Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

FGF-23 and secondary hyperparathyroidism in chronic kidney disease

Abstract

The metabolic changes that occur in patients with chronic kidney disease (CKD) have a profound influence on mineral and bone metabolism. CKD results in altered levels of serum phosphate, vitamin D, calcium, parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF-23); the increased levels of serum phosphate, PTH and FGF-23 contribute to the increased cardiovascular mortality in affected patients. FGF-23 is produced by osteocytes and osteoblasts and acts physiologically in the kidney to induce phosphaturia and inhibit the synthesis of 1,25-dihydroxyvitamin D3. PTH acts directly on osteocytes to increase FGF-23 expression. In addition, the high levels of PTH associated with CKD contribute to changes in bone remodelling that result in decreased levels of dentin matrix protein 1 and the release of low-molecular-weight fibroblast growth factors from the bone matrix, which stimulate FGF-23 transcription. A prolonged oral phosphorus load increases FGF-23 expression by a mechanism that includes local changes in the ratio of inorganic phosphate to pyrophosphate in bone. Other factors such as dietary vitamin D compounds, calcium, and metabolic acidosis all increase FGF-23 levels. This Review discusses the mechanisms by which secondary hyperparathyroidism associated with CKD stimulates bone cells to overexpress FGF-23 levels.

Key Points

  • Secondary hyperparathyroidism and increased serum fibroblast growth factor 23 (FGF-23) levels in chronic kidney disease (CKD) are intimately related; secondary hyperparathyroidism has a crucial role in increasing the expression of FGF-23

  • Parathyroid hormone (PTH) increases FGF-23 expression in osteoblast-like cells in vitro by activating protein kinase A and Wnt signalling pathways

  • The ratio of inorganic phosphate to pyrophosphate in the bone matrix is increased in CKD, which increases FGF-23 expression

  • The loss of FGF-23 transcriptional inhibition by dentin matrix protein 1 and the release of low-molecular-weight fibroblast growth factors increase FGF-23 expression in CKD

  • FGF-23 acts on the kidney to decrease 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) synthesis, which contributes to the secondary hyperparathyroidism of CKD, whereas 1,25(OH)2D3 itself increases FGF-23 transcription

  • The FGF-23-receptor complex, Klotho–fibroblast growth factor receptor 1, is downregulated in the parathyroid gland of patients with CKD, resulting in loss of FGF-23's ability to decrease PTH expression

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Factors that regulate FGF-23 synthesis and secretion.
Figure 2: Local regulation of FGF-23 transcription.
Figure 3: A cascade of factors leading to CKD–mineral bone disorder.

Similar content being viewed by others

References

  1. Meyer, R. A., Meyer, M. H. & Gray, R. W. Parabiosis suggests a humoral factor is involved in X-linked hypophosphatemia in mice. J. Bone Miner. Res. 4, 493–500 (1989).

    Article  PubMed  Google Scholar 

  2. Nesbitt, T., Coffman, T. M., Griffiths, R. & Drezner, M. K. Crosstransplantation of kidneys in normal and Hyp mice. Evidence that the Hyp mouse phenotype is unrelated to an intrinsic defect. J. Clin. Invest. 89, 1453–1459 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. ADHR consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26, 345–348 (2000).

  4. Shimada, T. et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc. Natl Acad. Sci. USA 98, 6500–6505 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kuro-o, M. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390, 45–51 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Goetz, R. et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc. Natl Acad. Sci. USA 107, 407–412 (2010).

    Article  PubMed  Google Scholar 

  7. Gutierrez, O. M. et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N. Engl. J. Med. 359, 584–592 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Isakova, T. et al. Phosphorus binders and survival on hemodialysis. J. Am. Soc. Nephrol. 20, 388–396 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ix, J. H., Shlipak, M. G., Wassel, C. L. & Whooley, M. A. Fibroblast growth factor-23 and early decrements in kidney function: the Heart and Soul Study. Nephrol. Dial. Transplant. 25, 993–997 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Silver, J., Kilav, R. & Naveh-Many, T. Mechanisms of secondary hyperparathyroidism. Am. J. Physiol. Renal Physiol. 283, F367–F376 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Komaba, H. & Fukagawa, M. The role of FGF23 in CKD—with or without Klotho. Nat. Reviews Nephrol. 8, 484–490 (2012).

    Article  CAS  Google Scholar 

  12. Wolf, M. Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int. 82, 737–747 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Quarles, L. D. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp. Cell Res. 318, 1040–1048 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Silver, J., Rodriguez, M. & Slatopolsky, E. FGF23 and PTH: double agents at the heart of CKD. Nephrol. Dial. Transplant. 27, 1715–1720 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bergwitz, C. & Juppner, H. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu. Rev. Med. 61, 91–104 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Slatopolsky, E. et al. On the pathogenesis of hyperparathyroidism in chronic experimental renal insufficiency in the dog. J. Clin. Invest. 50, 492–499 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Slatopolsky, E. & Bricker, N. S. The role of phosphorus restriction in the prevention of secondary hyperparathyroidism in chronic renal disease. Kidney Int. 4, 141–145 (1973).

    Article  CAS  PubMed  Google Scholar 

  18. Kilav, R., Silver, J. & Naveh-Many, T. Parathyroid hormone gene expression in hypophosphatemic rats. J. Clin. Invest. 96, 327–333 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Almaden, Y. et al. Direct effect of phosphorus on parathyroid hormone secretion from whole rat parathyroid glands in vitro. J. Bone Miner. Res. 11, 970–976 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Slatopolsky, E. et al. Phosphate restriction prevents parathyroid cell growth in uremic rats. High phosphate directly stimulates PTH secretion in vitro. J. Clin. Invest. 97, 2534–2540 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nielsen, P. K., Feldt-Rasmusen, U. & Olgaard, K. A direct effect of phosphate on PTH release from bovine parathyroid tissue slices but not from dispersed parathyroid cells. Nephrol. Dial. Transplant. 11, 1762–1768 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Sapir-Koren, R. & Livshits, G. Bone mineralization and regulation of phosphate homeostasis. IBMS BoneKEy 8, 286–300 (2011).

    Article  Google Scholar 

  23. Sage, A. P., Lu, J. X., Tintut, Y. & Demer, L. L. Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int. 79, 414–422 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Perwad, F. et al. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology 146, 5358–5364 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Hasegawa, H. et al. Direct evidence for a causative role of FGF23 in the abnormal renal phosphate handling and vitamin D metabolism in rats with early-stage chronic kidney disease. Kidney Int. 78, 975–980 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Shalhoub, V. et al. FGF23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality. J. Clin. Invest. 122, 2543–2553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Meir, T. et al. Deletion of the vitamin D receptor specifically in the parathyroid demonstrates a limited role for the VDR in parathyroid physiology. Am. J. Physiol. Renal Physiol. 297, F1192–F1198 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Li, Y. C. et al. Normalization of mineral ion homeostasis by dietary means prevents hyperparathyroidism, rickets, and osteomalacia, but not alopecia in vitamin D receptor-ablated mice. Endocrinology 139, 4391–4396 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Nishida, Y. et al. Acute effect of oral phosphate loading on serum fibroblast growth factor 23 levels in healthy men. Kidney Int. 70, 2141–2147 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Ferrari, S. L., Bonjour, J. P. & Rizzoli, R. Fibroblast growth factor-23 relationship to dietary phosphate and renal phosphate handling in healthy young men. J. Clin. Endocrinol. Metab. 90, 1519–1524 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Gutierrez, O. M., Wolf, M. & Taylor, E. N. Fibroblast growth factor 23, cardiovascular disease risk factors, and phosphorus intake in the Health Professionals Follow-up Study. Clin. J. Am. Soc. Nephrol. 6, 2871–2878 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Westerberg, P. A. et al. Regulation of fibroblast growth factor-23 in chronic kidney disease. Nephrol. Dial. Transplant. 22, 3202–3207 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Isakova, T. et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 79, 1370–1378 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ito, N. et al. Effect of acute changes of serum phosphate on fibroblast growth factor (FGF)23 levels in humans. J. Bone Miner. Metab. 25, 419–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Isakova, T. et al. Postprandial mineral metabolism and secondary hyperparathyroidism in early CKD. J. Am. Soc. Nephrol. 19, 615–623 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pavik, I. et al. Secreted Klotho and FGF23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study. Nephrol. Dial. Transplant. 28, 352–359 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Levin, A. et al. Prevalence of abnormal serum vitamin D, PTH, calcium, and phosphorus in patients with chronic kidney disease: results of the study to evaluate early kidney disease. Kidney Int. 71, 31–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Oliveira, R. B. et al. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin. J. Am. Soc. Nephrol. 5, 286–291 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Isakova, T. et al. Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease. Nephrol. Dial. Transplant. 26, 584–591 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Gonzalez-Parra, E. et al. Lanthanum carbonate reduces FGF23 in chronic kidney disease stage 3 patients. Nephrol. Dial. Transplant. 26, 2567–2571 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Gupta, A., Winer, K., Econs, M. J., Marx, S. J. & Collins, M. T. FGF-23 is elevated by chronic hyperphosphatemia. J. Clin. Endocrinol. Metab. 89, 4489–4492 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Yamashita, H. et al. Fibroblast growth factor-23 (FGF23) in patients with transient hypoparathyroidism: its important role in serum phosphate regulation. Endocr. J. 54, 465–470 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Araya, K. et al. A novel mutation in fibroblast growth factor 23 gene as a cause of tumoral calcinosis. J. Clin. Endocrinol. Metab. 90, 5523–5527 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Yamashita, H. et al. Fibroblast growth factor (FGF)-23 in patients with primary hyperparathyroidism. Eur. J. Endocrinol. 151, 55–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Tebben, P. J., Singh, R. J., Clarke, B. L. & Kumar, R. Fibroblast growth factor 23, parathyroid hormone, and 1α,25-dihydroxyvitamin D in surgically treated primary hyperparathyroidism. Mayo Clin. Proc. 79, 1508–1513 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Yuan, Q. et al. FGF-23/Klotho signaling is not essential for the phosphaturic and anabolic functions of PTH. J. Bone Miner. Res. 26, 2026–2035 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Lomashvili, K. A., Khawandi, W. & O'Neill, W. C. Reduced plasma pyrophosphate levels in hemodialysis patients. J. Am. Soc. Nephrol. 16, 2495–2500 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Alfrey, A. C. & Solomons, C. C. Bone pyrophosphate in uremia and its association with extraosseous calcification. J. Clin. Invest. 57, 700–705 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Huitema, L. F. A. et al. Entpd5 is essential for skeletal mineralization and regulates phosphate homeostasis in zebrafish. Proc. Natl Acad. Sci. USA 109, 21372–21377 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mackenzie, N. C. W. et al. Altered bone development and an increase in FGF-23 expression in Enpp1−/− mice. PLoS ONE 7, (2012).

  51. Lorenz-Depiereux, B., Schnabel, D., Tiosano, D., Häusler, G. & Strom, T. M. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am. J. Hum. Genet. 86, 267–272 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murshed, M., Harmey, D., Millan, J. L., McKee, M. D. & Karsenty, G. Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev. 19, 1093–1104 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Quarles, L. D. Endocrine functions of bone in mineral metabolism regulation. J. Clin. Invest. 118, 3820–3828 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rowe, P. S. N. Regulation of bone-renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit. Rev. Eukaryot. Gene Expr. 22, 61–86 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Martin, A., David, V. & Quarles, L. D. Regulation and function of the Fgf23/Klotho endocrine pathways. Physiol. Rev. 92, 131–155 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Martin, A. et al. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. 25, 2551–2562 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wohrle, S. et al. FGF receptors control vitamin D and phosphate homeostasis by mediating renal FGF-23 signaling and regulating FGF-23 expression in bone. J. Bone Miner. Metab. 26, 2486–2497 (2011).

    Article  CAS  Google Scholar 

  58. Bonewald, L. F. Osteocyte messages from a bony tomb. Cell Metab. 5, 410–411 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. The Hyp consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat. Genet. 11, 130–136 (1995).

  60. Lorenz-Depiereux, B. et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat. Genet. 38, 1248–1250 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yuan, B. et al. Aberrant Phex function in osteoblasts and osteocytes alone underlies murine X-linked hypophosphatemia. J. Clin. Invest. 118, 722–734 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. White, K. E. et al. Mutations that cause osteoglophonic dysplasia define novel roles for FGFR1 in bone elongation. Am. J. Hum. Genet. 76, 361–367 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Goebel, S. et al. FGF23 is a putative marker for bone healing and regeneration. J. Orthop. Res. 27, 1141–1146 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Shimada, T. et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J. Bone Miner. Res. 19, 429–435 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Krajisnik, T. et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1α-hydroxylase expression in cultured bovine parathyroid cells. J. Endocrinol. 195, 125–131 (2007).

    CAS  PubMed  Google Scholar 

  66. Ben Dov, I. Z. et al. The parathyroid is a target organ for FGF23 in rats. J. Clin. Invest. 117, 4003–4008 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lavi-Moshayoff, V., Silver, J. & Naveh-Many, T. Human PTH gene regulation in vivo using transgenic mice. Am. J. Physiol. Renal Physiol. 297, F713–F719 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Galitzer, H., Ben Dov, I. Z., Silver, J. & Naveh-Many, T. Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int. 77, 211–218 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Komaba, H. et al. Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int. 77, 232–238 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Canalejo, R. et al. FGF23 fails to inhibit uremic parathyroid glands. J. Am. Soc. Nephrol. 21, 1125–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Komaba, H. & Fukagawa, M. FGF23-parathyroid interaction: implications in chronic kidney disease. Kidney Int. 77, 292–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Hofman-Bang, J., Martuseviciene, G., Santini, M. A., Olgaard, K. & Lewin, E. Increased parathyroid expression of klotho in uremic rats. Kidney Int. 78, 1119–1127 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Kobayashi, K. et al. Regulation of plasma fibroblast growth factor 23 by calcium in primary hyperparathyroidism. Eur. J. Endocrinol. 154, 93–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Brown, W. W. et al. Hypophosphatemia with elevations in serum FGF23 in a child with Jansen's metaphyseal chondrodysplasia in Jansen's syndrome. J. Clin. Endocrinol. Metab. 94, 17–20 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rhee, Y. et al. Parathyroid hormone receptor signaling in osteocytes increases the expression of fibroblast growth factor-23 in vitro and in vivo. Bone 49, 636–643 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lavi-Moshayoff, V., Wasserman, G., Meir, T., Silver, J. & Naveh-Many, T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am. J. Physiol. Renal Physiol. 299, F882–F889 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Koizumi, M., Komaba, H., Nakanishi, S., Fujimori, A. & Fukagawa, M. Cinacalcet treatment and serum FGF23 levels in haemodialysis patients with secondary hyperparathyroidism. Nephrol. Dial. Transplant. 27, 784–790 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Wetmore, J. B., Liu, S., Krebill, R., Menard, R. & Quarles, L. D. Effects of cinacalcet and concurrent low-dose vitamin D on FGF23 levels in ESRD. Clin. J. Am. Soc. Nephrol. 5, 110–116 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, S. et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J. Am. Soc. Nephrol. 17, 1305–1315 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Saito, H. et al. Circulating FGF-23 is regulated by 1α,25-dihydroxyvitamin D3 and phosphorus in vivo. J. Biol. Chem. 280, 2543–2549 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Kolek, O. I. et al. 1α,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G1036–G1042 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Shimada, T. et al. FGF-23 transgenic mice demonstrate hypophosphatemic rickets with reduced expression of sodium phosphate cotransporter type IIa. Biochem. Biophys. Res. Commun. 314, 409–414 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Hansen, D., Rasmussen, K., Pedersen, S. M., Rasmussen, L. M. & Brandi, L. Changes in fibroblast growth factor 23 during treatment of secondary hyperparathyroidism with alfacalcidol or paricalcitol. Nephrol. Dial. Transplant. 27, 2263–2269 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Grethen, E. et al. Serum leptin, parathyroid hormone, 1,25-dihydroxyvitamin D, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J. Clin. Endocrinol. Metab. 97, 1655–1662 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tsuji, K., Maeda, T., Kawane, T., Matsunuma, A. & Horiuchi, N. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1α,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J. Bone Miner. Res. 25, 1711–1723 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Saini, R. K. et al. 1,25-Dihydroxyvitamin D3 regulation of fibroblast growth factor-23 expression in bone cells: evidence for primary and secondary mechanisms modulated by leptin and interleukin-6. Calcif. Tissue Int. 92, 339–353 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Masuyama, R. et al. Vitamin D receptor in chondrocytes promotes osteoclastogenesis and regulates FGF23 production in osteoblasts. J. Clin. Invest. 116, 3150–3159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shimada, T. et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am. J. Physiol. Renal Physiol. 289, F1088–F1095 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Quinn, S. J. et al. CaSR-mediated interactions between calcium and magnesium homeostasis in mice. Am. J. Physiol. Endocrinol. Metab. 304, E724–E733 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rodriguez-Ortiz, M. E. et al. Calcium deficiency reduces circulating levels of FGF23. J. Am. Soc. Nephrol. 23, 1190–1197 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen, C. D., Podvin, S., Gillespie, E., Leeman, S. E. & Abraham, C. R. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM 17. Proc. Natl Acad. Sci. USA 104, 19796–19801 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Matsumura, Y. et al. Identification of the human klotho gene and its two transcripts encoding membrane and secreted klotho protein. Biochem. Biophys. Res. Commun. 242, 626–630 (1998).

    Article  CAS  PubMed  Google Scholar 

  93. Imura, A. et al. A-Klotho as a regulator of calcium homeostasis. Science 316, 1615–1618 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Ichikawa, S. et al. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. J. Clin. Invest. 117, 2684–2691 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Brownstein, C. A. et al. A translocation causing increased α-Klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc. Natl Acad. Sci. USA 105, 3455–3460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Smith, R. C. et al. Circulating αKlotho influences phosphate handling by controlling FGF23 production. J. Clin. Invest. 122, 4710–4715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Juppner, H. & Wolf, M. αKlotho: FGF23 coreceptor and FGF23-regulating hormone. J. Clin. Invest. 122, 4336–4339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Krieger, N. S., Culbertson, C. D., Kyker-Snowman, K. & Bushinsky, D. A. Metabolic acidosis increases fibroblast growth factor 23 in neonatal mouse bone. Am. J. Physiol. Renal Physiol. 303, F431–F436 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Farrow, E. G. et al. Iron deficiency drives an autosomal dominant hypophosphatemic rickets (ADHR) phenotype in fibroblast growth factor-23 (Fgf23) knock-in mice. Proc. Natl Acad. Sci. USA 108, E1146–E1155 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Takeda, Y. et al. Effect of intravenous saccharated ferric oxide on serum FGF23 and mineral metabolism in hemodialysis patients. Am. J. Nephrol. 33, 421–426 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Carrillo-Lopez, N. et al. Indirect regulation of PTH by estrogens may require FGF23. J. Am. Soc. Nephrol. 20, 2009–2017 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Brandenburg, V. M. et al. Serological cardiovascular and mortality risk predictors in dialysis patients receiving sevelamer: a prospective study. Nephrol. Dial. Transplant. 25, 2672–2679 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Shimada, T. et al. Mutant FGF-23 responsible for autosomal dominant hypophosphatemic rickets is resistant to proteolytic cleavage and causes hypophosphatemia in vivo. Endocrinology 143, 3179–3182 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Yamazaki, Y. et al. Increased circulatory level of biologically active full-length FGF-23 in patients with hypophosphatemic rickets/osteomalacia. J. Clin. Endocrinol. Metab. 87, 4957–4960 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Collins, M. T. et al. Renal phosphate wasting in fibrous dysplasia of bone is part of a generalized renal tubular dysfunction similar to that seen in tumor-induced osteomalacia. J. Bone Miner. Res. 16, 806–813 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Yu, X., Sabbagh, Y., Davis, S. I., Demay, M. B. & White, K. E. Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. Bone 36, 971–977 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Kato, K. et al. Polypeptide GalNAc-transferase T3 and familial tumoral calcinosis. Secretion of fibroblast growth factor 23 requires O-glycosylation. J. Biol. Chem. 281, 18370–18377 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Yu, X. & White, K. E. FGF23 and disorders of phosphate homeostasis. Cytokine Growth Factor Rev. 16, 221–232 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Bhattacharyya, N. et al. Mechanism of FGF23 processing in fibrous dysplasia. J. Bone Miner. Res. 27, 1132–1141 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Faul, C. et al. FGF23 induces left ventricular hypertrophy. J. Clin. Invest. 121, 4393–4408 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work is supported the Harold and Ethel Pupkewitz Fund for Renal Research and Amgen. T. Naveh-Many's work is also supported by the Israel Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J. Silver wrote the article. J. Silver and T. Naveh-Many contributed equally to researching data for the article, discussions of the content, and review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Justin Silver.

Ethics declarations

Competing interests

J. Silver and T. Naveh-Many have received a research grant from Amgen. J. Silver has received honoraria and lecture fees from Amgen, Fresenius, KAI Pharmaceuticals, Shire, and Teva Pharmaceutical Industries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silver, J., Naveh-Many, T. FGF-23 and secondary hyperparathyroidism in chronic kidney disease. Nat Rev Nephrol 9, 641–649 (2013). https://doi.org/10.1038/nrneph.2013.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing