Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Altered processing of sensory stimuli in patients with migraine

Subjects

Key Points

  • Migraine is the most prevalent neurological disorder in the general population and exerts a considerable societal burden; in some patients, migraine becomes unremittingly chronic

  • Electrophysiological studies can characterize the abnormal functioning of the migrainous brain between, immediately before and during attacks, and aid monitoring of the effects of therapeutic interventions

  • Most electrophysiological studies of migraine describe functional changes between attacks, including hyperresponsivity to repeated sensory stimuli with abnormal temporal processing, malfunctioning sequential recruitment of neuronal networks, and impaired habituation

  • The abnormalities of sensory processing vary over the migraine cycle: they worsen preictally but tend to disappear during the attack; furthermore, the abnormalities differ between episodic and chronic migraine

  • Refined neurophysiological investigations suggest that the cyclic brain dysfunctions in migraine might be related to an abnormal cross-talk between thalamus and cortex (thalamocortical dysrhythmia)

  • Understanding the dysfunction of temporal information processing in migraine paves the way for novel acute and preventive therapies, including pathophysiology-based neuromodulatory techniques

Abstract

Migraine is a cyclic disorder, in which functional and morphological brain changes fluctuate over time, culminating periodically in an attack. In the migrainous brain, temporal processing of external stimuli and sequential recruitment of neuronal networks are often dysfunctional. These changes reflect complex CNS dysfunction patterns. Assessment of multimodal evoked potentials and nociceptive reflex responses can reveal altered patterns of the brain's electrophysiological activity, thereby aiding our understanding of the pathophysiology of migraine. In this Review, we summarize the most important findings on temporal processing of evoked and reflex responses in migraine. Considering these data, we propose that thalamocortical dysrhythmia may be responsible for the altered synchronicity in migraine. To test this hypothesis in future research, electrophysiological recordings should be combined with neuroimaging studies so that the temporal patterns of sensory processing in patients with migraine can be correlated with the accompanying anatomical and functional changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal evolution in effective connectivity, as revealed by kernel Granger causality analysis of averaged EEG data.
Figure 2: Cortical response patterns during the migraine cycle.
Figure 3: Facilitation of temporal pain processing between migraine attacks.
Figure 4: A neurophysiological model of migraine pathogenesis.

Similar content being viewed by others

References

  1. Stewart, W. F. et al. Cumulative lifetime migraine incidence in women and men. Cephalalgia 28, 1170–1178 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Headache Classification Subcommittee of the International Headache Society. The international classification of headache disorders, 3rd edn. Cephalalgia 33, 629–808 (2013).

  3. Goadsby, P. J., Charbit, A. R., Andreou, A. P., Akerman, S. & Holland, P. R. Neurobiology of migraine. Neuroscience 161, 327–341 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Bernstein, C. & Burstein, R. Sensitization of the trigeminovascular pathway: perspective and implications to migraine pathophysiology. J. Clin. Neurol. 8, 89–99 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Magis, D. et al. Evaluation and proposal for optimalization of neurophysiological tests in migraine: part 1--electrophysiological tests. Cephalalgia 27, 1323–1338 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Ambrosini, A., Magis, D. & Schoenen, J. Migraine—clinical neurophysiology. Handb. Clin. Neurol. 97, 275–293 (2010).

    Article  PubMed  Google Scholar 

  7. Moratti, S., Clementz, B. A., Gao, Y., Ortiz, T. & Keil, A. Neural mechanisms of evoked oscillations: stability and interaction with transient events. Hum. Brain Mapp. 28, 1318–1333 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Golla, F. L. & Winter, A. L. Analysis of cerebral responses to flicker in patients complaining of episodic headache. Electroencephalogr. Clin. Neurophysiol. 11, 539–549 (1959).

    Article  CAS  PubMed  Google Scholar 

  9. Puca, F. M., de Tommaso, M., Tota, P. & Sciruicchio, V. Photic driving in migraine: correlations with clinical features. Cephalalgia 16, 246–250 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. de Tommaso, M. et al. EEG spectral analysis in migraine without aura attacks. Cephalalgia 118, 324–328 (1998).

    Article  Google Scholar 

  11. de Tommaso, M. et al. Visually evoked phase synchronization changes of alpha rhythm in migraine: correlations with clinical features. Int. J. Psychophysiol. 57, 203–210 (2005).

    Article  PubMed  Google Scholar 

  12. Bjørk, M., Hagen, K., Stovner, L. J. & Sand, T. Photic EEG-driving responses related to ictal phases and trigger sensitivity in migraine: a longitudinal, controlled study. Cephalalgia 31, 444–455 (2011).

    Article  PubMed  Google Scholar 

  13. Genco, S., de Tommaso, M., Prudenzano, A. M., Savarese, M. & Puca, F. M. EEG features in juvenile migraine: topographic analysis of spontaneous and visual evoked brain electrical activity: a comparison with adult migraine. Cephalalgia 14, 41–46 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Nyrke, T., Kangasniemi, P. & Lang, A. H. Difference of steady-state visual evoked potentials in classic and common migraine. Electroencephalogr. Clin. Neurophysiol. 73, 285–294 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. Shibata, K., Yamane, K., Otuka, K. & Iwata, M. Abnormal visual processing in migraine with aura: a study of steady-state visual evoked potentials. J. Neurol. Sci. 271, 119–126 (2008).

    Article  PubMed  Google Scholar 

  16. Birca, A., Carmant, L., Lortie, A. & Lassonde, M. Interaction between the flash evoked SSVEPs and the spontaneous EEG activity in children and adults. Clin. Neurophysiol. 117, 279–288 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Angelini, L. et al. Steady-state visual evoked potentials and phase synchronization in migraine patients. Phys. Rev. Lett. 93, 038103 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Friston, K. Functional and effective connectivity: a review. Brain Connectivity 1, 13–36 (2011).

    Article  PubMed  Google Scholar 

  19. Silberstein, R. B. Steady-state visually evoked potentials, brain resonances and cognitive processes. In Neocortical Dynamics and Human EEG Rhythms (ed. Nunez, P. L.) 272–303 (Oxford University Press, 1995).

    Google Scholar 

  20. de Tommaso, M. et al. Effects of levetiracetam vs topiramate and placebo on visually evoked phase synchronization changes of alpha rhythm in migraine. Clin. Neurophysiol. 118, 2297–2304 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. de Tommaso, M. et al. Lack of effects of low frequency repetitive transcranial magnetic stimulation on alpha rhythm phase synchronization in migraine patients. Neurosci. Lett. 20, 143–147 (2011).

    Article  CAS  Google Scholar 

  22. Granger, C. W. Investigating causal relations by econometric models and crossspectral methods. Econometrica 37, 424–438 (1969).

    Article  Google Scholar 

  23. Marinazzo, D., Pellicoro, M. & Stramaglia, S. Kernel method for nonlinear Granger causality. Phys. Rev. Lett. 11, 144103 (2008).

    Article  CAS  Google Scholar 

  24. Friston, K. J., Harrison, L. & Penny, W. Dynamic causal modeling. NeuroImage 19, 1273–1302 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. de Tommaso, M., Stramaglia, S., Marinazzo, D., Trotta, G. & Pellicoro, M. Functional and effective connectivity in EEG alpha and beta bands during intermittent flash stimulation in migraine with and without aura. Cephalalgia 33, 938–947 (2013).

    Article  PubMed  Google Scholar 

  26. Harris, J. Habituatory response decrement in the intact organism. Psychol. Bull. 40, 385–422 (1943).

    Article  Google Scholar 

  27. Thompson, R. & Spencer, W. Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol. Rev. 73, 16–43 (1996).

    Article  Google Scholar 

  28. Rankin, C. H. et al. Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol. Learn. Mem. 92, 135–138 (2009).

    Article  PubMed  Google Scholar 

  29. Walpurger, V., Hebing-Lennartz, G., Denecke, H. & Pietrowsky, R. Habituation deficit in auditory event-related potentials in tinnitus complainers. Hear. Res. 181, 57–64 (2003).

    Article  PubMed  Google Scholar 

  30. Schestatsky, P. et al. Neurophysiologic study of central pain in patients with Parkinson disease. Neurology 69, 2162–2169 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Halberstadt, A. L. & Geyer, M. A. Habituation and sensitization of acoustic startle: opposite influences of dopamine D1 and D2-family receptors. Neurobiol. Learn. Mem. 92, 243–248 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. de Tommaso, M. et al. Laser-evoked potentials habituation in fibromyalgia. J. Pain 12, 116–124 (2011).

    Article  PubMed  Google Scholar 

  33. Schoenen, J., Wang, W., Albert, A. & Delwaide, P. Potentiation instead of habituation characterizes visual evoked potentials in migraine patients between attacks. Eur. J. Neurol. 2, 115–122 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Afra, J., Cecchini, A. P., De Pasqua, V., Albert, A. & Schoenen, J. Visual evoked potentials during long periods of pattern-reversal stimulation in migraine. Brain 121, 233–241 (1998).

    Article  PubMed  Google Scholar 

  35. Wang, W., Wang, G. P., Ding, X. L. & Wang, Y. H. Personality and response to repeated visual stimulation in migraine and tension-type headaches. Cephalalgia 19, 718–724 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Bohotin, V. et al. Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine. Brain 125, 912–922 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Ozkul, Y. & Bozlar, S. Effects of fluoxetine on habituation of pattern reversal visually evoked potentials in migraine prophylaxis. Headache 42, 582–587 (2002).

    Article  PubMed  Google Scholar 

  38. Di Clemente, L. et al. Nociceptive blink reflex and visual evoked potential habituations are correlated in migraine. Headache 45, 1388–1393 (2005).

    Article  PubMed  Google Scholar 

  39. Fumal, A. et al. Induction of long-lasting changes of visual cortex excitability by five daily sessions of repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers and migraine patients. Cephalalgia 26, 143–149 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Coppola, G. et al. Interictal abnormalities of gamma band activity in visual evoked responses in migraine: an indication of thalamocortical dysrhythmia? Cephalalgia 27, 1360–1367 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Coppola, G. et al. Changes in visual-evoked potential habituation induced by hyperventilation in migraine. J. Headache Pain 11, 497–503 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Coppola, G., Crémers, J., Gérard, P., Pierelli, F. & Schoenen, J. Effects of light deprivation on visual evoked potentials in migraine without aura. BMC Neurol. 11, 91 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chen, W. et al. Peri-ictal normalization of visual cortex excitability in migraine: an MEG study. Cephalalgia 29, 1202–1211 (2009).

    Article  PubMed  Google Scholar 

  44. Maertens de Noordhout, A., Timsit-Berthier, M., Timsit, M. & Schoenen, J. Contingent negative variation in headache. Ann. Neurol. 19, 78–80 (1986).

    Article  CAS  PubMed  Google Scholar 

  45. Kropp, P. & Gerber, W. D. Contingent negative variation during migraine attack and interval: evidence for normalization of slow cortical potentials during the attack. Cephalalgia 15, 123–128 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Schoenen, J. & Timsit-Berthier, M. Contingent negative variation: methods and potential interest in headache. Cephalalgia 13, 28–32 (1993).

    Article  CAS  PubMed  Google Scholar 

  47. Kropp, P. & Gerber, W. D. Contingent negative variation during migraine attack and interval: evidence for normalization of slow cortical potentials during the attack. Cephalalgia 15, 123–128 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Evers, S., Bauer, B., Suhr, B., Husstedt, I. W. & Grotemeyer, K. H. Cognitive processing in primary headache: a study on event-related potentials. Neurology 48, 108–113 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, W. & Schoenen, J. Interictal potentiation of passive “oddball” auditory event-related potentials in migraine. Cephalalgia 18, 261–265 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Siniatchkin, M., Kropp, P. & Gerber, W. D. What kind of habituation is impaired in migraine patients? Cephalalgia 23, 511–518 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Wang, W., Timsit-Berthier, M. & Schoenen, J. Intensity dependence of auditory evoked potentials is pronounced in migraine: an indication of cortical potentiation and low serotonergic neurotransmission? Neurology 46, 1404–1409 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Ambrosini, A., Rossi, P., De Pasqua, V., Pierelli, F. & Schoenen, J. Lack of habituation causes high intensity dependence of auditory evoked cortical potentials in migraine. Brain 126, 2009–2015 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Ozkul, Y. & Uckardes, A. Median nerve somatosensory evoked potentials in migraine. Eur. J. Neurol. 9, 227–232 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Coppola, G. et al. Abnormal cortical responses to somatosensory stimulation in medication-overuse headache. BMC Neurol. 10, 126 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Coppola, G., De Pasqua, V., Pierelli, F. & Schoenen, J. Effects of repetitive transcranial magnetic stimulation on somatosensory evoked potentials and high frequency oscillations in migraine. Cephalalgia 32, 700–709 (2012).

    Article  PubMed  Google Scholar 

  56. Oelkers, R. et al. Visual evoked potentials in migraine patients: alterations depend on pattern spatial frequency. Brain 122, 1147–1155 (1999).

    Article  PubMed  Google Scholar 

  57. Sand, T. & Vingen, J. V. Visual, long-latency auditory and brainstem auditory evoked potentials in migraine: relation to pattern size, stimulus intensity, sound and light discomfort thresholds and pre-attack state. Cephalalgia 20, 804–820 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Lang, E., Kaltenhäuser, M., Neundörfer, B. & Seidler, S. Hyperexcitability of the primary somatosensory cortex in migraine—a magnetoencephalographic study. Brain 127, 2459–2469 (2004).

    Article  PubMed  Google Scholar 

  59. Oelkers-Ax, R., Parzer, P., Resch, F. & Weisbrod, M. Maturation of early visual processing investigated by a pattern-reversal habituation paradigm is altered in migraine. Cephalalgia 25, 280–289 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Sand, T., Zhitniy, N., White, L. R. & Stovner, L. J. Visual evoked potential latency, amplitude and habituation in migraine: a longitudinal study. Clin. Neurophysiol. 119, 1020–1027 (2008).

    Article  PubMed  Google Scholar 

  61. Sand, T., White, L., Hagen, K. & Stovner, L. Visual evoked potential and spatial frequency in migraine: a longitudinal study. Acta Neurol. Scand. Suppl. 189, 33–37 (2009).

    Article  Google Scholar 

  62. Demarquay, G., Caclin, A., Brudon, F., Fischer, C. & Morlet, D. Exacerbated attention orienting to auditory stimulation in migraine patients. Clin. Neurophysiol. 122, 1755–1763 (2011).

    Article  PubMed  Google Scholar 

  63. Omland, P. M. et al. Visual evoked potentials in interictal migraine: no confirmation of abnormal habituation. Headache 53, 1071–1086.

  64. Bednárˇ, M., Kubová, Z. & Kremlácˇek, J. Lack of visual evoked potentials amplitude decrement during prolonged reversal and motion stimulation in migraineurs. Clin. Neurophys. http://dx.doi.org/10.1016/j.clinph.2013.10.050.

  65. Coppola, G. et al. Lateral inhibition in visual cortex of migraine patients between attacks. J. Headache Pain 14, 20 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sándor, P. S., Afra, J., Proietti-Cecchini, A., Albert, A. & Schoenen, J. Familial influences on cortical evoked potentials in migraine. Neuroreport 10, 1235–1238 (1999).

    Article  PubMed  Google Scholar 

  67. Lorenzo, C. D. et al. Cortical response to somatosensory stimulation in medication overuse headache patients is influenced by angiotensin converting enzyme (ACE) I/D genetic polymorphism. Cephalalgia 32, 1189–1197 (2012).

    Article  PubMed  Google Scholar 

  68. Restuccia, D., Vollono, C., Del Piero, I., Martucci, L. & Zanini, S. Somatosensory high frequency oscillations reflect clinical fluctuations in migraine. Clin. Neurophysiol. 123, 2050–2056 (2012).

    Article  PubMed  Google Scholar 

  69. Restuccia, D., Vollono, C., Piero, I. D., Martucci, L. & Zanini, S. Different levels of cortical excitability reflect clinical fluctuations in migraine. Cephalalgia 33, 1035–1047 (2013).

    Article  PubMed  Google Scholar 

  70. Kropp, P. & Gerber, W. D. Prediction of migraine attacks using a slow cortical potential, the contingent negative variation. Neurosc. Lett. 257, 73–76 (1998).

    Article  CAS  Google Scholar 

  71. Siniatchkin, M., Kropp, P., Gerber, W. D. & Stephani, U. Migraine in childhood—are periodically occurring migraine attacks related to dynamic changes of cortical information processing? Neurosc. Lett. 279, 1–4 (2000).

    Article  CAS  Google Scholar 

  72. Judit, A., Sándor, P. S. & Schoenen, J. Habituation of visual and intensity dependence of auditory evoked cortical potentials tends to normalize just before and during the migraine attack. Cephalalgia 20, 714–719 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Evers, S., Quibeldey, F., Grotemeyer, K. H., Suhr, B. & Husstedt, I. W. Dynamic changes of cognitive habituation and serotonin metabolism during the migraine interval. Cephalalgia 19, 485–491 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Katsarava, Z., Giffin, N., Diener, H. C. & Kaube, H. Abnormal habituation of 'nociceptive' blink reflex in migraine—evidence for increased excitability of trigeminal nociception. Cephalalgia 23, 814–819 (2003).

    Article  CAS  PubMed  Google Scholar 

  75. de Tommaso, M. et al. Habituation of single CO2 laser-evoked responses during interictal phase of migraine. J. Headache Pain 6, 195–198 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  76. De Marinis, M., Pujia, A., Natale, L., D'arcangelo, E. & Accornero, N. Decreased habituation of the R2 component of the blink reflex in migraine patients. Clin. Neurophysiol. 114, 889–893 (2003).

    Article  PubMed  Google Scholar 

  77. de Tommaso, M. et al. Modulation of trigeminal reflex excitability in migraine: effects of attention and habituation on the blink reflex. Int. J. Psychophysiol. 44, 239–249 (2002).

    Article  PubMed  Google Scholar 

  78. Sand, T., Zhitniy, N., White, L. R. & Stovner, L. J. Brainstem auditory-evoked potential habituation and intensity-dependence related to serotonin metabolism in migraine: a longitudinal study. Clin. Neurophysiol. 119, 1190–1200 (2008).

    Article  PubMed  Google Scholar 

  79. Siniatchkin, M., Kropp, P. & Gerber, W. D. Contingent negative variation in subjects at risk for migraine without aura. Pain 94, 159–167 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Paemeleire, K. & Schoenen, J. 31P-MRS in migraine: fallen through the cracks. Headache 53, 676–678 (2013).

    Article  PubMed  Google Scholar 

  81. Maniyar, F. H., Sprenger, T., Monteith, T., Schankin, C. & Goadsby, P. J. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain 137, 232–241 (2014).

    Article  PubMed  Google Scholar 

  82. Chen, W. T. et al. Persistent ictal-like visual cortical excitability in chronic migraine. Pain 152, 254–258 (2011).

    Article  PubMed  Google Scholar 

  83. Chen, W. T. et al. Visual cortex excitability and plasticity associated with remission from chronic to episodic migraine. Cephalalgia 32, 537–543 (2012).

    Article  PubMed  Google Scholar 

  84. Schoenen, J. Is chronic migraine a never-ending migraine attack? Pain 152, 239–240 (2011).

    Article  PubMed  Google Scholar 

  85. Currà, A. et al. Drug-induced changes in cortical inhibition in medication overuse headache. Cephalalgia 31, 1282–1290 (2011).

    Article  PubMed  Google Scholar 

  86. Di Clemente, L. et al. Interictal habituation deficit of the nociceptive blink reflex: an endophenotypic marker for presymptomatic migraine? Brain 130, 765–770 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Coppola, G., Pierelli, F. & Schoenen, J. Is the cerebral cortex hyperexcitable or hyperresponsive in migraine? Cephalalgia 27, 1427–1439 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Knott, J. R. & Irwin, D. A. Anxiety, stress and the contingent negative variation. Arch. Gen. Psychiatry 29, 538–541 (1973).

    Article  CAS  PubMed  Google Scholar 

  89. Coppola, G. et al. Somatosensory evoked high-frequency oscillations reflecting thalamo-cortical activity are decreased in migraine patients between attacks. Brain 128, 98–103 (2005).

    Article  PubMed  Google Scholar 

  90. Sakuma, K., Takeshima, T., Ishizaki, K. & Nakashima, K. Somatosensory evoked high-frequency oscillations in migraine patients. Clin. Neurophysiol. 115, 1857–1862 (2004).

    Article  PubMed  Google Scholar 

  91. Lai, K. L., Liao, K. K., Fuh, J. L. & Wang, S. J. Subcortical hyperexcitability in migraineurs: a high-frequency oscillation study. Can. J. Neurol. Sci. 38, 309–316 (2011).

    Article  PubMed  Google Scholar 

  92. Ambrosini, A., De Pasqua, V., Afra, J., Sándor, P. S. & Schoenen, J. Reduced gating of middle-latency auditory evoked potentials (P50) in migraine patients: another indication of abnormal sensory processing? Neurosci. Lett. 22, 132–134 (2001).

    Article  Google Scholar 

  93. Coppola, G. et al. Interictal abnormalities of gamma band activity in visual evoked responses in migraine: an indication of thalamocortical dysrhythmia? Cephalalgia 27, 1360–1367 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Llinás, R. R., Ribary, U., Jeanmonod, D., Kronberg, E. & Mitra, P. P. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc. Natl Acad. Sci. USA 96, 15222–15227 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Llinás, R. R., Urbano, F. J., Leznik, E., Ramírez, R. R. & van Marle, H. J. Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci. 28, 325–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Bjørk, M. H. & Sand, T. Quantitative EEG power and asymmetry increase 36 h before a migraine attack. Cephalalgia 28, 960–968 (2008).

    Article  PubMed  Google Scholar 

  97. Bjørk, M. H. et al. The occipital alpha rhythm related to the “migraine cycle” and headache burden: a blinded, controlled longitudinal study. Clin. Neurophysiol. 120, 464–471 (2009).

    Article  PubMed  Google Scholar 

  98. Buchsbaum, M. & Silverman, J. Stimulus intensity control and the cortical evoked response. Psychosom. Med. 30, 12–22 (1968).

    Article  CAS  PubMed  Google Scholar 

  99. Hegerl, U. & Juckel, G. Intensity dependence of auditory evoked potentials as an indicator of central serotonergic neurotransmission: a new hypothesis. Biol. Psychiatry 33, 173–187 (1993).

    Article  CAS  PubMed  Google Scholar 

  100. Drake, M. E., Pakalnis, A. & Padamadan, H. Long-latency auditory event related potentials in migraine. Headache 29, 239–241 (1989).

    Article  PubMed  Google Scholar 

  101. Ambrosini, A., Coppola, G., Gérardy, P. Y., Pierelli, F. & Schoenen, J. Intensity dependence of auditory evoked potentials during light interference in migraine. Neurosci. Lett. 492, 80–83 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Proietti-Cecchini, A., Afra, J. & Schoenen, J. Intensity dependence of the cortical auditory evoked potentials as a surrogate marker of central nervous system serotonin transmission in man: demonstration of a central effect for the 5HT1B/1D agonist zolmitriptan (311C90, Zomig). Cephalalgia 17, 849–854 (1997).

    Article  CAS  PubMed  Google Scholar 

  103. Juckel, G., Hegerl, U., Molnár, M., Csépe, V. & Karmos, G. Auditory evoked potentials reflect serotonergic neuronal activity—a study in behaving cats administered drugs acting on 5-HT1A autoreceptors in the dorsal raphe nucleus. Neuropsychopharmacology 21, 710–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Linka, T., Sartory, G., Gastpar, M., Scherbaum, N. & Müller, B. W. Clinical symptoms of major depression are associated with the intensity dependence of auditory event-related potential components. Psychiatry Res. 169, 139–143 (2009).

    Article  PubMed  Google Scholar 

  105. Linka, T., Müller, B. W., Bender, S. & Sartory, G. The intensity dependence of the auditory evoked N1 component as a predictor of response to Citalopram treatment in patients with major depression. Neurosci. Lett. 367, 375–378 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Wang, W., Wang, Y. H., Fu, X. M., Sun, Z. M. & Schoenen, J. Auditory evoked potentials and multiple personality measures in migraine and post-traumatic headaches. Pain 79, 235–242 (1999).

    Article  PubMed  Google Scholar 

  107. Sándor, P. S., Afra, J., Ambrosini, A. & Schoenen, J. Prophylactic treatment of migraine with beta-blockers and riboflavin: differential effects on the intensity dependence of auditory evoked cortical potentials. Headache 40, 30–35 (2000).

    Article  PubMed  Google Scholar 

  108. Burstein, R., Cutrer, M. F. & Yarnitsky, D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain 123, 1703–1709 (2000).

    Article  PubMed  Google Scholar 

  109. Buchgreitz, L., Lyngberg, A. C., Bendtsen, L. & Jensen, R. Frequency of headache is related to sensitization: a population study. Pain 123, 19–27 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Eide, P. K. Wind-up and the NMDA receptor complex from a clinical perspective. Eur. J. Pain 4, 5–15 (2000).

    Article  CAS  PubMed  Google Scholar 

  111. Mendell, L. M. & Wall, P. D. Responses of single dorsal cord cells to peripheral cutaneous unmyelinated fibres. Nature 206, 97–99 (1965).

    Article  CAS  PubMed  Google Scholar 

  112. Rhudy, J. L. et al. Pain catastrophizing is related to temporal summation of pain but not temporal summation of the nociceptive flexion reflex. Pain 152, 794–801 (2011).

    Article  PubMed  Google Scholar 

  113. Arendt-Nielsen, L., Brennum, J., Sindrup, S. & Bak, P. Electrophysiological and psychophysical quantification of temporal summation in the human nociceptive system. Eur. J. Appl. Physiol. Occup. Physiol. 68, 266–273 (1994).

    Article  CAS  PubMed  Google Scholar 

  114. Sandrini, G. et al. The lower limb flexion reflex in humans. Prog. Neurobiol. 77, 353–395 (2005).

    Article  PubMed  Google Scholar 

  115. You, H. J., Dahl, M. C., Chen, J. & Arendt-Nielsen, L. Simultaneous recordings of wind-up of paired spinal dorsal horn nociceptive neuron and nociceptive flexion reflex in rats. Brain Res. 960, 235–245 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Arendt-Nielsen, L. et al. The effect of N-methyl-D-aspartate antagonist (ketamine) on single and repeated nociceptive stimuli: a placebo controlled experimental human study. Anesth. Analg. 81, 63–68 (1995).

    CAS  PubMed  Google Scholar 

  117. Serrao, M. et al. Effects of diffuse noxious inhibitory controls on temporal summation of the NWR reflex in humans. Pain 112, 353–360 (2004).

    Article  PubMed  Google Scholar 

  118. Perrotta, A. et al. Sensitisation of spinal cord pain processing in medication overuse headache involves supraspinal pain control. Cephalalgia 30, 272–284 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Perrotta, A. et al. Oral nitric-oxide donor glyceryl-trinitrate induces sensitization in spinal cord pain processing in migraineurs: a double-blind, placebo-controlled, cross-over study. Eur. J. Pain 15, 482–490 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Yarnitsky, D. et al. Recommendations on terminology and practice of psychophysical DNIC testing. Eur. J. Pain 14, 339 (2010).

    Article  PubMed  Google Scholar 

  121. Perrotta, A. et al. Acute reduction of anandamide-hydrolase (FAAH) activity is coupled with a reduction of nociceptive pathways facilitation in medication-overuse headache subjects after withdrawal treatment. Headache 52, 1350–1361 (2012).

    Article  PubMed  Google Scholar 

  122. Giffin, N. J., Katsarava, Z., Pfundstein, A., Ellrich, J. & Kaube, H. The effect of multiple stimuli on the modulation of the 'nociceptive' blink reflex. Pain 108, 124–128 (2004).

    Article  CAS  PubMed  Google Scholar 

  123. Bromm, B. & Treede, R. D. Nerve fibre discharges, cerebral potentials and sensations induced by CO2 laser stimulation. Hum. Neurobiol. 3, 33–40 (1984).

    CAS  PubMed  Google Scholar 

  124. Garcia-Larrea, L., Frot, M. & Valeriani, M. Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiol. Clin. 33, 279–292 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. de Tommaso, M. et al. Topographic and dipolar analysis of laser-evoked potentials during migraine attack. Headache 44, 947–960 (2004).

    Article  PubMed  Google Scholar 

  126. de Tommaso, M. et al. Changes in cortical processing of pain in chronic migraine. Headache 45, 1208–1218 (2005).

    Article  PubMed  Google Scholar 

  127. Valeriani, M. et al. Short-term plastic changes of the human nociceptive system following acute pain induced by capsaicin. Clin. Neurophysiol. 114, 1879–1890 (2003).

    Article  PubMed  Google Scholar 

  128. Buchgreitz, L., Egsgaard, L. L., Jensen, R., Arendt-Nielsen, L. & Bendtsen, L. Abnormal brain processing of pain in migraine without aura: a high-density EEG brain mapping study. Cephalalgia 30, 191–199 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Valeriani, M. et al. Nociceptive contribution to the evoked potentials after painful intramuscular electrical stimulation. Neurosci. Res. 60, 170–175 (2008).

    Article  PubMed  Google Scholar 

  130. Valeriani, M. et al. Reduced habituation to experimental pain in migraine patients: a CO2 laser evoked potential study. Pain 105, 57–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Lev, R., Granovsky, Y. & Yarnitsky, D. Enhanced pain expectation in migraine: EEG-based evidence for impaired prefrontal function. Headache 53, 1054–1070 (2013).

    Article  PubMed  Google Scholar 

  132. de Tommaso, M. et al. Lack of habituation of nociceptive evoked responses and pain sensitivity during migraine attack. Clin. Neurophysiol. 116, 1254–1264 (2005).

    Article  PubMed  Google Scholar 

  133. de Tommaso, M., Marinazzo, D. & Stramaglia, S. The measure of randomness by leave-one-out prediction error in the analysis of EEG after laser painful stimulation in healthy subjects and migraine patients. Clin. Neurophysiol. 116, 2775–2782 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Ayzenberg, I. et al. Central sensitization of the trigeminal and somatic nociceptive systems in medication overuse headache mainly involves cerebral supraspinal structures. Cephalalgia 26, 1106–1114 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. Antal, A., Arlt, S., Nitsche, M. A., Chadaide, Z. & Paulus, W. Higher variability of phosphene thresholds in migraineurs than in controls: a consecutive transcranial magnetic stimulation study. Cephalalgia 26, 865–870 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Antal, A. et al. Homeostatic metaplasticity of the motor cortex is altered during headache-free intervals in migraine with aura. Cereb. Cortex 18, 2701–2705 (2008).

    Article  PubMed  Google Scholar 

  137. Siniatchkin, M. et al. Abnormal changes of synaptic excitability in migraine with aura. Cereb. Cortex 22, 2207–2216 (2012).

    Article  PubMed  Google Scholar 

  138. Brighina, F. et al. Abnormal facilitatory mechanisms in motor cortex of migraine with aura. Eur. J. Pain 15, 928–935 (2011).

    Article  PubMed  Google Scholar 

  139. Pierelli, F., Iacovelli, E., Bracaglia, M., Serrao, M. & Coppola, G. Abnormal sensorimotor plasticity in migraine without aura patients. Pain 154, 1738–1742 (2013).

    Article  PubMed  Google Scholar 

  140. Adjamian, P., Sereda, M., Zobay, O., Hall, D. A. & Palmer, A. R. Neuromagnetic indicators of tinnitus and tinnitus masking in patients with and without hearing loss. J. Assoc. Res. Otolaryngol. 13, 715–731 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Walton, K. D., Dubois, M. & Llinás, R. R. Abnormal thalamocortical activity in patients with complex regional pain syndrome (CRPS) type. Pain 150, 41–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Stern, J., Jeanmonod, D. & Sarnthein, J. Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients. Neuroimage 31, 721–731 (2006).

    Article  PubMed  Google Scholar 

  143. Stankewitz, A., Schulz, E. & May, A. Neuronal correlates of impaired habituation in response to repeated trigemino-nociceptive but not to olfactory input in migraineurs: an fMRI study. Cephalalgia 33, 256–265 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Mainero, C., Boshyan, J. & Hadjikhani, N. Altered functional magnetic resonance imaging resting-state connectivity in periaqueductal gray networks in migraine. Ann. Neurol. 70, 838–845 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Russo, A. et al. Pain processing in patients with migraine: an event-related fMRI study during trigeminal nociceptive stimulation. J. Neurol. 259, 1903–1912 (2012).

    Article  PubMed  Google Scholar 

  146. Tessitore, A. et al. Interictal cortical reorganization in episodic migraine without aura: an event-related fMRI study during parametric trigeminal nociceptive stimulation. Neurol. Sci. 32 (Suppl. 1), S165–S167 (2011).

    Article  PubMed  Google Scholar 

  147. Szabó, N. et al. White matter microstructural alterations in migraine: a diffusion-weighted MRI study. Pain 153, 651–656 (2012).

    Article  PubMed  Google Scholar 

  148. Burstein, R. et al. Thalamic sensitization transforms localized pain into widespread allodynia. Ann. Neurol. 68, 81–91 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Coppola, G. et al. Dynamic changes in thalamic microstructure of migraine without aura patients: a diffusion tensor magnetic resonance imaging study. Eur. J. Neurol. http://dx.doi.org/10.1111/ene.12296.

  150. Viganò, A. et al. Transcranial Direct Current Stimulation (tDCS) of the visual cortex: a proof-of-concept study based on interictal electrophysiological abnormalities in migraine. J. Headache Pain 14, 23 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Teepker, M. et al. Low-frequency rTMS of the vertex in the prophylactic treatment of migraine. Cephalalgia 30, 137–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  152. Antal, A. et al. Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine. Cephalalgia 31, 820–828 (2011).

    Article  PubMed  Google Scholar 

  153. Marinazzo, D., Liao, W., Chen, H. & Stramaglia, S. Nonlinear connectivity by Granger causality. Neuroimage 15, 330–338 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

M.d.T., A.A., F.B., G.C., A.P., F.P., G.S. and M.V. participated in writing this Review on behalf of the Italian Group for Neurophysiology of Migraine, created by members of the Italian Society for the Study of Headaches and the Italian Society of Clinical Neurophysiology.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for and participated in writing of the article. In addition,M.d.T., A.A., G.C., F.P. and J.S. contributed to discussion of content, and M.d.T., A.A. and J.S. contributed to reviewing and/or editing of the manuscript before submission. M.d.T. and A.A. contributed equally to this manuscript.

Corresponding author

Correspondence to Anna Ambrosini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Tommaso, M., Ambrosini, A., Brighina, F. et al. Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol 10, 144–155 (2014). https://doi.org/10.1038/nrneurol.2014.14

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.14

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing