Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The effect of vitamin D status on risk factors for cardiovascular disease

A Correction to this article was published on 01 October 2013

This article has been updated

Abstract

Vitamin-D-related pathways are implicated in various endocrine, inflammatory and endothelial functions. An estimated 1 billion people in the world have vitamin D deficiency or insufficiency, and undiagnosed vitamin D deficiency is common. Vitamin D deficiency is associated with substantial increases in the incidence of hypertension, hyperlipidaemia, myocardial infarction and stroke, as well as in diseases such as chronic kidney disease and type 2 diabetes. Low vitamin D levels also upregulate the renin–angiotensin–aldosterone system, increase inflammation and cause endothelial dysfunction. However, the role of vitamin D deficiency in cardiovascular morbidity and mortality is an emerging and hotly debated topic. Epidemiological studies suggest an association between low vitamin D levels and risk factors for cardiovascular disease, but a causal relationship has not been established, and clinical trials and meta-analyses have not demonstrated convincing evidence that vitamin D therapy improves cardiovascular outcomes. Some evidence suggests that vitamin D status is a biomarker of lifestyle, since unhealthy and sedentary lifestyles are associated with vitamin D insufficiency or deficiency and are also risk factors for cardiovascular complications.

Key Points

  • Vitamin D deficiency is associated with substantial increases in the incidence of hypertension, hyperlipidaemia, myocardial infarction, stroke, chronic kidney disease and diabetes

  • Low vitamin D levels upregulate the renin–angiotensin–aldosterone system, increase inflammation and cause endothelial dysfunction, among other potentially harmful effects

  • Some evidence suggests that vitamin D status is a biomarker of lifestyle

  • Less healthy and less active lifestyles are associated with vitamin D insufficiency or deficiency and are also risk factors for cardiovascular complications

  • Clinical trials and meta-analyses have not demonstrated a statistically significant benefit of vitamin D therapy on cardiovascular outcomes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vitamin-D-related pathways that contribute to cardiovascular morbidity and mortality.
Figure 2: Effect of vitamin D status on cardiovascular disease in children with chronic kidney disease.

Similar content being viewed by others

Change history

  • 01 October 2013

    In the originally published article the values in Box 1 were incorrect. The insufficiency range should have been 50–74 nmol/l and the optimal range should have been 75–100 nmol/l. The errors have been corrected for the HTML and PDF versions of the article.

References

  1. Hewison, M. et al. Extra-renal 25-hydroxyvitamin D3-1α-hydroxylase in human health and disease. J. Steroid Biochem. Mol. Biol. 103, 316–321 (2007).

    CAS  PubMed  Google Scholar 

  2. Holick, M. F. Vitamin D deficiency. N. Engl. J. Med. 357, 266–281 (2007).

    CAS  PubMed  Google Scholar 

  3. Holick, M. F. et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 1911–1930 (2011).

    CAS  PubMed  Google Scholar 

  4. Clements, M. R. et al. The role of 1,25-dihydroxyvitamin D in the mechanism of acquired vitamin D deficiency. Clin. Endocrinol. (Oxf.) 37, 17–27 (1992).

    CAS  Google Scholar 

  5. Jones, G. Pharmacokinetics of vitamin D toxicity. Am. J. Clin. Nutr. 88, 582S–586S (2008).

    CAS  PubMed  Google Scholar 

  6. Gordon, C. M., DePeter, K. C., Feldman, H. A., Grace, E. & Emans, S. J. Prevalence of vitamin D deficiency among healthy adolescents. Arch. Pediatr. Adolesc. Med. 158, 531–537 (2004).

    PubMed  Google Scholar 

  7. Sullivan, S. S., Rosen, C. J., Halteman, W. A., Chen, T. C. & Holick, M. F. Adolescent girls in Maine at risk for vitamin D insufficiency. J. Am. Diet Assoc. 105, 971–974 (2005).

    CAS  PubMed  Google Scholar 

  8. Nesby-O'Dell, S. et al. Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: Third National Health and Nutrition Examination Survey, 1988–1994. Am. J. Clin. Nutr. 76, 187–192 (2002).

    CAS  PubMed  Google Scholar 

  9. Tangpricha, V., Pearce, E. N., Chen, T. C. & Holick, M. F. Vitamin D insufficiency among free-living healthy young adults. Am. J. Med. 112, 659–662 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bischoff-Ferrari, H. A. et al. Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA. 293, 2257–2264 (2005).

    CAS  PubMed  Google Scholar 

  11. Boonen, S. et al. Addressing the musculoskeletal components of fracture risk with calcium and vitamin D: a review of the evidence. Calcif. Tissue Int. 78, 257–270 (2006).

    CAS  PubMed  Google Scholar 

  12. Hollis, B. W. & Wagner, C. L. Normal serum vitamin D levels. N. Engl. J. Med. 352, 515–516 (2005).

    CAS  PubMed  Google Scholar 

  13. Pilz, S. et al. Vitamin D, cardiovascular disease and mortality. Clin. Endocrinol. (Oxf). 75, 575–584 (2011).

    CAS  PubMed  Google Scholar 

  14. Anderson, J. L. et al. Relation of vitamin D deficiency to cardiovascular risk factors, disease status, and incident events in a general healthcare population. Am. J. Cardiol. 106, 963–968 (2010).

    CAS  PubMed  Google Scholar 

  15. Zhao, G., Ford, E. S., Li, C & Croft, J. B. Serum 25-hydroxyvitamin D levels and all-cause and cardiovascular disease mortality among US adults with hypertension: the NHANES linked mortality study. J. Hypertens. 30, 284–289 (2012).

    PubMed  Google Scholar 

  16. Institute of Medicine of the National Academies. Dietary Reference Intakes for Calcium and Vitamin D. [online], (2013).

  17. Li, Y. C. et al. 25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system. J. Clin. Invest. 110, 229–238 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Xiang, W. et al. Cardiac hypertrophy in vitamin D receptor knockout mice: role of the systemic and cardiac renin-angiotensin systems. Am. J. Physiol. Endocrinol. Metab. 288, E125–E132 (2005).

    CAS  PubMed  Google Scholar 

  19. Zhou, C. et al. Calcium-independent and 25(OH)2D3-dependent regulation of the renin-angiotensin system in 1-α-hydroxylase knockout mice. Kidney Int. 74, 170–179 (2008).

    CAS  PubMed  Google Scholar 

  20. Tiosano, D. et al. The renin-angiotensin system, blood pressure, and heart structure in patients with hereditary vitamin D-resistance rickets (HVDRR). J. Bone Miner. Res. 26, 2252–2260 (2011).

    CAS  PubMed  Google Scholar 

  21. Forman, J. P., Williams, J. S. & Fisher, N. D. Plasma 25-hydroxyvitamin D and regulation of the renin-angiotensin system in humans. Hypertension 55, 1283–1288 (2010).

    CAS  PubMed  Google Scholar 

  22. Zhang, Y. et al. Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J. Immunol. 188, 2127–2135 (2012).

    CAS  PubMed  Google Scholar 

  23. Canning, M. O., Grotenhuis, K., de Wit, H., Ruwhof, C. & Drexhage, H. A. 1-α,25-Dihydroxyvitamin D3 (25(OH)2D3) hampers the maturation of fully active immature dendritic cells from monocytes. Eur. J. Endocrinol. 145, 351–357 (2001).

    CAS  PubMed  Google Scholar 

  24. Zhu, Y., Mahon, B. D., Froicu, M. & Cantorna, M. T. Calcium and 1α, 25-dihydroxyvitamin D3 target the TNF-α pathway to suppress experimental inflammatory bowel disease. Eur. J. Immunol. 35, 217–224 (2005).

    CAS  PubMed  Google Scholar 

  25. Ross, R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

    CAS  PubMed  Google Scholar 

  26. Adams, D. H. & Shaw, S. Leucocyte-endothelial interactions and regulation of leucocyte migration. Lancet 343, 831–836 (1994).

    CAS  PubMed  Google Scholar 

  27. Zehnder, D. et al. Synthesis of 1,25–dihydroxyvitamin D3 by human endothelial cells is regulated by inflammatory cytokines: a novel autocrine determinant of vascular cell adhesion. J. Am. Soc. Nephrol. 13, 621–629 (2002).

    CAS  PubMed  Google Scholar 

  28. Suzuki, Y. et al. Anti-inflammatory effect of 1-α,25-dihydroxyvitamin D3 in human coronary arterial endothelial cells: Implication for the treatment of Kawasaki disease. J. Steroid Biochem. Mol. Biol. 113, 134–138 (2009).

    CAS  PubMed  Google Scholar 

  29. Dusso, A., Arcidiacono, M. V., Yang, J. & Tokumoto, M. Vitamin D inhibition of TACE and prevention of renal osteodystrophy and cardiovascular mortality. J. Steroid Biochem. Mol. Biol. 121, 193–198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta, G. K., Agrawal, T., Delcore, M. G., Mohiuddin, S. M. & Agrawal, D. K. Vitamin D deficiency induces cardiac hypertrophy and inflammation in epicardial adipose tissue in hypercholesterolemic swine. Exp. Mol. Pathol. 93, 82–90 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Takeda, M. et al. Oral administration of an active form of vitamin D3 (calcitriol) decreases atherosclerosis in mice by inducing regulatory T cells and immature dendritic cells with tolerogenic functions. Arterioscler. Thromb. Vasc. Biol. 30, 2495–2503 (2010).

    CAS  PubMed  Google Scholar 

  32. Räisänen-Sokolowski, A. K. et al. A vitamin D analog, MC1288, inhibits adventitial inflammation and suppresses intimal lesions in rat aortic allografts. Transplantation 63, 936–941 (1997).

    PubMed  Google Scholar 

  33. Torre-Amione, G. et al. Tumor necrosis factor-α and tumor necrosis factor receptors in the failing human heart. Circulation 93, 704–711 (1996).

    CAS  PubMed  Google Scholar 

  34. Ahmad, S. et al. Decreased myocardial expression of dystrophin and titin mRNA and protein in dilated cardiomyopathy: possibly an adverse effect of TNF-α. J. Clin. Immunol. 30, 520–530 (2010).

    CAS  PubMed  Google Scholar 

  35. Rauchhaus, M. et al. Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 102, 3060–3067 (2000).

    CAS  PubMed  Google Scholar 

  36. Yadav, A. K., Banerjee, D., Lal, A. & Jha, V. Vitamin D deficiency, CD4(+)CD28(null) cells and accelerated atherosclerosis in chronic kidney disease. Nephrology (Carlton) 17, 575–581 (2012).

    CAS  Google Scholar 

  37. Prietl, B. et al. Vitamin D supplementation and regulatory T cells in apparently healthy subjects: vitamin D treatment for autoimmune diseases? Isr. Med. Assoc. J. 12, 136–139 (2010).

    PubMed  Google Scholar 

  38. Caprio, M., Mammi, C. & Rosano, G. M. Vitamin D: a novel player in endothelial function and dysfunction. Arch. Med. Sci. 8, 4–5 (2012).

    PubMed  PubMed Central  Google Scholar 

  39. Tarcin, O. et al. Effect of vitamin D deficiency and replacement on endothelial function in asymptomatic subjects. J. Clin. Endocrinol. Metab. 94, 4023–4030 (2009).

    CAS  PubMed  Google Scholar 

  40. Raymond, M. A. et al. Endothelial stress induces the release of vitamin D-binding protein, a novel growth factor. Biochem. Biophys. Res. Commun. 338, 1374–1382 (2005).

    CAS  PubMed  Google Scholar 

  41. Aihara, K. et al. Disruption of nuclear vitamin D receptor gene causes enhanced thrombogenicity in mice. J. Biol. Chem. 279, 35798–35802 (2004).

    CAS  PubMed  Google Scholar 

  42. Wu-Wong, J. R., Nakane, M. & Ma, J. Vitamin D analogs modulate the expression of plasminogen activator inhibitor-1, thrombospondin-1 and thrombomodulin in human aortic smooth muscle cells. J. Vasc. Res. 44, 11–18 (2007).

    CAS  PubMed  Google Scholar 

  43. Giachelli, C. M. et al. Vascular calcification and inorganic phosphate. Am. J. Kidney Dis. 38, S34–S37 (2001).

    CAS  PubMed  Google Scholar 

  44. Jono, S. et al. Phosphate regulation of vascular smooth muscle cell calcification. Circ. Res. 87, E10–E17 (2000).

    CAS  PubMed  Google Scholar 

  45. Tintut, Y., Patel, J., Parhami, F. & Deemer, L. L. Tumor necrosis factor-α promotes in vitro calcification of vascular cells via the cAMP pathway. Circulation 102, 2636–2642 (2000).

    CAS  PubMed  Google Scholar 

  46. Giachelli, C. M. Vascular calcification: in vitro evidence for the role of inorganic phosphate. J. Am. Soc. Nephrol. 14, S300–S304 (2003).

    CAS  PubMed  Google Scholar 

  47. Aoshima, Y. et al. Vitamin D receptor activators inhibit vascular smooth muscle cell mineralization induced by phosphate and TNF-α. Nephrol. Dial.Transplant. 27, 1800–1806 (2012).

    CAS  PubMed  Google Scholar 

  48. Mizobuchi, M., Finch, J. L., Martin, D. R. & Slatopolsky, E. Differential effects of vitamin D receptor activators on vascular calcification in uremic rats. Kidney Int. 72, 709–715 (2007).

    CAS  PubMed  Google Scholar 

  49. Chitalia, N., Recio-Mayoral, A., Kaski, J. C. & Banerjee, D. Vitamin D deficiency and endothelial dysfunction in non-dialysis chronic kidney disease patients. Atherosclerosis 220, 265–268 (2012).

    CAS  PubMed  Google Scholar 

  50. London, G. M. et al. Mineral metabolism and arterial functions in end-stage renal disease: potential role of 25-hydroxyvitamin D deficiency. J. Am. Soc. Nephrol. 18, 613–620 (2007).

    CAS  PubMed  Google Scholar 

  51. Yiu, Y. F. et al. Vitamin D deficiency is associated with depletion of circulating endothelial progenitor cells and endothelial dysfunction in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 96, E830–E835 (2011).

    CAS  PubMed  Google Scholar 

  52. Jablonski, K. L., Chonchol, M., Pierce, G. L., Walker, A. E. & Seals, D. R. 25-Hydroxyvitamin D deficiency is associated with inflammation-linked vascular endothelial dysfunction in middle-aged and older adults. Hypertension 57, 63–69 (2011).

    CAS  PubMed  Google Scholar 

  53. Al Mheid, I. et al. Vitamin D status is associated with arterial stiffness and vascular dysfunction in healthy humans. J. Am. Coll. Cardiol. 58, 186–192 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bodyak, N. et al. Activated vitamin D attenuates left ventricular abnormalities induced by dietary sodium in Dahl salt-sensitive animals. Proc. Natl Acad. Sci. USA 104, 16810–16815 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, S. et al. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy. Circulation 124, 1838–1847 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sanna, B. et al. Modulatory calcineurin-interacting proteins 1 and 2 function as calcineurin facilitators in vivo. Proc. Natl Acad. Sci. USA 103, 7327–7332 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ornitz, D. M. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. Bioessays 22, 108–112 (2000).

    CAS  PubMed  Google Scholar 

  58. Wolf, M. Forging forward with 10 burning questions on FGF23 in kidney disease. J. Am. Soc. Nephrol. 21, 1427–1435 (2010).

    CAS  PubMed  Google Scholar 

  59. Gutiérrez, O. M. Fibroblast growth factor 23 and disordered vitamin D metabolism in chronic kidney disease: updating the “trade-off” hypothesis. Clin. J. Am. Soc. Nephrol. 5, 1710–1716 (2010).

    PubMed  Google Scholar 

  60. Ornitz, D. M. & Itoh, N. Fibroblast growth factors. Genome Biol. 2, 1–12 (2001).

    Google Scholar 

  61. Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gutiérrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).

    PubMed  PubMed Central  Google Scholar 

  63. Parker, B. D. et al. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann. Intern. Med. 152, 640–648 (2010).

    PubMed  PubMed Central  Google Scholar 

  64. Gutierrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kendrick, J. et al. FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J. Am. Soc. Nephrol. 22, 1913–1922 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Faul, C. et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 121, 4393–4408 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, S. et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin, D. J. Am. Soc. Nephrol. 17, 1305–1315 (2006).

    CAS  PubMed  Google Scholar 

  68. Wetmore, J. B., Liu, S., Krebill, R., Menard, R. & Quarles, L. D. Effects of cinacalcet and concurrent low-dose vitamin D on FGF23 levels in ESRD. Clin. J. Am. Soc. Nephrol. 5, 110–116 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nishi, H. et al. Intravenous calcitriol therapy increases serum concentrations of fibroblast growth factor-23 in dialysis patients with secondary hyperparathyroidism. Nephron Clin. Pract. 101, c94–c99 (2005).

    CAS  PubMed  Google Scholar 

  70. Querfeld, U. & Mak, R. H. Vitamin D deficiency and toxicity in chronic kidney disease: in search of the therapeutic window. Pediatr. Nephrol. 25, 2413–2430 (2010).

    PubMed  Google Scholar 

  71. Scragg, R., Sowers, M. & Bell, C. Serum 25-hydroxyvitamin D, ethnicity, and blood pressure in the Third National Health and Nutrition Examination Survey. Am. J. Hypertens. 20, 713–719 (2007).

    CAS  PubMed  Google Scholar 

  72. Zhao, G. et al. Independent associations of serum concentrations of 25-hydroxyvitamin D and parathyroid hormone with blood pressure among US adults. J. Hypertens. 28, 1821–1828 (2010).

    CAS  PubMed  Google Scholar 

  73. Forman, J. P., Curhan, G. C. & Taylor, E. N. Plasma 25-hydroxyvitamin D levels and risk of incident hypertension among young women. Hypertension 52, 828–832 (2008).

    CAS  PubMed  Google Scholar 

  74. Forman, J. P. et al. Plasma 25-hydroxyvitamin D levels and risk of incident hypertension. Hypertension 49, 1063–1069 (2007).

    CAS  PubMed  Google Scholar 

  75. Feneis, J. F. & Arora, R. R. Role of vitamin D in blood pressure homeostasis. Am. J. Ther. 17, e221–e229 (2010).

    PubMed  Google Scholar 

  76. Burgaz, A., Orsini, N., Larsson, S. C. & Wolk, A. Blood 25-hydroxyvitamin D concentration and hypertension: a meta-analysis. J. Hypertens. 29, 636–645 (2011).

    CAS  PubMed  Google Scholar 

  77. Fiscella, K. & Franks, P. Vitamin D, race, and cardiovascular mortality: findings from a national US sample. Ann. Fam. Med. 8, 11–18 (2010).

    PubMed  PubMed Central  Google Scholar 

  78. Giovannucci, E., Liu, Y., Hollis, B. W. & Rimm, E. B. 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch. Intern. Med. 168, 1174–1180 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Kilkkinen, A. et al. Vitamin D status and the risk of cardiovascular disease death. Am. J. Epidemiol. 170, 1032–1039 (2009).

    PubMed  Google Scholar 

  80. Pilz, S. et al. Vitamin D and mortality in older men and women. Clin. Endocrinol. (Oxf.) 71, 666–672 (2009).

    CAS  Google Scholar 

  81. Semba, R. D. et al. Relationship of 25-hydroxyvitamin D with all-cause and cardiovascular disease mortality in older community-dwelling adults. Eur. J. Clin. Nutr. 64, 203–209 (2010).

    CAS  PubMed  Google Scholar 

  82. Wang, T. J. et al. Vitamin D deficiency and risk of cardiovascular disease. Circulation 117, 503–511 (2008).

    CAS  PubMed  Google Scholar 

  83. Grandi, N. C., Breitling, L. P. & Brenner, H. Vitamin D and cardiovascular disease: systematic review and meta-analysis of prospective studies. Prev. Med. 51, 228–233 (2010).

    CAS  PubMed  Google Scholar 

  84. Zittermann, A. et al. Vitamin D deficiency and mortality risk in the general population: a meta-analysis of prospective cohort studies. Am. J. Clin. Nutr. 95, 91–100 (2012).

    CAS  PubMed  Google Scholar 

  85. Pilz, S., Lodice, S., Zittermann, A., Grant, W. B. & Gandini, S. Vitamin D status and mortality risk in CKD: a meta-analysis of prospective studies. Am. J. Kidney Dis. 58, 374–382 (2011).

    CAS  PubMed  Google Scholar 

  86. Pittas, A. G. et al. Systematic review: Vitamin D and cardiometabolic outcomes. Ann. Intern. Med. 152, 307–314 (2010).

    PubMed  PubMed Central  Google Scholar 

  87. Wang, A. Y. et al. Serum 25-hydroxyvitamin D status and cardiovascular outcomes in chronic peritoneal dialysis patients: a 3-y prospective cohort study. Am. J. Clin. Nutr. 87, 1631–1638 (2008).

    CAS  PubMed  Google Scholar 

  88. Blacher, J., Guerin, A. P., Pannier, B., Marchais, S. J. & London, G. M. Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 38, 938–942 (2001).

    CAS  PubMed  Google Scholar 

  89. London, G. M. et al. Mineral metabolism and arterial functions in end-stage renal disease: potential role of 25-hydroxyvitamin D deficiency. J. Am. Soc. Nephrol. 18, 613–620 (2007).

    CAS  PubMed  Google Scholar 

  90. Shroff, R. et al. A bimodal association of vitamin D levels and vascular disease in children on dialysis. J. Am. Soc. Nephrol. 19, 1239–1246 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Barreto, D. V. et al. Vitamin D affects survival independently of vascular calcification in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4, 1128–1135 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wolf, M. et al. Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int. 72, 1004–1013 (2007).

    CAS  PubMed  Google Scholar 

  93. Ravani, P. et al. Vitamin D levels and patient outcome in chronic kidney disease. Kidney Int. 75, 88–95 (2009).

    CAS  PubMed  Google Scholar 

  94. Mattila, C. et al. Serum 25-hydroxyvitamin D concentration and subsequent risk of type 2 diabetes. Diabetes Care 30, 2569–2570 (2007).

    CAS  PubMed  Google Scholar 

  95. Joergensen, C. et al. Vitamin D levels and mortality in type 2 diabetes. Diabetes Care 33, 2238–2243 (2010).

    PubMed  PubMed Central  Google Scholar 

  96. Forouhi, N. G., Luan, J., Cooper, A., Boucher, B. J. & Wareham, N. J. Baseline serum 25-hydroxy vitamin D is predictive of future glycemic status and insulin resistance: the Medical Research Council Ely Prospective Study 1990–2000. Diabetes 57, 2619–2625 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Mitri, J., Muraru, M. D. & Pittas, A. G. Vitamin D and type 2 diabetes: a systematic review. Eur. J. Clin. Nutr. 65, 1005–1015 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Sun, Q., Pan, A., Hu, F. B., Manson, J. E. & Rexrode, K. M. 25-Hydroxyvitamin D levels and the risk of stroke: a prospective study and meta-analysis. Stroke 43, 1470–1477 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Pilz, S. et al. Vitamin D supplementation: a promising approach for the prevention and treatment of strokes. Curr. Drug Targets. 12, 88–96 (2011).

    CAS  PubMed  Google Scholar 

  100. Schleithoff, S. S. et al. Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am. J. Clin. Nutr. 83, 754–759 (2006).

    CAS  PubMed  Google Scholar 

  101. Bucharles, S. et al. Impact of cholecalciferol treatment on biomarkers of inflammation and myocardial structure in hemodialysis patients without hyperparathyroidism. J. Ren. Nutr. 22, 284–291 (2012).

    CAS  PubMed  Google Scholar 

  102. Shab-Bidar, S. et al. Improvement of vitamin D status resulted in amelioration of biomarkers of systemic inflammation in the subjects with type 2 diabetes. Diabetes Metab. Res. Rev. 28, 424–430 (2012).

    CAS  PubMed  Google Scholar 

  103. Witham, M. D., Nadir, M. A. & Struthers, A. D. Effect of vitamin D on blood pressure: a systematic review and meta-analysis. J. Hypertens. 27, 1948–1954 (2009).

    CAS  PubMed  Google Scholar 

  104. Wu, S. H., Ho, S. C. & Zhong, L. Effects of vitamin D supplementation on blood pressure. South Med. J. 103, 729–737 (2010).

    PubMed  Google Scholar 

  105. Lishmanov, A., Dorairajan, S., Pak, Y., Chaudhary, K. & Chockalingam, A. Treatment of 25-OH vitamin D deficiency in older men with chronic kidney disease stages 3 and 4 is associated with reduction in cardiovascular events. Am. J. Ther. http://dx.doi.org/10.1097/MJT.0b013e3182211b3b.

  106. Kim, H. W. et al. Calcitriol regresses cardiac hypertrophy and QT dispersion in secondary hyperparathyroidism on hemodialysis. Nephron Clin. Pract. 102, c21–c29 (2006).

    PubMed  Google Scholar 

  107. Park, C. W. et al. Intravenous calcitriol regresses myocardial hypertrophy in hemodialysis patients with secondary hyperparathyroidism. Am. J. Kidney Dis. 33, 73–81 (1999).

    CAS  PubMed  Google Scholar 

  108. Mak, R. H. Amelioration of hypertension and insulin resistance by 1,25-dihydroxycholecalciferol in hemodialysis patients. Pediatr. Nephrol. 6, 345–348 (1992).

    CAS  PubMed  Google Scholar 

  109. Thadhani, R. et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA 307, 674–684 (2012).

    CAS  PubMed  Google Scholar 

  110. Tamez, H. et al. Vitamin D reduces left atrial volume in patients with left ventricular hypertrophy and chronic kidney disease. Am. Heart J. 164, 902–909 (2012).

    CAS  PubMed  Google Scholar 

  111. Kandula, P. et al. Vitamin D supplementation in chronic kidney disease: a systematic review and meta-analysis of observational studies and randomized controlled trials. Clin. J. Am. Soc. Nephrol. 6, 50–62 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Saliba, W. & El-Haddad, B. Secondary hyperparathyroidism: pathophysiology and treatment. J. Am. Board Fam. Med. 22, 574–581 (2009).

    PubMed  Google Scholar 

  113. Fukagawa, M., Nakanishi, S. & Kazama, J. J. Basic and clinical aspects of parathyroid hyperplasia in chronic kidney disease. Kidney Int. Suppl. 102, S3–S7 (2006).

    Google Scholar 

  114. Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 113, S1–S130 (2009).

  115. Gal-Moscovici, A. & Sprague, S. M. Use of vitamin D in chronic kidney disease patients. Kidney Int. 78, 146–151 (2010).

    CAS  PubMed  Google Scholar 

  116. Elamin, M. B. et al. Vitamin D and cardiovascular outcomes: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 96, 1931–1942 (2011).

    CAS  PubMed  Google Scholar 

  117. Bjelakovic, G. et al. Vitamin D supplementation for prevention of mortality in adults. Cochrane Database Systematic Reviews, Issue 7. Art. No.:CD007470. http://dx.doi.org/10.1002/14651858.CD007470.pub2 (2011).

  118. Witte, K. K. et al. The effect of micronutrient supplementation on quality-of-life and left ventricular function in elderly patients with chronic heart failure. Eur. Heart J. 26, 2238–2244 (2005).

    CAS  PubMed  Google Scholar 

  119. Witham, M. D. et al. The effect of different doses of vitamin D(3) on markers of vascular health in patients with type 2 diabetes: a randomised controlled trial. Diabetologia 53, 2112–2119 (2010).

    CAS  PubMed  Google Scholar 

  120. Sugden, J. A., Davies, J. I., Witham, M. D., Morris, A. D. & Struthers, A. D. Vitamin D improves endothelial function in patients with Type 2 diabetes mellitus and low vitamin D levels. Diabet. Med. 25, 320–325 (2008).

    CAS  PubMed  Google Scholar 

  121. Manson, J. et al. The VITamin D and omega-3 triaL (VITAL). Contemp. Clin. Trials 33, 159–171 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R. I. Thadhani's research is supported by NIH grants K24DK094872-01 and R01DK084974 and a research grant from Abbott Laboratories. R. H. Mak's research is supported by NIH grant U01 DK-3-012 and investigator-initiated grants from the Cystinosis Research Foundation and Abbott Laboratories.

Author information

Authors and Affiliations

Authors

Contributions

S. S. Gunta and R. H. Mak researched data for the article. S. S. Gunta, R. I. Thadhani and R. H. Mak wrote the manuscript and contributed to discussions of the content as well as review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Robert H. Mak.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunta, S., Thadhani, R. & Mak, R. The effect of vitamin D status on risk factors for cardiovascular disease. Nat Rev Nephrol 9, 337–347 (2013). https://doi.org/10.1038/nrneph.2013.74

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.74

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing