Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Disentangling the heterogeneity of autism spectrum disorder through genetic findings

Key Points

  • Over the past 5 years, researchers have identified many genetic factors that increase the risk of autism spectrum disorder (ASD), and that might shed light on more-homogeneous subgroups within the spectrum

  • The most robustly identified genetic risks for ASD are rare mutations with large effect; studies have been underpowered to detect common genetic variation

  • The role of rare genetic variants supports the relevance of studying monogenic disorders, such as tuberous sclerosis complex, for understanding ASD pathophysiology

  • The most parsimonious explanation for the male predominance in ASD involves the presence of protective factors that reduce the risk of ASD in females

  • Many genetic mutations associated with ASD also confer high risk of comorbidities including epilepsy, motor impairment and sleep disturbance

  • Genetic testing including chromosomal microarray analysis is warranted and clinically indicated for all suspected cases of ASD

Abstract

Autism spectrum disorder (ASD) represents a heterogeneous group of disorders, which presents a substantial challenge to diagnosis and treatment. Over the past decade, considerable progress has been made in the identification of genetic risk factors for ASD that define specific mechanisms and pathways underlying the associated behavioural deficits. In this Review, we discuss how some of the latest advances in the genetics of ASD have facilitated parsing of the phenotypic heterogeneity of this disorder. We argue that only through such advances will we begin to define endophenotypes that can benefit from targeted, hypothesis-driven treatments. We review the latest technologies used to identify and characterize the genetics underlying ASD and then consider three themes—single-gene disorders, the gender bias in ASD, and the genetics of neurological comorbidities—that highlight ways in which we can use genetics to define the many phenotypes within the autism spectrum. We also present current clinical guidelines for genetic testing in ASD and their implications for prognosis and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: From genes to brain to behaviour—a conceptual framework.
Figure 2: Proposed mechanism underlying the relationship between epilepsy and ASD.
Figure 3: Recommendations for clinical genetic testing in children with ASD.

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) (American Psychiatric Association, 2013).

  2. Geschwind, D. H. & Levitt, P. Autism spectrum disorders: developmental disconnection syndromes. Curr. Opin. Neurobiol. 17, 103–111 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Hus, V., Pickles, A., Cook, E. H. Jr, Risi, S. & Lord, C. Using the autism diagnostic interview—revised to increase phenotypic homogeneity in genetic studies of autism. Biol. Psychiatry 61, 438–448 (2007).

    Article  PubMed  Google Scholar 

  4. Anderson, D. K. et al. Patterns of growth in verbal abilities among children with autism spectrum disorder. J. Consult. Clin. Psychol. 75, 594–604 (2007).

    Article  PubMed  Google Scholar 

  5. Burrell, R. A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Belgard, T. G., Jankovic, I., Lowe, J. K. & Geschwind, D. H. Population structure confounds autism genetic classifier. Mol. Psychiatry http://dx.doi.org/10.1038/mp.2013.34.

  7. Smalley, S. L., Asarnow, R. F. & Spence, M. A. Autism and genetics. A decade of research. Arch. Gen. Psychiatry 45, 953–961 (1988).

    Article  CAS  PubMed  Google Scholar 

  8. Neale, B. M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. O'Roak, B. J. et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature 485, 246–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Malhotra, D. & Sebat, J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell 148, 1223–1241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heil, K. M. & Schaaf, C. P. The genetics of autism spectrum disorders—a guide for clinicians. Curr. Psychiatry Rep. 15, 334 (2013).

    Article  PubMed  Google Scholar 

  12. Stein, J. L., Parikshak, N. N. & Geschwind, D. H. Rare inherited variation in autism: beginning to see the forest and a few trees. Neuron 77, 209–211 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanders, S. J. et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485, 237–241 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, T. W. et al. Using whole-exome sequencing to identify inherited causes of autism. Neuron 77, 259–273 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Berg, J. M. & Geschwind, D. H. Autism genetics: searching for specificity and convergence. Genome Biol. 13, 247 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang, J. & Manning, B. D. The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179–190 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Choi, Y. J. et al. Tuberous sclerosis complex proteins control axon formation. Genes Dev. 22, 2485–2495 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Curatolo, P., Bombardieri, R. & Jozwiak, S. Tuberous sclerosis. Lancet 372, 657–668 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Jeste, S. S., Sahin, M., Bolton, P., Ploubidis, G. B. & Humphrey, A. Characterization of autism in young children with tuberous sclerosis complex. J. Child Neurol. 23, 520–525 (2008).

    Article  PubMed  Google Scholar 

  20. Bolton, P. F., Park, R. J., Higgins, J. N., Griffiths, P. D. & Pickles, A. Neuro-epileptic determinants of autism spectrum disorders in tuberous sclerosis complex. Brain 125, 1247–1255 (2002).

    Article  PubMed  Google Scholar 

  21. Jambaque, I. et al. Neuropsychological aspects of tuberous sclerosis in relation to epilepsy and MRI findings. Dev. Med. Child Neurol. 33, 698–705 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Eluvathingal, T. J. et al. Cerebellar lesions in tuberous sclerosis complex: neurobehavioral and neuroimaging correlates. J. Child Neurol. 21, 846–851 (2006).

    Article  PubMed  Google Scholar 

  23. Weber, A. M., Egelhoff, J. C., McKellop, J. M. & Franz, D. N. Autism and the cerebellum: evidence from tuberous sclerosis. J. Autism Dev. Disord. 30, 511–517 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Nie, D. et al. Tsc2–Rheb signaling regulates EphA-mediated axon guidance. Nat. Neurosci. 13, 163–172 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Meikle, L. et al. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. J. Neurosci. 27, 5546–5558 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Widjaja, E. et al. Diffusion tensor imaging identifies changes in normal-appearing white matter within the epileptogenic zone in tuberous sclerosis complex. Epilepsy Res. 89, 246–253 (2010).

    Article  PubMed  Google Scholar 

  27. Garaci, F. G. et al. Increased brain apparent diffusion coefficient in tuberous sclerosis. Radiology 232, 461–465 (2004).

    Article  PubMed  Google Scholar 

  28. Krishnan, M. L. et al. Diffusion features of white matter in tuberous sclerosis with tractography. Pediatr. Neurol. 42, 101–106 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Peng, S. S., Lee, W. T., Wang, Y. H. & Huang, K. M. Cerebral diffusion tensor images in children with tuberous sclerosis: a preliminary report. Pediatr. Radiol. 34, 387–392 (2004).

    Article  PubMed  Google Scholar 

  30. Ehninger, D. et al. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat. Med. 14, 843–848 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goorden, S. M., van Woerden, G. M., van der Weerd, L., Cheadle, J. P. & Elgersma, Y. Cognitive deficits in Tsc1+/− mice in the absence of cerebral lesions and seizures. Ann. Neurol. 62, 648–655 (2007).

    Article  PubMed  Google Scholar 

  32. Tsai, P. T. et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488, 647–651 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bissler, J. J. et al. Everolimus for angiomyolipoma associated with tuberous sclerosis complex or sporadic lymphangioleiomyomatosis (EXIST-2): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet 381, 817–824 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Bissler, J. J. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med. 358, 140–151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  36. Sahin, M. Targeted treatment trials for tuberous sclerosis and autism: no longer a dream. Curr. Opin. Neurobiol. 22, 895–901 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berry-Kravis, E. et al. A pilot open label, single dose trial of fenobam in adults with fragile X syndrome. J. Med. Genet. 46, 266–271 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Berry-Kravis, E. et al. Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome. J. Dev. Behav. Pediatr. 29, 293–302 (2008).

    Article  PubMed  Google Scholar 

  39. Berry-Kravis, E. M. et al. Effects of STX209 (arbaclofen) on neurobehavioral function in children and adults with fragile X syndrome: a randomized, controlled, phase 2 trial. Sci. Transl. Med. 4, 152ra127 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Paribello, C. et al. Open-label add-on treatment trial of minocycline in fragile X syndrome. BMC Neurol. 10, 91 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pop, A. S., Gomez-Mancilla, B., Neri, G., Willemsen, R. & Gasparini, F. Fragile X syndrome: a preclinical review on metabotropic glutamate receptor 5 (mGluR5) antagonists and drug development. Psychopharmacology (Berl.) http://dx.doi.org/1007/s00213-013-3330–3.

  42. Alarcon, M. et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am. J. Hum. Genet. 82, 150–159 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arking, D. E. et al. A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am. J. Hum. Genet. 82, 160–164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Scott-Van Zeeland, A. A. et al. Altered functional connectivity in frontal lobe circuits is associated with variation in the autism risk gene CNTNAP2. Sci. Transl. Med. 2, 56ra80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abrahams, B. S. et al. Genome-wide analyses of human perisylvian cerebral cortical patterning. Proc. Natl Acad. Sci. USA 104, 17849–17854 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Penagarikano, O. & Geschwind, D. H. What does CNTNAP2 reveal about autism spectrum disorder? Trends Mol. Med. 18, 156–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fombonne, E. Epidemiology of pervasive developmental disorders. Pediatr. Res. 65, 591–598 (2009).

    Article  PubMed  Google Scholar 

  48. Prevalence of autism spectrum disorders—Autism and Developmental Disabilities Monitoring Network, 14 sites, United States, 2008. MMWR Surveill. Summ. 61, 1–19 (2012).

  49. Lai, M. C. et al. A behavioral comparison of male and female adults with high functioning autism spectrum conditions. PLoS ONE 6, e20835 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zwaigenbaum, L. et al. Sex differences in children with autism spectrum disorder identified within a high-risk infant cohort. J. Autism Dev. Disord. 42, 2585–2596 (2012).

    Article  PubMed  Google Scholar 

  51. Szatmari, P. et al. Sex differences in repetitive stereotyped behaviors in autism: implications for genetic liability. Am. J. Med. Genet. B Neuropsychiatr. Genet. 159B, 5–12 (2012).

    Article  PubMed  Google Scholar 

  52. Hattier, M. A., Matson, J. L., Tureck, K. & Horovitz, M. The effects of gender and age on repetitive and/or restricted behaviors and interests in adults with autism spectrum disorders and intellectual disability. Res. Dev. Disabil. 32, 2346–2351 (2011).

    Article  PubMed  Google Scholar 

  53. Bolte, S., Duketis, E., Poustka, F. & Holtmann, M. Sex differences in cognitive domains and their clinical correlates in higher-functioning autism spectrum disorders. Autism 15, 497–511 (2011).

    Article  PubMed  Google Scholar 

  54. Solomon, M., Miller, M., Taylor, S. L., Hinshaw, S. P. & Carter, C. S. Autism symptoms and internalizing psychopathology in girls and boys with autism spectrum disorders. J. Autism Dev. Disord. 42, 48–59 (2012).

    Article  PubMed  Google Scholar 

  55. Dworzynski, K., Ronald, A., Bolton, P. & Happe, F. How different are girls and boys above and below the diagnostic threshold for autism spectrum disorders? J. Am. Acad. Child Adolesc. Psychiatry 51, 788–797 (2012).

    Article  PubMed  Google Scholar 

  56. Giarelli, E. et al. Sex differences in the evaluation and diagnosis of autism spectrum disorders among children. Disabil. Health J. 3, 107–116 (2010).

    Article  PubMed  Google Scholar 

  57. Constantino, J. N. & Charman, T. Gender bias, female resilience, and the sex ratio in autism. J. Am. Acad. Child Adolesc. Psychiatry 51, 756–758 (2012).

    Article  PubMed  Google Scholar 

  58. Werling, D. M. & Geschwind, D. H. Understanding sex bias in autism spectrum disorder. Proc. Natl Acad. Sci. USA 110, 4868–4869 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wiznitzer, M. Autism and tuberous sclerosis. J. Child Neurol. 19, 675–679 (2004).

    Article  PubMed  Google Scholar 

  60. Harrison, J. E. & Bolton, P. F. Annotation: tuberous sclerosis. J. Child Psychol. Psychiatry 38, 603–614 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Robinson, E. B., Lichtenstein, P., Anckarsater, H., Happe, F. & Ronald, A. Examining and interpreting the female protective effect against autistic behavior. Proc. Natl Acad. Sci. USA 110, 5258–5262 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sato, D. et al. SHANK1 deletions in males with autism spectrum disorder. Am. J. Hum. Genet. 90, 879–887 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Donnelly, S. L. et al. Female with autistic disorder and monosomy X (Turner syndrome): parent-of-origin effect of the X chromosome. Am. J. Med. Genet. 96, 312–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  64. van Rijn, S., Bierman, M., Bruining, H. & Swaab, H. Vulnerability for autism traits in boys and men with an extra X chromosome (47,XXY): the mediating role of cognitive flexibility. J. Psychiatr. Res. 46, 1300–1306 (2012).

    Article  PubMed  Google Scholar 

  65. Geier, D. A., Kern, J. K., King, P. G., Sykes, L. K. & Geier, M. R. An evaluation of the role and treatment of elevated male hormones in autism spectrum disorders. Acta Neurobiol. Exp. (Wars.) 72, 1–17 (2012).

    Google Scholar 

  66. Jeste, S. S. The neurology of autism spectrum disorders. Curr. Opin. Neurol. 24, 132–139 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Green, D. et al. Impairment in movement skills of children with autistic spectrum disorders. Dev. Med. Child Neurol. 51, 311–316 (2009).

    Article  PubMed  Google Scholar 

  68. Fournier, K. A., Hass, C. J., Naik, S. K., Lodha, N. & Cauraugh, J. H. Motor coordination in autism spectrum disorders: a synthesis and meta-analysis. J. Autism. Dev. Disord. 40, 1227–1240 (2010).

    Article  PubMed  Google Scholar 

  69. Dziuk, M. A. et al. Dyspraxia in autism: association with motor, social, and communicative deficits. Dev. Med. Child Neurol. 49, 734–739 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Hilton, C. L., Zhang, Y., Whilte, M. R., Klohr, C. L. & Constantino, J. Motor impairment in sibling pairs concordant and discordant for autism spectrum disorders. Autism 16, 430–441 (2012).

    Article  PubMed  Google Scholar 

  71. Krakowiak, P., Goodlin-Jones, B., Hertz-Picciotto, I., Croen, L. A. & Hansen, R. L. Sleep problems in children with autism spectrum disorders, developmental delays, and typical development: a population-based study. J. Sleep Res. 17, 197–206 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wiggs, L. & Stores, G. Severe sleep disturbance and daytime challenging behaviour in children with severe learning disabilities. J. Intellect. Disabil. Res. 40, 518–528 (1996).

    Article  PubMed  Google Scholar 

  73. Malow, B. A. et al. A practice pathway for the identification, evaluation, and management of insomnia in children and adolescents with autism spectrum disorders. Pediatrics 130 (Suppl. 2), S106–S124 (2012).

    Article  PubMed  Google Scholar 

  74. Spence, S. J. & Schneider, M. T. The role of epilepsy and epileptiform EEGs in autism spectrum disorders. Pediatr. Res. 65, 599–606 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Brooks-Kayal, A. Epilepsy and autism spectrum disorders: are there common developmental mechanisms? Brain Dev. 32, 731–738 (2010).

    Article  PubMed  Google Scholar 

  76. Ben-Yizhak, N. et al. Pragmatic language and school related linguistic abilities in siblings of children with autism. J. Autism Dev. Disord. 41, 750–760 (2011).

    Article  PubMed  Google Scholar 

  77. Swann, J. W. The effects of seizures on the connectivity and circuitry of the developing brain. Ment. Retard. Dev. Disabil. Res. Rev. 10, 96–100 (2004).

    Article  PubMed  Google Scholar 

  78. Jozwiak, S. et al. Antiepileptic treatment before the onset of seizures reduces epilepsy severity and risk of mental retardation in infants with tuberous sclerosis complex. Eur. J. Paediatr. Neurol. 15, 424–431 (2011).

    Article  PubMed  Google Scholar 

  79. Viscidi, E. W. et al. Clinical characteristics of children with autism spectrum disorder and co-occurring epilepsy. PLoS ONE 8, e67797 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Urraca, N. et al. The interstitial duplication 15q11.2–q13 syndrome includes autism, mild facial anomalies and a characteristic EEG signature. Autism Res. 6, 268–279 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Filipek, P. A. et al. Practice parameter: screening and diagnosis of autism: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Child Neurology Society. Neurology 55, 468–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Schaefer, G. B. & Mendelsohn, N. J. Genetics evaluation for the etiologic diagnosis of autism spectrum disorders. Genet. Med. 10, 4–12 (2008).

    Article  PubMed  Google Scholar 

  83. Schaefer, G. B. & Mendelsohn, N. J. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet. Med. 15, 399–407 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Ozonoff, S. et al. Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics 128, e488–e495 (2011).

    PubMed  PubMed Central  Google Scholar 

  85. Bolton, P. F. & Griffiths, P. D. Association of tuberous sclerosis of temporal lobes with autism and atypical autism. Lancet 349, 392–395 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. S. Jeste researched data for the article. Both authors made substantial contributions to discussion of the content, writing of the article, and to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Shafali S. Jeste.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeste, S., Geschwind, D. Disentangling the heterogeneity of autism spectrum disorder through genetic findings. Nat Rev Neurol 10, 74–81 (2014). https://doi.org/10.1038/nrneurol.2013.278

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2013.278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing