Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The long-term renal and cardiovascular consequences of prematurity

Abstract

Infants born prematurely at <37 weeks' gestation account for over 80% of infants weighing <2,500 g at birth—low birth weight (LBW) infants. This designation remains the surrogate marker for developmental origins of adult disease. Landmark studies spanning four decades have shown that individuals born with a LBW are more likely to develop cardiovascular and renal disease in later life, which is believed to be related to 'developmental programming' of such adult disease during vulnerable periods of growth in utero and in the early postnatal period. There has long been ambiguity regarding the distinction between infants with intrauterine growth restriction and preterm infants since both show a low nephron endowment that is associated with subsequent hypertension and chronic kidney disease. Knowledge is growing specific to the preterm infant and the developmental associations of being born preterm with the interruption of normal organogenesis relative to the vascular tree and kidney. Both systems develop by branching morphogenesis and interruptions lead to considerable deficits in their structure and function. These developmental aberrations can lead to endothelial dysfunction, hypertension, proteinuria and metabolic abnormalities that persist throughout life. This Review will examine the effect of preterm birth on the development of cardiovascular and kidney disease in later life and will also discuss potential early interventions to alter the progression of disease.

Key Points

  • Prematurely born infants account for >80% of infants born with a low birth weight (<2,500 g), which has become a surrogate marker for an increased risk of developing cardiovascular and renal disease in later life

  • Preterm birth is associated with interruption of the normal organogenesis of the kidney and the vascular tree, leading to low nephron endowment, hypertension, endothelial dysfunction and proteinuria in some individuals

  • Ethnic minorities are at increased risk of preterm birth, with African Americans having a prevalence three times that of white individuals

  • Progressive kidney disease in preterm individuals is multidimensional, with genetic and environmental events contributing to the programming of subsequent risks of cardiovascular and renal disease

  • Prospective observational and early intervention trials directed towards modulating catch-up growth, preventing obesity and identifying and treating hypertension, proteinuria and hyperuricemia, are warranted

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A multidimensional scheme showing the effects that preterm birth can have on the risks of cardiovascular and renal disease in later life.
Figure 2: Photomicrographs of progressive renal development.
Figure 3: Composite photomicrograph showing renal parenchyma from a child born extremely preterm who survived for more than 40 days and developed renal failure.

Similar content being viewed by others

References

  1. Barker, D. J. & Bleker, O. P. Microalbuminuria in adults after prenatal exposure to the Dutch famine. J. Am. Soc. Nephrol. 16, 189–194 (2005).

    Article  PubMed  Google Scholar 

  2. Barker, D. J., Osmond, C., Golding, J., Kuh, D. & Wadsworth, M. E. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 298, 564–567 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Barker, D. J. et al. The early origins of chronic heart failure: impaired placental growth and initiation of insulin resistance in childhood. Eur. J. Heart Fail. 12, 819–825 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Barker, D. J., Bagby, S. P. & Hanson, M. A. Mechanisms of disease: in utero programming in the pathogenesis of hypertension. Nat. Clin. Pract. Nephrol. 2, 700–707 (2006).

    Article  PubMed  Google Scholar 

  5. Singhal, A., Kattenhorn, M., Cole, T. J., Deanfield, J. & Lucas, A. Preterm birth, vascular function, and risk factors for atherosclerosis. Lancet 358, 1159–1160 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Dalziel, S., Parag, V., Rodgers, A. & Harding, J. Cardiovascular risk factors at age 30 following preterm birth. Int. J. Epidemiol. 36, 907–915 (2007).

    Article  PubMed  Google Scholar 

  7. Irving, R. J., Belton, N. R., Elton, R. A. & Walker, B. R. Adult cardiovascular risk factors in premature babies. Lancet 355, 2135–2136 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Willemsen, R. H., de Kort, S. W., van der Kaay, D. C. & Hokken-Koelega, A. C. Independent effects of prematurity on metabolic and cardiovascular risk factors in short small-for-gestational-age children. J. Clin. Endocrinol. Metab. 93, 452–458 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Hofman, P. L. et al. Premature birth and later insulin resistance. N. Engl. J. Med. 351, 2179–2186 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Hovi, P. et al. Glucose regulation in young adults with very low birth weight. N. Engl. J. Med. 356, 2053–2063 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Beck, S. et al. The worldwide incidence of preterm birth: a systematic review of maternal mortality and morbidity. Bull. World Health Organ. 88, 31–38 (2010).

    Article  PubMed  Google Scholar 

  12. Wang, M. L., Dorer, D. J., Fleming, M. P. & Catlin, E. A. Clinical outcomes of near-term infants. Pediatrics 114, 372–376 (2004).

    Article  PubMed  Google Scholar 

  13. Saigal, S. & Doyle, L. W. An overview of mortality and sequelae of preterm birth from infancy to adulthood. Lancet 371, 261–269 (2008).

    Article  PubMed  Google Scholar 

  14. Swamy, G. K., Østbye, T. & Skjærven, R. Association of preterm birth with long-term survival, reproduction, and next-generation preterm birth. JAMA 299, 1429–1436 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Adams, M. M. & Barfield, W. D. The future of very preterm infants: learning from the past. JAMA 299, 1477–1478 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Ananth, C. V. & Vintzileos, A. M. Epidemiology of preterm birth and its clinical subtypes. J. Matern. Fetal Neonatal Med. 19, 773–782 (2006).

    Article  PubMed  Google Scholar 

  17. Gotsch, F. et al. The preterm parturition syndrome and its implications for understanding the biology, risk assessment, diagnosis, treatment and prevention of preterm birth. J. Matern. Fetal Neonatal Med. 22, 5–23 (2009).

    Article  PubMed  Google Scholar 

  18. Kramer, M. R. & Hogue, C. R. What causes racial disparities in very preterm birth? A biosocial perspective. Epidemiol. Rev. 31, 84–98 (2009).

    Article  PubMed  Google Scholar 

  19. Lackland, D. T. & Barker, D. J. P. Birth weight: a predictive medicine consideration for the disparities in CKD. Am. J. Kidney Dis. 54, 191–193 (2009).

    Article  PubMed  Google Scholar 

  20. White, S. L. et al. Is low birth weight an antecedent of CKD in later life? A systematic review of observational studies. Am. J. Kidney Dis. 54, 248–261 (2009).

    Article  PubMed  Google Scholar 

  21. Vikse, B. E. et al. Low birth weight increases risk for end stage renal disease. J. Am. Soc. Nephrol. 19, 151–157 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Norman, M. Low birth weight and the developing vascular tree: a systematic review. Acta Paediatr. 97, 1165–1172 (2008).

    Article  PubMed  Google Scholar 

  23. Kistner, A. et al. Increased systolic daily ambulatory blood pressure in adult women born preterm. Pediatr. Nephrol. 20, 946–953 (2005).

    Article  Google Scholar 

  24. Siewert-Delle, A. & Ljungman, S. The impact of birthweight and gestational age on blood pressure in adult life: a population-based study of 49-year-old men. Am. J. Hypertens. 11, 946–953 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Bonamy, A. K. et al. Preterm birth contributes to increased vascular resistance and higher blood pressure in adolescent girls. Pediatr. Res. 58, 845–849 (2005).

    Article  PubMed  Google Scholar 

  26. Symonds, M. E., Sebert, S. P., Hyatt, M. A. & Budge, H. Nutritional programming of the metabolic syndrome. Nat. Rev. Endocrinol. 5, 604–610 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Nenov, V. D., Taal, M. W., Sakharova, O. V. & Brenner, B. M. Multi-hit nature of chronic renal disease. Curr. Opin. Nephrol. Hypertens. 9, 85–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Hoy, W. E. et al. The multidimensional nature of renal disease: Rates and associations of albuminuria in an Australian Aboriginal community. Kidney Int. 54, 1296–1304 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Shi, W., Bellusci, S. & Warburton, D. Lung development and adult lung diseases. Chest 132, 651–656 (2007).

    Article  PubMed  Google Scholar 

  30. Shah, M. M., Sampogna, R., Sakurai, H., Bush, K. T. & Nigam, S. K. Branching morphogenesis and kidney disease. Development 131, 1449–1462 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Usher, R. & McLean, F. Intrauterine growth of live-born Caucasian infants at sea level: standards obtained from measurements in 7 dimensions of infants born between 25 and 44 weeks of gestation. J. Pediatr. 74, 901–910 (1969).

    Article  CAS  PubMed  Google Scholar 

  32. Riddle, W. R. & DonLevy, S. C. Generating expected growth curves and Z-scores for premature infants. J. Perinatol. 30, 741–750 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Ligi, I. Grandvuillemin, I., Andres, V., Dignat-George, F. & Simeoni, U. Low birth weight infants and the developmental programming of hypertension: a focus on vascular factors. Semin. Perinatol. 34, 188–192 (2010).

    Article  PubMed  Google Scholar 

  34. Norman, M. & Martin, H. Preterm birth attenuates association between low birth weight and endothelial dysfunction. Circulation 108, 996–1001 (2003).

    Article  PubMed  Google Scholar 

  35. Leeson, C. P. M. et al. Flow-mediated dilation in 9- to 11-year-old children: the influence of intrauterine and childhood factors. Circulation 96, 2233–2238 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Lazdam, M. et al. Elevated blood pressure in offspring born premature to hypertensive pregnancy: is endothelial dysfunction the underlying vascular mechanism? Hypertension 56, 159–165 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Bassareo, P. P. et al. Reduced brachial flow-mediated vasodilation in young adult ex extremely low birth weight preterm: a condition predictive of increased cardiovascular risk? J. Matern. Fetal Neonatal Med. 23 (Suppl. 3), 121–124 (2010).

    Article  PubMed  Google Scholar 

  38. Franco, M. C. P., Christofalo, D. M. J., Sawaya, A. L., Ajzen, S. A. & Sesso, R. Effects of low birth weight in 8- to 13-year-old children: implications in endothelial function and uric acid levels. Hypertension 48, 45–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Feig, D. I. et al. Hypothesis: uric acid, nephron number, and the pathogenesis of essential hypertension. Kidney Int. 66, 281–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Feig, D. I. & Johnson, R. J. The role of uric acid in pediatric hypertension. J. Ren. Nutr. 17, 79–83 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Antonios, T. F., Singer, D. R., Markandu, N. D., Mortimer, P. S. & MacGregor, G. A. Structural skin capillary rarefaction in essential hypertension. Hypertension 33, 998–1001 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Kistner, A., Jacobson, L., Jacobson, S. H., Svensson, E. & Hellstrom, A. Low gestational age associated with abnormal retinal vascularization and increased blood pressure in adult women. Pediatr. Res. 51, 675–680 (2002).

    Article  PubMed  Google Scholar 

  43. Hellstrom, A., Hard, A. L., Niklasson, A., Svensson, E. & Jacobsson, B. Abnormal retinal vascularisation in preterm children as a general vascular phenomenon. Lancet 352, 1827 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Mitchell, P. et al. Evidence of arteriolar narrowing in low-birth-weight children. Circulation 118, 518–524 (2008).

    Article  PubMed  Google Scholar 

  45. Kinzler, W. L. et al. Extracellular matrix changes in the umbilical arteries of growth-restricted fetuses. Am. J. Obstet. Gynecol. 192, 1053–1059 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Tauzin, L. et al. Vascular mechanisms in the developmental programming of cardio-vascular disease. Pediatr. Med. Chir. 27, 18–23 (2005).

    CAS  PubMed  Google Scholar 

  47. Tauzin, L. et al. Characteristics of arterial stiffness in very low birth weight premature infants. Pediatr. Res. 60, 592–596 (2006).

    Article  PubMed  Google Scholar 

  48. Martyn, C. N. & Greenwald, S. E. Impaired synthesis of elastin in walls of aorta and large conduit arteries during early development as an initiating event in pathogenesis of systemic hypertension. Lancet 350, 953–955 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Burkhardt, T. et al. Decreased umbilical artery compliance and IGF-I plasma levels in infants with intrauterine growth restriction. Implications for fetal programming of hypertension. Placenta 30, 136–141 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Abitbol, C. L. & Ingelfinger, J. R. Nephron mass and cardiovascular and renal disease risks. Semin. Nephrol. 29, 445–454 (2009).

    Article  PubMed  Google Scholar 

  51. Habib, R., Courtecuisse, V. & Mathieu, H. Un type anatomo-clinique particulier d'insuffisance rénale chronique de l'enfant: l'hypoplasie oligonéphronique congénitale bilatérale [French]. J. Urol. Nephrol. 68, 139–143 (1962).

    CAS  Google Scholar 

  52. Brenner, B. M. & Chertow, G. M. Congenital oligonephronia and the etiology of adult hypertension and progressive renal disease. Am. J. Kidney Dis. 23, 171–175 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Drukker, A. Oligonephropathy: from a rare childhood disorder to a possible health problem in the adult. Isr. Med. Assoc. J. 4, 191–195 (2002).

    PubMed  Google Scholar 

  54. Hinchliffe, S. A., Sargent, P. H., Howard, C. V., Chan, Y. F. & van Velzen, D. Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab. Invest. 64, 777–784 (1991).

    CAS  PubMed  Google Scholar 

  55. Puddu, M., Fanos, V., Podda, F. & Zaffanello, M. The kidney from prenatal to adult life: perinatal programming and reduction of number of nephrons during development. Am. J. Nephrol. 30, 162–170 (2009).

    Article  PubMed  Google Scholar 

  56. Merlet-Bénichou, C. et al. Nephron number: variability is the rule. Causes and consequences. Lab. Invest. 79, 515–527 (1999).

    PubMed  Google Scholar 

  57. Bertram, J. F., Douglas-Denton, R. N., Diouf, B., Hughson, M. D. & Hoy, W. E. Human nephron number: implications for health and disease. Pediatr. Nephrol. 26, 1529–1533 (2011).

    Article  PubMed  Google Scholar 

  58. Nyengaard, J. R. & Bendtsen, T. F. Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat. Rec. 232, 194–201 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Keller, G., Zimmer, G., Mall, G., Ritz, E. & Amann, K. Nephron number in patients with primary hypertension. N. Engl. J. Med. 348, 101–108 (2003).

    Article  PubMed  Google Scholar 

  60. Hoy, W. E. et al. Nephron number, glomerular volume, renal disease and hypertension. Curr. Opin. Nephrol. Hypertens. 17, 258–265 (2008).

    Article  PubMed  Google Scholar 

  61. Brenner, B. M. & Mackenzie, H. S. Nephron mass as a risk factor for progression of renal disease. Kidney Int. Suppl. 63, S124–S127 (1997).

    CAS  PubMed  Google Scholar 

  62. Hodgin, J., Rasalpour, M., Markowitz, G. S. & D'Agati, V. Very low birth weight is a risk factor for secondary focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 4, 71–76 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Abitbol, C. L. et al. Obesity and preterm birth: additive risks in the progression of kidney disease in children. Pediatr. Nephrol. 24, 1363–1370 (2009).

    Article  PubMed  Google Scholar 

  64. Rodriguez, M. M. et al. Comparative renal histomorphometry: a case study of oligonephropathy of prematurity. Pediatr. Nephrol. 20, 945–949 (2005).

    Article  PubMed  Google Scholar 

  65. Rodriguez, M. M. et al. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr. Dev. Pathol. 7, 17–25 (2004).

    Article  PubMed  Google Scholar 

  66. Mañalich, R., Reyes, L., Herrera, M., Melendi, C. & Fundora, I. Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int. 58, 770–773 (2000).

    Article  PubMed  Google Scholar 

  67. Faa, G. et al. Marked interindividual variability in renal maturation of preterm infants: lessons from autopsy. J. Matern. Fetal Neonatal Med. 23 (Suppl. 3), 129–133 (2010).

    Article  PubMed  Google Scholar 

  68. Sutherland, M. R. et al. Accelerated maturation and abnormal morphology in the preterm neonatal kidney. J. Am. Soc. Nephrol. 22, 1365–1374 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tóth-Heyn, P., Drukker, A. & Guignard, J.-P. The stressed neonatal kidney: from pathophysiology to clinical management of neonatal vasomotor nephropathy. Pediatr. Nephrol. 14, 227–239 (2000).

    Article  PubMed  Google Scholar 

  70. Cuzzolin, L. et al. Postnatal renal function in preterm newborns: a role of diseases, drugs and therapeutic interventions Pediatr. Nephrol. 21, 931–938 (2006).

    Article  PubMed  Google Scholar 

  71. Baum, M. Role of the kidney in the prenatal and early postnatal programming of hypertension. Am. J. Physiol. Renal Physiol. 298, F235–F247 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Zaffanello, M. et al. Long-term effects of neonatal drugs on the kidney. J. Matern. Fetal Neonatal Med. 23 (Suppl. 3), 87–89 (2010).

    Article  PubMed  Google Scholar 

  73. Solhaug, M. J., Bolger, P. M. & Jose, P. A. The developing kidney and environmental toxins. Pediatrics 113, 1084–1091 (2004).

    PubMed  Google Scholar 

  74. Kist-van Holthe, J. E. Is nephrocalcinosis in preterm neonates harmful for long-term blood pressure and renal function? Pediatrics 119, 468–475 (2007).

    Article  PubMed  Google Scholar 

  75. Schell-Feith, E. A., Kist-van Holthe, J. E. & van der Heijden, A. J. Nephrocalcinosis in preterm neonates. Pediatr. Nephrol. 25, 221–230 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Giapros, V. et al. Renal function and kidney length in preterm infants with nephrocalcinosis: a longitudinal study. Pediatr. Nephrol. 26, 1873–1880 (2011).

    Article  PubMed  Google Scholar 

  77. Rodríguez-Soriano, J., Aguirre, M., Oliveros, R. & Vallo, A. Long-term renal follow-up of extremely low birth weight infants. Pediatr. Nephrol. 20, 579–584 (2005).

    Article  PubMed  Google Scholar 

  78. Kistner, A., Celsi, G., Vanpee, M. & Jacobson, S. H. Increased blood pressure but normal renal function in adult women born preterm. Pediatr. Nephrol. 15, 215–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  79. Zaffanello, M. et al. Renal function and volume of infants born with a very low birth-weight: a preliminary cross-sectional study. Acta Paediatr. 99, 1192–1198 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Hallan, S. et al. Effect of intrauterine growth restriction on kidney function at young adult age: the Nord Trondelag Health (HUNT 2) Study. Am. J. Kidney Dis. 51, 10–20 (2008).

    Article  PubMed  Google Scholar 

  81. Abitbol, C. L. et al. Long-term follow-up of extremely low birth weight infants with neonatal renal failure. Pediatr. Nephrol. 18, 887–893 (2003).

    Article  PubMed  Google Scholar 

  82. Schaefer, F. Proteinuria: not a small problem in the little ones. Clin. J. Am. Soc. Nephrol. 4, 696–697 (2009).

    Article  PubMed  Google Scholar 

  83. Ardissino, G. et al. Proteinuria as a predictor of disease progression in children with hypodysplastic nephropathy. Data from the Ital Kid Project. Pediatr. Nephrol. 19, 172–177 (2004).

    Article  PubMed  Google Scholar 

  84. Abitbol, C. L. et al. Profiling proteinuria in pediatric patients. Pediatr. Nephrol. 21, 995–1002 (2006).

    Article  PubMed  Google Scholar 

  85. Keijzer-Veen, M. et al. Microalbuminuria and lower glomerular filtration rate at young adult age in subjects born very premature and after intrauterine growth retardation. J. Am. Soc. Nephrol. 16, 2762–2768 (2005).

    Article  CAS  PubMed  Google Scholar 

  86. Puddu, M., Podda, M. F., Mussap, M., Tumbarello, R. & Fanos, V. Early detection of microalbuminuria and hypertension in children of very low birthweight. J. Matern. Fetal Neonatal Med. 22, 83–88 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Regan, F. M., Cutfield, W. S., Jefferies, C., Robinson, E. & Hofman, P. L. The impact of early nutrition in premature infants on later childhood insulin sensitivity and growth. Pediatrics 118, 1943–1949 (2006).

    Article  PubMed  Google Scholar 

  88. Mericq, V. et al. Longitudinal changes in insulin sensitivity and secretion from birth to age three years in small- and appropriate-for-gestational-age children. Diabetologia 48, 2609–2614 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Lucas, A. Programming by early nutrition: an experimental approach. J. Nutr. 128, 401S–406S (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Kurella, M., Lo, J. C. & Chertow, G. M. Metabolic syndrome and the risk for chronic kidney disease among nondiabetic adults. J. Am. Soc. Nephrol. 16, 2134–2140 (2005).

    Article  PubMed  Google Scholar 

  91. Musso, C. et al. Spectrum of renal diseases associated with extreme forms of insulin resistance. Clin. J. Am. Soc. Nephrol. 1, 616–622 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Tomaszewski, M. et al. Glomerular hyperfiltration: a new marker of metabolic risk. Kidney Int. 71, 816–821 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Chandar, J., Abitbol, C., Montané, B. & Zilleruelo, G. Angiotensin blockade as sole treatment for proteinuric kidney disease in children. Nephrol. Dial. Transplant. 22, 1332–1337 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, S., Bacha, F., Gungor, N. & Arslanian, S. Comparisons of different definitions of pediatric metabolic syndrome: relation to abdominal obesity, insulin resistance, adiponectin, and inflammatory biomarkers. J. Pediatr. 152, 177–184 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Zimmet, P. et al. The metabolic syndrome in children and adolescents—an IDF consensus report. Pediatr. Diabetes 8, 299–306 (2007).

    Article  PubMed  Google Scholar 

  96. Grundy, S. M. et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. Circulation 110, 227–239 (2004).

    Article  PubMed  Google Scholar 

  97. Khosla, U. M. et al. Hyperuricemia induces endothelial dysfunction. Kidney Int. 67, 1739–1742 (2005).

    Article  PubMed  Google Scholar 

  98. Johnson, R. J., Kivlighn, S. D., Kim, Y. G., Suga, S. & Fogo, A. B. Reappraisal of the pathogenesis and consequences of hyperuricemia in hypertension, cardiovascular disease, and renal disease. Am. J. Kidney Dis. 33, 225–234 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Johnson, R. J., Sanchez-Lozada, L. G. & Nakagawa, T. The effect of fructose on renal biology and disease. J. Am. Soc. Nephrol. 21, 2036–2039 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Ejaz, A. A. et al. Could uric acid have a role in acute renal failure? Clin. J. Am. Soc. Nephrol. 2, 16–21 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Sanchez-Lozada, L. G. et al. Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am. J. Physiol. Renal Physiol. 292, F423–F429 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Glushakova, O. et al. Fructose induces the inflammatory molecule ICAM-1 in endothelial cells. J. Am. Soc. Nephrol. 19, 1712–1720 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nguyen, S., Choi, H. K., Lustig, R. H. & Hsu, C. Y. Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents. J. Pediatr. 154, 807–813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Brymora, A. et al. Low-fructose diet lowers blood pressure and inflammation in patients with chronic kidney disease. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfr223.

  105. Jimenez-Chillaron, J. C. & Patti, M. E. To catch up or not to catch up: is this the question? Lessons from animal models. Curr. Opin. Endocrinol. Diabetes Obes. 14, 23–29 (2007).

    Article  PubMed  Google Scholar 

  106. Singhal, A., Cole, T. J. & Lucas, A. Early nutrition in preterm infants and later blood pressure: two cohorts after randomized trials. Lancet 357, 413–419 (2001).

    Article  CAS  PubMed  Google Scholar 

  107. Singhal, A., Farooqi, I. S., O'Rahilly, S. & Lucas, A. Early nutrition and leptin concentrations in later life. Am. J. Clin. Nutr. 75, 993–999 (2002).

    Article  CAS  PubMed  Google Scholar 

  108. Jimenez-Chillaron, J. C. et al. Reductions in caloric intake and early postnatal growth prevent glucose intolerance and obesity associated with low birthweight. Diabetologia 49, 1974–1984 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Eriksson, J. G. et al. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ 318, 427–431 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Singhal, A., Cole, T. J., Fewtrell, M., Deanfield, J. & Lucas, A. Is slower early growth beneficial for long-term cardiovascular health? Circulation 109, 1108–1113 (2004).

    Article  PubMed  Google Scholar 

  111. Stettler, N. et al. Weight gain in the first week of life and overweight in adulthood: a cohort study of European American subjects fed infant formula. Circulation 111, 1897–1903 (2005).

    Article  PubMed  Google Scholar 

  112. Soto, N. et al. Insulin sensitivity and secretion are related to catch-up growth in small-for-gestational age infants at age 1 year: results from a prospective cohort. J. Clin. Endocrinol. Metab. 88, 3645–3650 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Carolyn L. Abitbol.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abitbol, C., Rodriguez, M. The long-term renal and cardiovascular consequences of prematurity. Nat Rev Nephrol 8, 265–274 (2012). https://doi.org/10.1038/nrneph.2012.38

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.38

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing