Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chronic kidney disease following acute kidney injury—risk and outcomes

Abstract

In the past two decades, a substantial increase in the incidence of acute kidney injury (AKI) and kidney injury requiring dialysis has occurred in North America. This increase has coincided with an increase in the incidence of end-stage renal disease (ESRD), which has exceeded that expected based upon the prevalence of chronic kidney disease (CKD). In order to better understand the association between these conditions, there has been a proliferation of studies that have examined the risks of incident and progressive CKD following AKI. Animal studies have shown that failed differentiation of epithelial cells following renal ischaemia–reperfusion injury might lead to tubulointerstitial fibrosis, supporting a biological mechanism linking AKI and CKD. Strong and consistent associations between AKI and incident CKD, progression of CKD and incident ESRD have also been shown in epidemiological studies. In this Review, we summarize the wealth of available data on the relationship between AKI and CKD, and discuss the implications of these findings for the long-term clinical management of patients following AKI. We also identify areas of active investigation and future directions for research.

Key Points

  • The increase in incidence of acute kidney injury (AKI) in the past two decades has coincided with an increase in the incidence of end-stage renal disease (ESRD)

  • Epidemiological studies have consistently shown that AKI is a risk factor for incident chronic kidney disease (CKD), progression of CKD and incident ESRD

  • The 2012 KDIGO AKI guidelines recommend that patients should be evaluated 3 months after an episode of AKI to assess recovery, development of incident CKD or worsening of pre-existing CKD

  • The development of new tools to identify patients at high risk of progressive CKD after AKI is required

  • Further research into interventions that could potentially slow the progression of kidney disease and improve long-term patient outcomes after AKI is required

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rate of change in eGFR in patients before and after coronary angiography, according to AKI status.

Similar content being viewed by others

References

  1. Levey, A. S. et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann. Intern. Med. 139, 137–147 (2003).

    Article  Google Scholar 

  2. Taal, M. W. et al. Brenner & Rector's: The Kidney 9th edn. Ch. 19. Epidemiology of kidney disease. 728–739 (Elsevier Saunders, Philadelphia, 2012).

    Google Scholar 

  3. Hemmelgarn, B. R. et al. Relation between kidney function, proteinuria, and adverse outcomes. JAMA 303, 423–429 (2010).

    Article  CAS  Google Scholar 

  4. Whaley-Connell, A. T. et al. CKD in the United States: Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES) 1999–2004. Am. J. Kidney Dis. 51 (Suppl. 2), S13–S20 (2008).

    Article  CAS  Google Scholar 

  5. Coresh, J. et al. Prevalence of chronic kidney disease in the United States. JAMA 298, 2038–2047 (2007).

    Article  CAS  Google Scholar 

  6. Go, A. S., Chertow, G. M., Fan, D., McCulloch, C. E. & Hsu, C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  Google Scholar 

  7. Keith, D. S., Nichols, G. A., Gullion, C. M., Brown, J. B. & Smith, D. H. Longitudinal follow-up and outcomes among a population with chronic kidney disease in a large managed care organization. Arch. Intern. Med. 164, 659–663 (2004).

    Article  Google Scholar 

  8. United States Renal Data System. 2009 USRDS Annual Data Report: Atlas of End-Stage Renal Disease in the United States. United States Renal Data System [online], (2009).

  9. United States Renal Data System. 2011 USRDS Annual Data Report: atlas of end-stage renal disease in the United States. United States Renal Data System [online], (2011).

  10. Eknoyan, G. et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N. Engl. J. Med. 347, 2010–2019 (2002).

    Article  Google Scholar 

  11. Paniagua, R. et al. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J. Am. Soc. Nephrol. 13, 1307–1320 (2002).

    CAS  PubMed  Google Scholar 

  12. Pagels, A. A., Söderkvist, B. K., Medin, C., Hylander, B. & Heiwe, S. Health-related quality of life in different stages of chronic kidney disease and at initiation of dialysis treatment. Health Qual. Life Outcomes 10, 71 (2012).

    Article  Google Scholar 

  13. Bellomo, R. et al. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 8, R204–R212 (2004).

    Article  Google Scholar 

  14. Bagshaw, S. M., George, C. & Bellomo, R. A comparison of the RIFLE and AKIN criteria for acute kidney injury in critically ill patients. Nephrol. Dial. Transplant. 23, 1569–1574 (2008).

    Article  Google Scholar 

  15. Mehta, R. L. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care 11, R31 (2007).

    Article  Google Scholar 

  16. Nash, K., Hafeez, A. & Hou, S. Hospital-acquired renal insufficiency. Am. J. Kidney Dis. 39, 930–936 (2002).

    Article  Google Scholar 

  17. Hou, S. H., Bushinsky, D. A., Wish, J. B., Cohen, J. J. & Harrington, J. T. Hospital-acquired renal insufficiency: a prospective study. Am. J. Med. 74, 243–248 (1983).

    Article  CAS  Google Scholar 

  18. Hsu, C. Y. et al. Community-based incidence of acute renal failure. Kidney Int. 72, 208–212 (2007).

    Article  Google Scholar 

  19. Hsu, C. Y. Where is the epidemic in kidney disease? J. Am. Soc. Nephrol. 21, 1607–1611 (2010).

    Article  Google Scholar 

  20. Coca, S. G., Yusuf, B., Shlipak, M. G., Garg, A. X. & Parikh, C. R. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis. 53, 961–973 (2009).

    Article  Google Scholar 

  21. Hsu, C. Y., Vittinghoff, E., Lin, F. & Shlipak, M. G. The incidence of end-stage renal disease is increasing faster than the prevalence of chronic renal insufficiency. Ann. Intern. Med. 141, 95–101 (2004).

    Article  Google Scholar 

  22. Ishani, A. et al. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20, 223–228 (2009).

    Article  Google Scholar 

  23. Coca, S. G., Singanamala, S. & Parikh, C. R. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 81, 442–448 (2012).

    Article  Google Scholar 

  24. Levin, A., Kellum, J. A. & Mehta, R. L. Acute kidney injury: toward an integrated understanding through development of a research agenda. Clin. J. Am. Soc. Nephrol. 3, 862–863 (2008).

    Article  Google Scholar 

  25. Waikar, S. S. et al. Validity of international classification of diseases, ninth revision, clinical modification codes for acute renal failure. J. Am. Soc. Nephrol. 17, 1688–1694 (2006).

    Article  Google Scholar 

  26. James, M. & Pannu, N. Methodological considerations for observational studies of acute kidney injury using existing data sources. J. Nephrol. 22, 295–305 (2009).

    CAS  PubMed  Google Scholar 

  27. Rifkin, D. E., Coca, S. G. & Kalantar-Zadeh, K. Does AKI truly lead to CKD? J. Am. Soc. Nephrol. 23, 979–984 (2012).

    Article  Google Scholar 

  28. Lerma, E., Berns, J. S. & Nissenson, A. Current diagnosis & treatment: nephrology & hypertension. 89–99 (McGraw-Hill Companies, Inc., USA 2009).

    Google Scholar 

  29. Palevsky, P. M. et al. Intensity of renal support in critically ill patients with acute kidney injury. N. Engl. J. Med. 359, 7–20, (2008).

    Article  CAS  Google Scholar 

  30. Bellomo, R. et al. Intensity of continuous renal-replacement therapy in critically ill patients. N. Engl. J. Med. 361, 1627–1638 (2009).

    Article  Google Scholar 

  31. Palmer, R. A. & Henry, E. W. The clinical course of acute renal failure; observations on 54 cases. Can. Med. Assoc. J. 77, 1078–1084 (1957).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Swann, R. C. & Merrill, J. P. The clinical course of acute renal failure. Medicine (Baltimore) 32, 215–292 (1953).

    Article  CAS  Google Scholar 

  33. Basile, D. P., Donohoe, D., Roethe, K. & Osborn, J. L. Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am. J. Physiol. Renal Physiol. 281, F887–F899 (2001).

    Article  CAS  Google Scholar 

  34. Spurgeon-Pechman, K. R. et al. Recovery from acute renal failure predisposes hypertension and secondary renal disease in response to elevated sodium. Am. J. Physiol. Renal Physiol. 293, F269–F278 (2007).

    Article  CAS  Google Scholar 

  35. Basile, D. P., Leonard, E. C., Beal, A. G., Schleuter, D. & Friedrich, J. Persistent oxidative stress following renal ischemia–reperfusion injury increases ang II hemodynamic and fibrotic activity. Am. J. Physiol. Renal Physiol. 302, F1494–F1502 (2012).

    Article  CAS  Google Scholar 

  36. Geng, H. et al. Inhibition of autoregulated TGFβ signaling simultaneously enhances proliferation and differentiation of kidney epithelium and promotes repair following renal ischemia. Am. J. Pathol. 174, 1291–1308 (2009).

    Article  CAS  Google Scholar 

  37. Menke, J. et al. CSF-1 signals directly to renal tubular epithelial cells to mediate repair in mice. J. Clin. Invest. 119, 2330–2342 (2009).

    Article  CAS  Google Scholar 

  38. Spurgeon, K. R., Donohoe, D. L. & Basile, D. P. Transforming growth factor-β in acute renal failure: receptor expression, effects on proliferation, cellularity, and vascularization after recovery from injury. Am. J. Physiol. Renal Physiol. 288, F568–F577 (2005).

    Article  CAS  Google Scholar 

  39. Terzi, F. et al. Targeted expression of a dominant-negative EGF-R in the kidney reduces tubulo-interstitial lesions after renal injury. J. Clin. Invest. 106, 225–234 (2000).

    Article  CAS  Google Scholar 

  40. Zeng, F., Singh, A. B. & Harris, R. C. The role of the EGF family of ligands and receptors in renal development, physiology and pathophysiology. Exp. Cell Res. 315, 602–610 (2009).

    Article  CAS  Google Scholar 

  41. Park, K. M., Chen, A. & Bonventre, J. V. Prevention of kidney ischemia/reperfusion-induced functional injury and JNK, p38, and MAPK kinase activation by remote ischemic pretreatment. J. Biol. Chem. 276, 11870–11876 (2001).

    Article  CAS  Google Scholar 

  42. Jang, H. R. & Rabb, H. The innate immune response in ischemic acute kidney injury. Clin. Immunol. 130, 41–50 (2009).

    Article  CAS  Google Scholar 

  43. Bonventre, J. V. & Weinberg, J. M. Recent advances in the pathophysiology of ischemic acute renal failure. J. Am. Soc. Nephrol. 14, 2199–2210 (2003).

    Article  Google Scholar 

  44. Ramesh, G. & Reeves, W. B. TNF-α mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity. J. Clin. Invest. 110, 835–842 (2002).

    Article  CAS  Google Scholar 

  45. Safirstein, R. L. Acute renal failure: from renal physiology to the renal transcriptome. Kidney Int. Suppl. 91, S62–S66 (2004).

    Article  CAS  Google Scholar 

  46. Suzuki, T., Kimura, M., Asano, M., Fujigaki, Y. & Hishida, A. Role of atrophic tubules in development of interstitial fibrosis in microembolism-induced renal failure in rat. Am. J. Pathol. 158, 75–85 (2001).

    Article  CAS  Google Scholar 

  47. Wallin, A., Zhang, G., Jones, T. W., Jaken, S. & Stevens, J. L. Mechanism of the nephrogenic repair response. Studies on proliferation and vimentin expression after 35S-1,2-dichlorovinyl-L-cysteine nephrotoxicity in vivo and in cultured proximal tubule epithelial cells. Lab. Invest. 66, 474–484 (1992).

    CAS  PubMed  Google Scholar 

  48. Ward, J. M. et al. Vimentin metaplasia in renal cortical tubules of preneoplastic, neoplastic, aging, and regenerative lesions of rats and humans. Am. J. Pathol. 141, 955–964 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Venkatachalam, M. A. et al. Acute kidney injury: a springboard for progression in chronic kidney disease. Am. J. Physiol. Renal Physiol. 298, F1078–F1094 (2010).

    Article  CAS  Google Scholar 

  50. Basile, D. P., Fredrich, K., Chelladurai, B., Leonard, E. C. & Parrish, A. R. Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am. J. Physiol. Renal Physiol. 294, F928–F936 (2008).

    Article  CAS  Google Scholar 

  51. Basile, D. P. The endothelial cell in ischemic acute kidney injury: implications for acute and chronic function. Kidney Int. 72, 151–156 (2007).

    Article  CAS  Google Scholar 

  52. Hsu, C. Y. et al. The risk of acute renal failure in patients with chronic kidney disease. Kidney Int. 74, 101–107 (2008).

    Article  CAS  Google Scholar 

  53. Bartholomew, B. A. et al. Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am. J. Cardiol. 93, 1515–1519 (2004).

    Article  Google Scholar 

  54. James, M. T. et al. Glomerular filtration rate, proteinuria, and the incidence and consequences of acute kidney injury: a cohort study. Lancet 376, 2096–2103 (2010).

    Article  Google Scholar 

  55. Hsu, R. K. & Hsu, C. Y. Proteinuria and reduced glomerular filtration rate as risk factors for acute kidney injury. Curr. Opin. Nephrol. Hypertens. 20, 211–217 (2011).

    Article  Google Scholar 

  56. Wald, R. et al. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 302, 1179–1185 (2009).

    Article  CAS  Google Scholar 

  57. Amdur, R. L., Chawla, L. S., Amodeo, S., Kimmel, P. L. & Palant, C. E. Outcomes following diagnosis of acute renal failure in US veterans: focus on acute tubular necrosis. Kidney Int. 76, 1089–1097 (2009).

    Article  Google Scholar 

  58. Ishani, A. et al. The magnitude of acute serum creatinine increase after cardiac surgery and the risk of chronic kidney disease, progression of kidney disease, and death. Arch. Intern. Med. 171, 226–233 (2011).

    Article  Google Scholar 

  59. Garg, A. X. et al. Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. JAMA 290, 1360–1370 (2003).

    Article  CAS  Google Scholar 

  60. Askenazi, D. J., Feig, D. I., Graham, N. M., Hui-Stickle, S. & Goldstein, S. L. 3–5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int. 69, 184–189 (2006).

    Article  CAS  Google Scholar 

  61. Mammen, C. et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am. J. Kidney Dis. 59, 523–530 (2012).

    Article  Google Scholar 

  62. Lo, L. J. et al. Dialysis-requiring acute renal failure increases the risk of progressive chronic kidney disease. Kidney Int. 76, 893–899 (2009).

    Article  CAS  Google Scholar 

  63. James, M. T. et al. Acute kidney injury following coronary angiography is associated with a long-term decline in kidney function. Kidney Int. 78, 803–809 (2010).

    Article  Google Scholar 

  64. Go, A. S. et al. The assessment, serial evaluation, and subsequent sequelae of acute kidney injury (ASSESS-AKI) study: design and methods. BMC Nephrol. 11, 22 (2010).

    Article  Google Scholar 

  65. Hsu, C. Y. Yes, AKI truly leads to CKD. J. Am. Soc. Nephrol. 23, 967–969 (2012).

    Article  CAS  Google Scholar 

  66. Siew, E. D. et al. Outpatient nephrology referral rates after acute kidney injury. J. Am. Soc. Nephrol. 23, 305–312 (2012).

    Article  CAS  Google Scholar 

  67. Kidney Disease Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2, 1–138 (2012).

  68. Chawla, L. S., Amdur, R. L., Amodeo, S., Kimmel, P. L. & Palant, C. E. The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int. 79, 1361–1369 (2011).

    Article  Google Scholar 

  69. Bucaloiu, I. D., Kirchner, H. L., Norfolk, E. R., Hartle, J. E. 2nd & Perkins, R. M. Increased risk of death and de novo chronic kidney disease following reversible acute kidney injury. Kidney Int. 81, 477–485 (2012).

    Article  Google Scholar 

  70. Koyner, J. L. et al. Biomarkers predict progression of acute kidney injury after cardiac surgery. J. Am. Soc. Nephrol. 23, 905–914 (2012).

    Article  CAS  Google Scholar 

  71. Clerico, A., Galli, C., Fortunato, A. & Ronco, C. Neutrophil gelatinase-associated lipocalin (NGAL) as biomarker of acute kidney injury: a review of the laboratory characteristics and clinical evidences. Clin. Chem. Lab. Med. 50, 1505–1517 (2012).

    Article  CAS  Google Scholar 

  72. Adiyanti, S. S. & Loho, T. Acute kidney injury (AKI) biomarker. Acta Med. Indones. 44, 246–255 (2012).

    PubMed  Google Scholar 

  73. Zappitelli, M. et al. The association of albumin/creatinine ratio with postoperative AKI in children undergoing cardiac surgery. Clin. J. Am. Soc. Nephrol. 7, 1761–1769 (2012).

    Article  CAS  Google Scholar 

  74. Spahillari, A. et al. Serum cystatin C- versus creatinine-based definitions of acute kidney injury following cardiac surgery: a prospective cohort study. Am. J. Kidney Dis. 60, 922–929 (2012).

    Article  CAS  Google Scholar 

  75. Parikh, C. R. et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J. Am. Soc. Nephrol. 22, 1737–1747 (2011).

    Article  CAS  Google Scholar 

  76. Parikh, C. R. et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J. Am. Soc. Nephrol. 22, 1748–1757 (2011).

    Article  CAS  Google Scholar 

  77. Shlipak, M. G. et al. Presurgical serum cystatin C and risk of acute kidney injury after cardiac surgery. Am. J. Kidney Dis. 58, 366–373 (2011).

    Article  CAS  Google Scholar 

  78. Li, S. et al. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: a prospective multicenter study. Crit. Care Med. 39, 1493–1499 (2011).

    Article  Google Scholar 

  79. Zappitelli, M. et al. Early postoperative serum cystatin C predicts severe acute kidney injury following pediatric cardiac surgery. Kidney Int. 80, 655–662 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

K. C. W. Leung and M. T. James researched the data for the article, provided substantial contribution to discussions of the content, wrote the article and reviewed and/or edited the manuscript before submission. M. Tonelli provided substantial contributions to discussions of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Matthew T. James.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Studies that have examined the association between AKI and the subsequent risk of CKD or ESRD (DOC 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, K., Tonelli, M. & James, M. Chronic kidney disease following acute kidney injury—risk and outcomes. Nat Rev Nephrol 9, 77–85 (2013). https://doi.org/10.1038/nrneph.2012.280

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing