Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenesis of IgA nephropathy

Abstract

Since its first description in 1968, IgA nephropathy has remained the most common form of idiopathic glomerulonephritis leading to chronic kidney disease in developed countries. The exact pathogenesis of IgA nephropathy is still not well defined. Current data implicate an important genetic factor, especially in promoting the overproduction of an aberrant form of IgA1. The immunochemical aberrancy of IgA nephropathy is characterized by the undergalactosylation of O-glycans in the hinge region of IgA1. However, such aberrant glycosylation alone does not cause renal injury. The next stage of disease development requires the formation of glycan-specific IgG and IgA antibodies that recognize the undergalactosylated IgA1 molecule. These antibodies often have reactivity against antigens from extrinsic microorganisms and might arise from recurrent mucosal infection. B cells that respond to mucosal infections, particularly tonsillitis, might produce the nephritogenic IgA1 molecule. With increased immune-complex formation and decreased clearance owing to reduced uptake by the liver, IgA1 binds to the glomerular mesangium via an as yet unidentified receptor. Glomerular IgA1 deposits trigger the local production of cytokines and growth factors, leading to the activation of mesangial cells and the complement system. Emerging data suggest that mesangial-derived mediators following glomerular deposition of IgA1 lead to podocyte and tubulointerstitial injury via mesangio–podocytic–tubular crosstalk. This Review summarizes the latest findings in the pathogenesis of IgA nephropathy.

Key Points

  • IgA nephropathy is mediated by the deposition of IgA1 immune complexes

  • Increased synthesis of aberrantly galactosylated IgA1 is the first step in disease pathogenesis and remains fundamental to the formation of immune complexes

  • The formation of glycan-specific IgG and IgA antibodies that recognize the undergalactosylated IgA1 is required for the development of disease

  • Genetic factors heavily influence the production of undergalactosylated IgA1 and familial clustering of IgA nephropathy is well recognized

  • The initial event of mesangial deposition of IgA1 immune complexes induces injury to podocytes and renal tubular epithelial cells via a mesangio–podocytic–tubular crosstalk involving various mediators

  • The tubulointerstitial injury that follows chronic inflammation subsequently leads to end-stage renal disease

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed pathways involved in the mesangial deposition of IgA1 in IgA nephropathy—a multihit mechanism.
Figure 2: Microheterogeneity of the O-glycans in the hinge region of IgA1.
Figure 3: Proposed pathways leading to glomerular damage, podocyte dysfunction and tubulointerstitial injury in IgA nephropathy.

Similar content being viewed by others

Eleni Stamellou, Claudia Seikrit, … Rafael Kramann

References

  1. Sanders, J. T. & Wyatt, R. J. IgA nephropathy and Henoch-Schönlein purpura nephritis. Curr. Opin. Pediatr. 20, 163–170 (2008).

    Article  PubMed  Google Scholar 

  2. Roufosse, C. A. & Cook, H. T. Pathological predictors of prognosis in immunoglobulin A nephropathy: a review. Curr. Opin. Nephrol. Hypertens. 18, 212–219 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Schena, F. P. A retrospective analysis of the natural history of primary IgA nephropathy worldwide. Am. J. Med. 89, 209–215 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Nair, R. & Walker, P. D. Is IgA nephropathy the commonest primary glomerulopathy among young adults in the USA? Kidney Int. 69, 1455–1458 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki, H. et al. Aberrantly glycosylated IgA1 in IgA nephropathy patients is recognized by IgG antibodies with restricted heterogeneity. J. Clin. Invest. 119, 1668–1677 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Suzuki, Y. et al. Pathological role of tonsillar B cells in IgA nephropathy. Clin. Dev. Immunol. 2011, 639074 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mestecky, J. & McGhee, J. R. Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv. Immunol. 40, 153–245 (1987).

    Article  CAS  PubMed  Google Scholar 

  8. Hiki, Y. et al. Mass spectrometry proves under-O-glycosylation of glomerular IgA1 in IgA nephropathy. Kidney Int. 59, 1077–1085 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Tomana, M. et al. Galactose-deficient IgA1 in sera of IgA nephropathy patients is present in complexes with IgG. Kidney Int. 52, 509–516 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Tomana, M. et al. Circulating immune complexes in IgA nephropathy consist of IgA1 with galactose-deficient hinge region and antiglycan antibodies. J. Clin. Invest. 104, 73–81 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ju, T. & Cummings, R. D. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 β3-galactosyltransferase. Proc. Natl Acad. Sci. USA 99, 16613–16618 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Raska, M. et al. Identification and characterization of CMP-NeuAc:GalNAc-IgA1 α2,6-sialyltransferase in IgA1-producing cells. J. Mol. Biol. 369, 69–78 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki, H. et al. IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J. Clin. Invest. 118, 629–639 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, G. S., Zhang, H., Lv, J. C., Shen, Y. & Wang, H. Y. Variants of C1GALT1 gene are associated with the genetic susceptibility to IgA nephropathy. Kidney Int. 71, 448–453 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Pirulli, D. et al. Genetic variant of C1GalT1 contributes to the susceptibility to IgA nephropathy. J. Nephrol. 22, 152–159 (2009).

    CAS  PubMed  Google Scholar 

  16. Zhu, L. et al. Interaction between variants of two glycosyltransferase genes in IgA nephropathy. Kidney Int. 76, 190–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Buck, K. S. et al. B-cell O-galactosyltransferase activity, and expression of O-glycosylation genes in bone marrow in IgA nephropathy. Kidney Int. 73, 1128–1136 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Smith, A. C., de Wolff, J. F., Molyneux, K., Feehally, J. & Barratt, J. O-glycosylation of serum IgD in IgA nephropathy. J. Am. Soc. Nephrol. 17, 1192–1199 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Leung, J. C., Tang, S. C., Lam, M. F., Chan, T. M. & Lai, K. N. Charge-dependent binding of polymeric IgA1 to human mesangial cells in IgA nephropathy. Kidney Int. 59, 277–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Leung, J. C., Poon, P. Y. & Lai, K. N. Increased sialylation of polymeric immunoglobulin A1: mechanism of selective glomerular deposition in immunoglobulin A nephropathy? J. Lab. Clin. Med. 133, 152–160 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Lai, K. N., Ho, R. T., Lai, C. K., Chan, C. H. & Li, P. K. Increase of both circulating Th1 and Th2 T lymphocyte subsets in IgA nephropathy. Clin. Exp. Immunol. 96, 116–121 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ebihara, I. et al. Th2 predominance at the single-cell level in patients with IgA nephropathy. Nephrol. Dial. Transplant. 16, 1783–1789 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Lai, K. N. et al. CD4-positive cells from patients with IgA nephropathy demonstrate increased mRNA of cytokines that induce the IgA switch and differentiation. J. Pathol. 174, 13–22 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Lai, K. N., Ho, R. T., Leung, J. C., Lai, F. M. & Li, P. K. Increased mRNA encoding for transforming factor-β in CD4+ cells from patients with IgA nephropathy. Kidney Int. 46, 862–868 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Toyabe, S., Harada, W. & Uchiyama, M. Oligoclonally expanding γδ T lymphocytes induce IgA switching in IgA nephropathy. Clin. Exp. Immunol. 124, 110–117 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lai, K. N. et al. Characteristics of polymeric λ-IgA binding to leukocytes in IgA nephropathy. J. Am. Soc. Nephrol. 13, 2309–2319 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Yu, H. H. et al. Genetics and immunopathogenesis of IgA nephropathy. Clin. Rev. Allergy Immunol. 41, 198–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. van den Wall Bake, A. W. et al. The bone marrow as production site of the IgA deposited in the kidneys of patients with IgA nephropathy. Clin. Exp. Immunol. 72, 321–325 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. van den Wall Bake, A. W. et al. Elevated production of polymeric and monomeric IgA1 by the bone marrow in IgA nephropathy. Kidney Int. 35, 1400–1404 (1989).

    Article  CAS  PubMed  Google Scholar 

  30. Harper, S. J. et al. Increased immunoglobulin A and immunoglobulin A1 cells in bone marrow trephine biopsy specimens in immunoglobulin A nephropathy. Am. J. Kidney Dis. 24, 888–892 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Smith, A. C., Molyneux, K., Feehally, J. & Barratt, J. O-glycosylation of serum IgA1 antibodies against mucosal and systemic antigens in IgA nephropathy. J. Am. Soc. Nephrol. 17, 3520–3528 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Oortwijn, B. D. et al. A pathogenic role for secretory IgA in IgA nephropathy. Kidney Int. 69, 1131–1138 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Layward, L., Allen, A. C., Harper, S. J., Hattersley, J. M. & Feehally, J. Increased and prolonged production of specific polymeric IgA after systemic immunization with tetanus toxoid in IgA nephropathy. Clin. Exp. Immunol. 88, 394–398 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Suzuki, H. et al. Th1 polarization in murine IgA nephropathy directed by bone marrow-derived cells. Kidney Int. 72, 319–327 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Suzuki, Y. & Tomino, Y. The mucosa-bone-marrow axis in IgA nephropathy. Contrib. Nephrol. 157, 70–79 (2007).

    CAS  PubMed  Google Scholar 

  36. Béné, M. C., Hurault De Ligny, B., Kessler, M. & Faure, G. C. Confirmation of tonsillar anomalies in IgA nephropathy: a multicenter study. Nephron 58, 425–428 (1991).

    Article  PubMed  Google Scholar 

  37. Kusakari, C. et al. Immunopathological features of palatine tonsil characteristic of IgA nephropathy: IgA1 localization in follicular dendritic cells. Clin. Exp. Immunol. 95, 42–48 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harper, S. J. et al. Expression of J chain mRNA in duodenal IgA plasma cells in IgA nephropathy. Kidney Int. 45, 836–844 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Qin, W. et al. External suppression causes the low expression of the Cosmc gene in IgA nephropathy. Nephrol. Dial. Transplant. 23, 1608–1614 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Coppo, R. et al. Toll-like receptor 4 expression is increased in circulating mononuclear cells of patients with immunoglobulin A nephropathy. Clin. Exp. Immunol. 159, 73–81 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coppo, R., Amore, A., Peruzzi, L., Vergano, L. & Camilla, R. Innate immunity and IgA nephropathy. J. Nephrol. 23, 626–632 (2010).

    PubMed  Google Scholar 

  42. Suzuki, H. et al. Toll-like receptor 9 affects severity of IgA nephropathy. J. Am. Soc. Nephrol. 19, 2384–2395 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Monteiro, R. C., Cooper, M. D. & Kubagawa, H. Molecular heterogeneity of Fc alpha receptors detected by receptor-specific monoclonal antibodies. J. Immunol. 148, 1764–1770 (1992).

    CAS  PubMed  Google Scholar 

  44. Morton, H. C., van Egmond, M. & van de Winkel, J. G. Structure and function of human IgA Fc receptors (FcαR). Crit. Rev. Immunol. 16, 423–440 (1996).

    CAS  PubMed  Google Scholar 

  45. Reterink, T. J. et al. Size-dependent effect of IgA on the IgA Fc receptor (CD89). Eur. J. Immunol. 27, 2219–2224 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Monteiro, R. C., Kubagawa, H. & Cooper, M. D. Cellular distribution, regulation, and biochemical nature of an Fc alpha receptor in humans. J. Exp. Med. 171, 597–613 (1990).

    Article  CAS  PubMed  Google Scholar 

  47. Grossetête, B. et al. Down-regulation of Fcα receptors on blood cells of IgA nephropathy patients: evidence for a negative regulatory role of serum IgA. Kidney Int. 53, 1321–1335 (1998).

    Article  PubMed  Google Scholar 

  48. Gómez-Guerrero, C., González, E. & Egido, J. Evidence for a specific IgA receptor in rat and human mesangial cells. J. Immunol. 151, 7172–7181 (1993).

    PubMed  Google Scholar 

  49. Mostov, K. E., Friedlander, M. & Blobel, G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature 308, 37–43 (1984).

    Article  CAS  PubMed  Google Scholar 

  50. Moura, I. C. et al. The glomerular response to IgA deposition in IgA nephropathy. Semin. Nephrol. 28, 88–95 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Diven, S. C. et al. IgA induced activation of human mesangial cells: independent of FcalphaR1 (CD 89). Kidney Int. 54, 837–847 (1998).

    Article  CAS  PubMed  Google Scholar 

  52. Leung, J. C., Tsang, A. W., Chan, D. T. & Lai, K. N. Absence of CD89, polymeric immunoglobulin receptor, and asialoglycoprotein receptor on human mesangial cells. J. Am. Soc. Nephrol. 11, 241–249 (2000).

    CAS  PubMed  Google Scholar 

  53. Vuong, M. T. et al. Association of soluble CD89 levels with disease progression but not susceptibility in IgA nephropathy. Kidney Int. 78, 1281–1287 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Stockert, R. J. The asialoglycoprotein receptor: relationships between structure, function, and expression. Physiol. Rev. 75, 591–609 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Pacifico, F. et al. Differential expression of the asialoglycoprotein receptor in discrete brain areas, in kidney and thyroid. Biochem. Biophys. Res. Commun. 210, 138–144 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Park, J. H., Cho, E. W., Shin, S. Y., Lee, Y. J. & Kim, K. L. Detection of the asialoglycoprotein receptor on cell lines of extrahepatic origin. Biochem. Biophys. Res. Commun. 244, 304–311 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Gómez-Guerrero, C., Duque, N. & Egido, J. Mesangial cells possess an asialoglycoprotein receptor with affinity for human immunoglobulin A. J. Am. Soc. Nephrol. 9, 568–576 (1998).

    PubMed  Google Scholar 

  58. Piskurich, J. F. et al. Transcriptional regulation of the human polymeric immunoglobulin receptor gene by interferon-γ. Mol. Immunol. 34, 75–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Krajci, P. et al. Molecular cloning of the human transmembrane secretory component (poly-Ig receptor) and its mRNA expression in human tissues. Biochem. Biophys. Res. Commun. 158, 783–789 (1989).

    Article  CAS  PubMed  Google Scholar 

  60. Moura, I. C. et al. Identification of the transferrin receptor as a novel immunoglobulin (Ig)A1 receptor and its enhanced expression on mesangial cells in IgA nephropathy. J. Exp. Med. 194, 417–425 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moura, I. C. et al. Glycosylation and size of IgA1 are essential for interaction with mesangial transferrin receptor in IgA nephropathy. J. Am. Soc. Nephrol. 15, 622–634 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. McDonald, K. J., Cameron, A. J., Allen, J. M. & Jardine, A. G. Expression of Fc α/μ receptor by human mesangial cells: a candidate receptor for immune complex deposition in IgA nephropathy. Biochem. Biophys. Res. Commun. 290, 438–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Chan, L. Y., Leung, J. C., Tsang, A. W., Tang, S. C. & Lai, K. N. Activation of tubular epithelial cells by mesangial-derived TNF-α: glomerulotubular communication in IgA nephropathy. Kidney Int. 67, 602–612 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Lai, K. N. et al. Activation of podocytes by mesangial-derived TNF-α: glomerulo-podocytic communication in IgA nephropathy. Am. J. Physiol. Renal Physiol. 294, F945–F955 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Lavigne, K. A. et al. Familial IgA nephropathy in southeastern Kentucky. Clin. Nephrol. 73, 115–121 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Sissons, J. G. et al. Isolated glomerulonephritis with mesangial IgA deposits. Br. Med. J. 3, 611–614 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Johnston, P. A., Brown, J. S., Braumholtz, D. A. & Davison, A. M. Clinico-pathological correlations and long-term follow-up of 253 United Kingdom patients with IgA nephropathy. A report from the MRC Glomerulonephritis Registry. Q. J. Med. 84, 619–627 (1992).

    CAS  PubMed  Google Scholar 

  68. Rambausek, M., Hartz, G., Waldherr, R., Andrassy, K. & Ritz, E. Familial glomerulonephritis. Pediatr. Nephrol. 1, 416–418 (1987).

    Article  CAS  PubMed  Google Scholar 

  69. Schena, F. P., Scivittaro, V. & Ranieri, E. IgA nephropathy: pros and cons for a familial disease. Contrib. Nephrol. 104, 36–45 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Scolari, F. et al. Familial clustering of IgA nephropathy: further evidence in an Italian population. Am. J. Kidney Dis. 33, 857–865 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Levy, M. Familial cases of Berger's disease and anaphylactoid purpura: more frequent than previously thought. Am. J. Med. 87, 246–248 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. Tam, K. Y. et al. Macromolecular IgA1 taken from patients with familial IgA nephropathy or their asymptomatic relatives have higher reactivity to mesangial cells in vitro. Kidney Int. 75, 1330–1339 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Izzi, C. et al. Familial aggregation of primary glomerulonephritis in an Italian population isolate: Valtrompia study. Kidney Int. 69, 1033–1040 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Julian, B. A. et al. Familial IgA nephropathy. Evidence of an inherited mechanism of disease. N. Engl. J. Med. 312, 202–208 (1985).

    Article  CAS  PubMed  Google Scholar 

  75. Schena, F. P. et al. Increased risk of end-stage renal disease in familial IgA nephropathy. J. Am. Soc. Nephrol. 13, 453–460 (2002).

    PubMed  Google Scholar 

  76. Tam, K. Y. et al. In vitro enhanced chemotaxis of CD25+ mononuclear cells in patients with familial IgAN through glomerulotubular interactions. Am. J. Physiol. Renal Physiol. 299, F359–F368 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Julian, B. A., Woodford, S. Y., Baehler, R. W., McMorrow, R. G. & Wyatt, R. J. Familial clustering and immunogenetic aspects of IgA nephropathy. Am. J. Kidney Dis. 12, 366–370 (1988).

    Article  CAS  PubMed  Google Scholar 

  78. Izzi, C. et al. IgA nephropathy: the presence of familial disease does not confer an increased risk for progression. Am. J. Kidney Dis. 47, 761–769 (2006).

    Article  PubMed  Google Scholar 

  79. Frascá, G. M. et al. Thin basement membrane disease in patients with familial IgA nephropathy. J. Nephrol. 17, 778–785 (2004).

    PubMed  Google Scholar 

  80. Miyazaki, M. Immunological abnormalities in family members of patients with IgA nephropathy. Jpn J. Med. 29, 469–477 (1990).

    Article  CAS  PubMed  Google Scholar 

  81. Kiryluk, K. et al. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch-Schönlein purpura nephritis. Kidney Int. 80, 79–87 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gharavi, A. G. et al. Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J. Am. Soc. Nephrol. 19, 1008–1014 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Paterson, A. D. et al. Genome-wide linkage scan of a large family with IgA nephropathy localizes a novel susceptibility locus to chromosome 2q36. J. Am. Soc. Nephrol. 18, 2408–2415 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Gharavi, A. G. et al. IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22-23. Nat. Genet. 26, 354–357 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Bisceglia, L. et al. Genetic heterogeneity in Italian families with IgA nephropathy: suggestive linkage for two novel IgA nephropathy loci. Am. J. Hum. Genet. 79, 1130–1134 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Karnib, H. H. et al. Characterization of a large Lebanese family segregating IgA nephropathy. Nephrol. Dial. Transplant. 22, 772–777 (2007).

    Article  CAS  PubMed  Google Scholar 

  87. Hsu, S. I. et al. Genome-wide linkage scan for familial IgA nephropathy among southeast Asian Chinese: evidence for a suggestive novel susceptibility locus on chromosome 8p23 [abstract]. American Society of Nephrology Renal Week F-PO1405 (2009).

  88. Feehally, J. et al. HLA has strongest association with IgA nephropathy in genome-wide analysis. J. Am. Soc. Nephrol. 21, 1791–1797 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gharavi, A. G. et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat. Genet. 43, 321–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kiryluk, K. et al. Genetic studies of IgA nephropathy: past, present, and future. Pediatr. Nephrol. 25, 2257–2268 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lai, K. N. et al. Polymeric IgA1 from patients with IgA nephropathy upregulates transforming growth factor-β synthesis and signal transduction in human mesangial cells via the renin-angiotensin system. J. Am. Soc. Nephrol. 14, 3127–3137 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. van Kooten, C., Daha, M. R. & Van Es, L. A. Tubular epithelial cells: A critical cell type in the regulation of renal inflammatory processes. Exp. Nephrol. 7, 429–437 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Lai, K. N., Leung, J. C., Chan, L. Y., Guo, H. & Tang, S. C. Interaction between proximal tubular epithelial cells and infiltrating monocytes/T cells in the proteinuric state. Kidney Int. 71, 526–538 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Tang, S. et al. Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. J. Clin. Invest. 111, 515–527 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lai, K. N. et al. Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. Nephrol. Dial. Transplant. 24, 62–72 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Coppo, R. et al. Aberrantly glycosylated IgA1 induces mesangial cells to produce platelet-activating factor that mediates nephrin loss in cultured podocyte. Kidney Int. 77, 417–427 (2010).

    Article  CAS  PubMed  Google Scholar 

  97. Lai, K. N. et al. Mesangial expression of angiotensin II receptor in IgA nephropathy and its regulation by polymeric IgA1. Kidney Int. 66, 1403–1416 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Wang, L., Flannery, P. J. & Spurney, R. F. Characterization of angiotensin II-receptor subtypes in podocytes. J. Lab. Clin. Med. 142, 313–321 (2003).

    Article  CAS  PubMed  Google Scholar 

  99. Chan, L. Y., Leung, J. C., Tang, S. C., Choy, C. B. & Lai, K. N. Tubular expression of angiotensin II receptors and their regulation in IgA nephropathy. J. Am. Soc. Nephrol. 16, 2306–2317 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Chansel, D. et al. Differential regulation of angiotensin II and losartan binding sites in glomeruli and mesangial cells. Am. J. Physiol. 266, F384–F393 (1994).

    CAS  PubMed  Google Scholar 

  101. Makita, N., Iwai, N., Inagami, T. & Badr, K. F. Two distinct pathways in the down-regulation of type-1 angiotension II receptor gene in rat glomerular mesangial cells. Biochem. Biophys. Res. Commun. 185, 142–146 (1992).

    Article  CAS  PubMed  Google Scholar 

  102. Wagner, J., Gehlen, F., Ciechanowicz, A. & Ritz, E. Angiotensin II receptor type 1 gene expression in human glomerulonephritis and diabetes mellitus. J. Am. Soc. Nephrol. 10, 545–551 (1999).

    CAS  PubMed  Google Scholar 

  103. Leung, J. C. et al. Oxidative damages in tubular epithelial cells in IgA nephropathy: role of crosstalk between angiotensin II and aldosterone. J. Transl. Med. 9, 169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lai, K. Pathogenesis of IgA nephropathy. Nat Rev Nephrol 8, 275–283 (2012). https://doi.org/10.1038/nrneph.2012.58

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.58

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing