patients. Lancet 352, 1007–1011 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Corey, L. A., Pellock, J. M., Kjeldsen, M. J. & Nakken, K. O. Importance of genetic factors in the occurrence of epilepsy syndrome type: a twin study. Epilepsy Res. 97, 103–111 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Annegers, J. F., Hauser, W. A., Anderson, V. E. & Kurland, L. T. The risks of seizure disorders among relatives of patients with childhood onset epilepsy. Neurology. 32, 174–179 (1982).

    Article  CAS  PubMed  Google Scholar 

  28. Ottman, R. Genetic epidemiology of epilepsy. Epidemiol. Rev. 19, 120–128 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Peljto, A. L. et al., Familial risk of epilepsy: a population-based study. Brain 137, 795–805 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dibbens, L. M., Heron, S. E. & Mulley, J. C. A polygenic heterogeneity model for common epilepsies with complex genetics. Genes Brain Behav. 6, 593–597 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. [No author listed] Concordance of clinical forms of epilepsy in families with several affected members. Italian League Against Epilepsy Genetic Collaborative Group. Epilepsia 34, 819–826 (1993).

  32. Heinzen, E. L. et al. Exome sequencing followed by large-scale genotyping fails to identify single rare variants of large effect in idiopathic generalized epilepsy. Am. J. Hum. Genet. 91, 293–302 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klassen, T. et al. Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy. Cell 145, 1036–1048 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. The ENCODE Project Consortium. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

  35. Pennacchio, L. A. et al. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science 271, 1731–1734 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Cross-Disorder Group of the Psychiatric Genomics Consortium & Genetic Risk Outcome of Psychosis (GROUP) Consortium. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371–1379 (2013).

  37. The International Multiple Sclerosis Genetics Consortium and The Wellcome Trust Case Control Consortium 2. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011).

  38. Speed, D. et al. A genome-wide association study and biological pathway analysis of epilepsy prognosis in a prospective cohort of newly treated epilepsy. Hum. Mol. Genet. 23, 247–258 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. EPICURE Consortium & EMINet Consortium. Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Hum. Mol. Genet. 21, 5359–5372 (2012).

  40. Kasperaviciūte, D. et al. Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study. Brain 133, 2136–2147 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Steinlein, O. K. et al. A missense mutation in the neuronal nicotinic acetylcholine receptor α4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 11, 201–203 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Mefford, H. C. et al., Rare copy number variants are an important cause of epileptic encephalopathies. Ann. Neurol. 70, 974–985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mulley, J. C. & Mefford, H. C. Epilepsy and the new cytogenetics. Epilepsia 52, 423–432 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sebat, J. et al. Strong association of de novo copy number mutations with autism. Science 316, 445–449 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. de Kovel, C. G. et al. Recurrent microdeletions at 15q11.2 and 16p13.11 predispose to idiopathic generalized epilepsies. Brain 133, 23–32 (2010).

    Article  PubMed  Google Scholar 

  46. International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 455, 237–241 (2008).

  47. Mefford, H. C. et al. Genome-wide copy number variation in epilepsy: novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet. 6, e1000962 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Epi4K Consortium & Epilepsy Phenome/Genome Project. De novo mutations in epileptic encephalopathies. Nature 501, 217–221 (2013).

  49. Carvill, G. L. et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat. Genet. 45, 825–830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kodera, H. Targeted capture and sequencing for detection of mutations causing early onset epileptic encephalopathy. Epilepsia 54, 1262–1269 (2013).

    Article  PubMed  Google Scholar 

  51. Veeramah, K. R. et al. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia 54, 1270–1281 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. McIntosh, A. M. et al. Effects of vaccination on onset and outcome of Dravet syndrome: a retrospective study. Lancet Neurol. 9, 592–598 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Berkovic, S. F. et al. De-novo mutations of the sodium channel gene SCN1A in alleged vaccine encephalopathy: a retrospective study. Lancet Neurol. 5, 488–492 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Claes, L. et al. De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum. Mutat. 21, 615–621 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Harkin, L. A. et al. The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain 130, 843–852 (2007).

    Article  PubMed  Google Scholar 

  56. Vadlamudi, L. et al. Timing of de novo mutagenesis—a twin study of sodium-channel mutations. N. Engl. J. Med. 363, 1335–1340 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Heron, S. E. et al. De novo SCN1A mutations in Dravet syndrome and related epileptic encephalopathies are largely of paternal origin. J. Med. Genet. 47, 137–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Harkin, L. A. et al. Truncation of the GABAA-receptor γ2 subunit in a family with generalized epilepsy with febrile seizures plus. Am. J. Hum. Genet. 70, 530–536 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Depienne, C. et al. Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resemble Dravet syndrome but mainly affects females. PLoS Genet. 5, e1000381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Deprez, L. et al. Clinical spectrum of early-onset epileptic encephalopathies associated with STXBP1 mutations. Neurology 75, 1159–1165 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Marini, C. et al. Focal seizures with affective symptoms are a major feature of PCDH19 gene-related epilepsy. Epilepsia 53, 2111–2119 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Nakamura, K. et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 81, 992–998 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Kalscheuer, V. M. et al., Disruption of the serine/threonine kinase 9 gene causes severe X-linked infantile spasms and mental retardation. Am. J. Hum. Genet. 72, 1401–1411 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kim, Y. O. et al. Head stereotypies in STXBP1 encephalopathy. Dev. Med. Child. Neurol. 55, 769–772 (2013).

    PubMed  Google Scholar 

  65. Lemke, J. R. et al. Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 53, 1387–1398 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Petrovski, S., Wang, Q., Heinzen, E. L., Allen, A. S. & Goldstein, D. B. Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genet. 9, e1003709 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kalachikov, S. et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat. Genet. 30, 335–341 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Tan, N. C. et al. Failure to confirm association of a polymorphism in ABCB1 with multidrug-resistant epilepsy. Neurology 63, 1090–1092 (2004).

    Article  CAS  PubMed  Google Scholar 

  69. Dibbens, L. M. et al. Mutations in DEPDC5 cause familial focal epilepsy with variable foci. Nat. Genet. 45, 546–551 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Ishida, S. et al. Mutations of DEPDC5 cause autosomal dominant focal epilepsies. Nat. Genet. 45, 552–555 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bar-Peled, L. et al. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science 340, 1100–1106 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Scheffer, I. E. et al. Mutations in mTOR regulator DEPDC5 cause focal epilepsy with brain malformations. Ann. Neurol. http://dx.doi.org/10.1002/ana.24126.

  73. Lesca, G. et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat. Genet. 45, 1061–1066 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Lemke, J. R. et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat. Genet. 45, 1067–1072 (2013).

    Article  CAS  PubMed  Google Scholar 

  75. Carvill, G. L. et al. GRIN2A mutations cause epilepsy–aphasia spectrum disorders. Nat. Genet. 45, 1073–1076 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Heron, S. E. et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 44, 1188–1190 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Barcia, G. et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat. Genet. 44, 1255–1259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Milligan, C. J. et al. KCNT1 gain-of-function in two epilepsy phenotypes is reversed by quinidine. Ann. Neurol. http://dx.doi.org/10.1002/ana.24128.

  79. Biervert, C. et al. A potassium channel mutation in neonatal human epilepsy. Science 279, 403–406 (1998).

    Article  CAS  PubMed  Google Scholar 

  80. Singh, N. A. et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat. Genet. 18, 25–29 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Saitsu, H. et al. Whole exome sequencing identifies KCNQ2 mutations in Ohtahara syndrome. Ann. Neurol. 72, 298–300 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Weckhuysen, S. et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann. Neurol. 71, 15–25 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Borgatti, R. et al. A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurology 63, 57–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Thompson, R., Drew, C. J. & Thomas, R. H. Next generation sequencing in the clinical domain: clinical advantages, practical and ethical challenges. Adv. Protein Chem. Struct. Biol. 89, 27–63 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Hildebrand, M. S. et al., Recent advances in the molecular genetics of epilepsy. J. Med. Genet. 50, 271–279 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Chen, W. J. et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat. Genet. 43, 1252–1255 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Dixon-Salazar, T. J. et al. Exome sequencing can improve diagnosis and alter patient management. Sci. Transl. Med. 4, 138ra78 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Le Fanu, J. Is modern genetics a blind alley? Yes. BMJ 340, c1156 (2010).

    Article  PubMed  Google Scholar 

  89. Niwano, K. et al. Lentiviral vector-mediated SERCA2 gene transfer protects against heart failure and left ventricular remodeling after myocardial infarction in rats. Mol. Ther. 16, 1026–1032 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Kullmann, D. M., Schorge, S., Walker, M. C. & Wykes, R. C. Gene therapy in epilepsy—is it time for clinical trials? Nat. Rev. Neurol. http://dx.doi.org/10.1038/nrneurol.2014.43.

  91. Hammond, C. L., Thomas, R. H., Rees, M. I., Kerr, M. P. & Rapport, F. Implications for families of advances in understanding the genetic basis of epilepsy. Seizure 19, 675–679 (2010).

    Article  PubMed  Google Scholar 

  92. Dibbens, L. M. et al. X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment. Nat. Genet. 40, 776–781 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Scheffer, I. E. et al. Epilepsy and mental retardation limited to females: an under-recognized disorder. Brain 131, 918–927 (2008).

    Article  PubMed  Google Scholar 

  94. Morimoto, M. et al. SCN1A mutation mosaicism in a family with severe myoclonic epilepsy in infancy. Epilepsia 47, 1732–1736 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Gennaro, E. et al. Somatic and germline mosaicisms in severe myoclonic epilepsy of infancy. Biochem. Biophys. Res. Commun. 341, 489–493 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Depienne, C. et al. Parental mosaicism can cause recurrent transmission of SCN1A mutations associated with severe myoclonic epilepsy of infancy. Hum. Mutat. 27, 389 (2006).

    Article  PubMed  Google Scholar 

  97. Marini, C., Mei, D., Cross, H. J. & Guerrini, R. Mosaic SCN1A mutation in familial severe myoclonic epilepsy of infancy. Epilepsia 47, 1737–1740 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Poduri, A. et al. Genetic testing in the epilepsies—developments and dilemmas. Nat. Rev. Neurol. http://dx.doi.org/10.1038/nrneurol.2014.60.

  99. Mohamed, A. R. et al. Intrinsic epileptogenicity of cortical tubers revealed by intracranial EEG monitoring. Neurology 79, 2249–2257 (2012).

    Article  PubMed  Google Scholar 

  100. Scheffer, I. E. et al. Temporal lobe epilepsy and GEFS+ phenotypes associated with SCN1B mutations. Brain 130, 100–109 (2007).

    Article  PubMed  Google Scholar 

  101. Neal, E. G. et al. The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial. Lancet Neurol. 7, 500–506 (2008).

    Article  PubMed  Google Scholar 

  102. Thammongkol, S. et al. Efficacy of the ketogenic diet: which epilepsies respond? Epilepsia 53, e55–e59 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Suls, A. et al. Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann. Neurol. 66, 415–419 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Arsov, T. et al. Early onset absence epilepsy: 1 in 10 cases is caused by GLUT1 deficiency. Epilepsia 53, e204–e207 (2007).

    Article  Google Scholar 

  105. Mullen, S. A., Suls, A., De Jonghe, P., Berkovic, S. F. & Scheffer, I. E. Absence epilepsies with widely variable onset are a key feature of familial GLUT1 deficiency. Neurology 75, 432–440 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. De Vivo, D. C. et al. Defective glucose transport across the blood–brain barrier as a cause of persistent hypoglycorrhachia, seizures, and developmental delay. N. Engl. J. Med. 325, 703–709 (1991).

    Article  CAS  PubMed  Google Scholar 

  107. Bonnett, L. J., Tudur-Smith, C., Williamson, P. R. & Marson, A. G. Risk of recurrence after a first seizure and implications for driving: further analysis of the multicentre study of early epilepsy and single seizures. BMJ 341, c6477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chiron, C. & Dulac, O. The pharmacologic treatment of Dravet syndrome. Epilepsia 52 (Suppl. 2), 72–75 (2011).

    Article  PubMed  Google Scholar 

  109. Chen, P. et al. Carbamazepine-induced toxic effects and HLA-B*1502 screening in Taiwan. N. Engl. J. Med. 364, 1126–1133 (2011).

    Article  CAS  PubMed  Google Scholar 

  110. McCormack, M. et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N. Engl. J. Med. 364, 1134–1143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Dibbens, L. M. et al., Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: precedent for disorders with complex inheritance. Hum. Mol. Genet. 18, 3626–3631 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Inoue, Y. et al. Ring chromosome 20 and nonconvulsive status epilepticus. A new epileptic syndrome. Brain 120, 939–953 (1997).

    Article  PubMed  Google Scholar 

  113. Conlin, L. K. et al., Molecular analysis of ring chromosome 20 syndrome reveals two distinct groups of patients. J. Med. Genet. 48, 1–9 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Scheffer, I. E. & Berkovic, S. F. in Epilepsy: Problem Solving in Clinical Practice (eds Schmidt, D. & Schachter, S. C) 111–131 (Martin Duntz, 2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to researching for data, writing and revising the article.

Corresponding author

Correspondence to Samuel F. Berkovic.

Ethics declarations

Competing interests

S.F.B. declares that he has received honoraria and/or payments for development of educational presentations from Novartis Pharmaceuticals, Sanofi-Aventis, Janssen-Cilag, and UCB Pharma, and that he is an inventor on a patent for SCN1A testing owned by Bionomics and licensed to various diagnostic companies (WO/2006/133508); he has also applied for a patent for PCDH19 testing (WO/2009/086591). R.H.T. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, R., Berkovic, S. The hidden genetics of epilepsy—a clinically important new paradigm. Nat Rev Neurol 10, 283–292 (2014). https://doi.org/10.1038/nrneurol.2014.62

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.62

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing