Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathogenesis of membranous nephropathy: recent advances and future challenges

Abstract

Over the past few years, considerable advances have been made in our understanding of the molecular pathomechanisms of human membranous nephropathy, inspired by studies of Heymann nephritis, a faithful experimental model of this disease. This research led to the identification of neutral endopeptidase, the M-type receptor for secretory phospholipase A2 (PLA2R1) and cationic bovine serum albumin as target antigens of circulating and deposited antibodies in alloimmune neonatal, adult 'idiopathic' and early-childhood membranous nephropathy, respectively. A genome-wide association study has provided further evidence for a highly significant association between PLA2R1 and HLA-DQA1 loci and idiopathic membranous nephropathy in patients of white ancestry. Additional antibody specificities for cytoplasmic antigens have also been identified, but their pathogenic role is uncertain. The time has come to revisit the spectrum of membranous nephropathies based on the newly identified antigen–antibody systems that should be considered as molecular signatures of the disease and that challenge the uniform histological definition. These signatures will soon have a major impact on patient care.

Key Points

  • Antibodies to neutral endopeptidase, the first podocyte antigen described in human membranous nephropathy, are responsible for alloimmune neonatal membranous nephropathy, which develops in children of mothers deficient in this enzyme

  • The secretory phospholipase A2 receptor (PLA2R1) is a major target antigen in idiopathic membranous nephropathy in adults, and antibodies to PLA2R1 are detected in 60–80% of these patients before immunosuppressive treatment

  • In addition to their diagnostic value, anti-PLA2R1 antibodies can be used to monitor response to treatment

  • Variants in PLA2R1 and HLA-DQA1 are strongly associated with idiopathic membranous nephropathy in patients of white ancestry

  • Immunization against cationic bovine serum albumin is a cause of early-childhood membranous nephropathy, which points to a possible role for food and environmental antigens in membranous nephropathy

  • The newly identified antigen–antibody systems should be considered as molecular signatures of membranous nephropathy that challenge the uniform histological definition and will have a major impact on patient care in the near future

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible mechanisms of immune complex deposition in experimental and human membranous nephropathy.
Figure 2: Structural and functional properties of PLA2R1.
Figure 3: Prevalence of anti-PLA2R1 antibody in patients with membranous nephropathy.
Figure 4: Mechanisms of immune-mediated podocyte injury and disease progression.

Similar content being viewed by others

References

  1. Glassock, R. J. The pathogenesis of idiopathic membranous nephropathy: a 50-year odyssey. Am. J. Kidney Dis. 56, 157–167 (2010).

    Article  PubMed  Google Scholar 

  2. Kerjaschki, D. Pathogenetic concepts of membranous glomerulopathy (MGN). J. Nephrol. 13 (Suppl. 3), S96–S100 (2000).

    PubMed  Google Scholar 

  3. Imai, H., Hamai, K., Komatsuda, A., Ohtani, H. & Miura, A. B. IgG subclasses in patients with membranoproliferative glomerulonephritis, membranous nephropathy, and lupus nephritis. Kidney Int. 51, 270–276 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Kuroki, A. et al. Glomerular and serum IgG subclasses in diffuse proliferative lupus nephritis, membranous lupus nephritis, and idiopathic membranous nephropathy. Intern. Med. 41, 936–942 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Ohtani, H. et al. Distribution of glomerular IgG subclass deposits in malignancy-associated membranous nephropathy. Nephrol. Dial. Transplant. 19, 574–579 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Segawa, Y. et al. IgG subclasses and complement pathway in segmental and global membranous nephropathy. Pediatr. Nephrol. 25, 1091–1099 (2010).

    Article  PubMed  Google Scholar 

  7. Ponticelli, C. Membranous nephropathy. J. Nephrol. 20, 268–287 (2007).

    CAS  PubMed  Google Scholar 

  8. Polanco, N. et al. Spontaneous remission of nephrotic syndrome in idiopathic membranous nephropathy. J. Am. Soc. Nephrol. 21, 697–704 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Polanco, N. et al. Spontaneous remission of nephrotic syndrome in membranous nephropathy with chronic renal impairment. Nephrol. Dial. Transplant. 27, 231–234 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Glassock, R. J. Diagnosis and natural course of membranous nephropathy. Semin. Nephrol. 23, 324–332 (2003).

    Article  PubMed  Google Scholar 

  11. Cattran, D. Management of membranous nephropathy: when and what for treatment. J. Am. Soc. Nephrol. 16, 1188–1194 (2005).

    Article  PubMed  Google Scholar 

  12. Glassock, R. J. The treatment of idiopathic membranous nephropathy: a dilemma or a conundrum? Am. J. Kidney Dis. 44, 562–566 (2004).

    Article  PubMed  Google Scholar 

  13. Waldman, M. & Austin, H. A. III. Controversies in the treatment of idiopathic membranous nephropathy. Nat. Rev. Nephrol. 5, 469–479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cattran, D. C., Reich, H. N., Kim, S. J. & Troyanov, S. Have we changed the outcome in membranous nephropathy? A propensity study on the role of immunosuppressive therapy. Clin. J. Am. Soc. Nephrol. 6, 1591–1598 (2011).

    Article  PubMed  Google Scholar 

  15. Heymann, W., Hackel, D. B., Harwood, S., Wilson, S. G. & Hunter, J. L. Production of nephrotic syndrome in rats by Freund's adjuvants and rat kidney suspensions. Proc. Soc. Exp. Biol. Med. 100, 660–664 (1959).

    Article  CAS  PubMed  Google Scholar 

  16. Van Damme, B. J., Fleuren, G. J., Bakker, W. W., Vernier, R. L. & Hoedemaeker, P. J. Experimental glomerulonephritis in the rat induced by antibodies directed against tubular antigens. V. Fixed glomerular antigens in the pathogenesis of heterologous immune complex glomerulonephritis. Lab. Invest. 38, 502–510 (1978).

    CAS  PubMed  Google Scholar 

  17. Couser, W. G., Steinmuller, D. R., Stilmant, M. M., Salant, D. J. & Lowenstein, L. M. Experimental glomerulonephritis in the isolated perfused rat kidney. J. Clin. Invest. 62, 1275–1287 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Border, W. A., Ward, H. J., Kamil, E. S. & Cohen, A. H. Induction of membranous nephropathy in rabbits by administration of an exogenous cationic antigen. J. Clin. Invest. 69, 451–461 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Adler, S. G., Wang, H., Ward, H. J., Cohen, A. H. & Border, W. A. Electrical charge. Its role in the pathogenesis and prevention of experimental membranous nephropathy in the rabbit. J. Clin. Invest. 71, 487–499 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kerjaschki, D. & Farquhar, M. G. The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc. Natl Acad. Sci. USA 79, 5557–5561 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kerjaschki, D. & Farquhar, M. G. Immunocytochemical localization of the Heymann nephritis antigen (GP330) in glomerular epithelial cells of normal Lewis rats. J. Exp. Med. 157, 667–686 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Debiec, H. et al. Early childhood membranous nephropathy due to cationic bovine serum albumin. N. Engl. J. Med. 364, 2101–2110 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Debiec, H. et al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N. Engl. J. Med. 346, 2053–2060 (2002).

    Article  PubMed  Google Scholar 

  24. Debiec, H. et al. Role of truncating mutations in MME gene in fetomaternal alloimmunisation and antenatal glomerulopathies. Lancet 364, 1252–1259 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Beck, L. H. Jr et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Stanescu, H. C. et al. Risk HLA-DQA1 and PLA2R1 alleles in idiopathic membranous nephropathy. N. Engl. J. Med. 364, 616–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Prunotto, M. et al. Autoimmunity in membranous nephropathy targets aldose reductase and SOD2. J. Am. Soc. Nephrol. 21, 507–519 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bruschi, M. et al. Direct characterization of target podocyte antigens and auto-antibodies in human membranous glomerulonephritis: alfa-enolase and borderline antigens. J. Proteomics 74, 2008–2017 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Couser, W. G. & Salant, D. J. In situ immune complex formation and glomerular injury. Kidney Int. 17, 1–13 (1980).

    Article  CAS  PubMed  Google Scholar 

  30. Dixon, F. J., Feldman, J. D. & Vazquez, J. J. Experimental glomerulonephritis. The pathogenesis of a laboratory model resembling the spectrum of human glomerulonephritis. J. Exp. Med. 113, 899–920 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilson, C. B. & Dixon, F. J. Quantitation of acute and chronic serum sickness in the rabbit. J. Exp. Med. 134, 7–18 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Saito, A. et al. Mapping rat megalin: the second cluster of ligand binding repeats contains a 46-amino acid pathogenic epitope involved in the formation of immune deposits in Heymann nephritis. Proc. Natl Acad. Sci. USA 93, 8601–8605 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamazaki, H. et al. All four putative ligand-binding domains in megalin contain pathogenic epitopes capable of inducing passive Heymann nephritis. J. Am. Soc. Nephrol. 9, 1638–1644 (1998).

    CAS  PubMed  Google Scholar 

  34. Allegri, L. et al. Polyvalent antigen-antibody interactions are required for the formation of electron-dense immune deposits in passive Heymann's nephritis. Am. J. Pathol. 125, 1–6 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Raychowdhury, R., Zheng, G., Brown, D. & McCluskey, R. T. Induction of Heymann nephritis with a gp330/megalin fusion protein. Am. J. Pathol. 148, 1613–1623 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Oleinikov, A. V., Feliz, B. J. & Makker, S. P. A small N-terminal 60-kD fragment of gp600 (megalin), the major autoantigen of active Heymann nephritis, can induce a full-blown disease. J. Am. Soc. Nephrol. 11, 57–64 (2000).

    CAS  PubMed  Google Scholar 

  37. Tramontano, A. & Makker, S. P. Conformation and glycosylation of a megalin fragment correlate with nephritogenicity in Heymann nephritis. J. Immunol. 172, 2367–2373 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Tramontano, A., Knight, T., Vizzuso, D. & Makker, S. P. Nested N-terminal megalin fragments induce high-titer autoantibody and attenuated Heymann nephritis. J. Am. Soc. Nephrol. 17, 1979–1985 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Shah, P., Tramontano, A. & Makker, S. P. Intramolecular epitope spreading in Heymann nephritis. J. Am. Soc. Nephrol. 18, 3060–3066 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Ronco, P. et al. A monoclonal antibody to brush border and passive Heymann nephritis. Clin. Exp. Immunol. 55, 319–332 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Assmann, K. J., Tangelder, M. M., Lange, W. P., Tadema, T. M. & Koene, R. A. Membranous glomerulonephritis in the mouse. Kidney Int. 24, 303–312 (1983).

    Article  CAS  PubMed  Google Scholar 

  42. Assmann, K. J. et al. Comparison of antigenic targets involved in antibody-mediated membranous glomerulonephritis in the mouse and rat. Am. J. Pathol. 121, 112–122 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Assmann, K. J. et al. Involvement of an antigen distinct from the Heymann antigen in membranous glomerulonephritis in the mouse. Lab. Invest. 60, 138–146 (1989).

    CAS  PubMed  Google Scholar 

  44. Meyer, T. N. et al. A new mouse model of immune-mediated podocyte injury. Kidney Int. 72, 841–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Meyer-Schwesinger, C. et al. Nephrotic syndrome and subepithelial deposits in a mouse model of immune-mediated anti-podocyte glomerulonephritis. J. Immunol. 187, 3218–3229 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Cybulsky, A. V., Quigg, R. J. & Salant, D. J. Experimental membranous nephropathy redux. Am. J. Physiol. Renal Physiol. 289, F660–F671 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Nangaku, M., Shankland, S. J. & Couser, W. G. Cellular response to injury in membranous nephropathy. J. Am. Soc. Nephrol. 16, 1195–1204 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Cunningham, P. N. & Quigg, R. J. Contrasting roles of complement activation and its regulation in membranous nephropathy. J. Am. Soc. Nephrol. 16, 1214–1222 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Koyama, A., Inage, H., Kobayashi, M., Narita, M. & Tojo, S. Effect of chemical cationization of antigen on glomerular localization of immune complexes in active models of serum sickness nephritis in rabbits. Immunology 58, 529–534 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bass, P. S., Drake, A. F., Wang, Y., Thomas, J. H. & Davies, D. R. Cationization of bovine serum albumin alters its conformation as well as its charge. Lab. Invest. 62, 185–188 (1990).

    CAS  PubMed  Google Scholar 

  51. Wright, N. G., Mohammed, N. A., Eckersall, P. D. & Nash, A. S. Experimental immune complex glomerulonephritis in dogs receiving cationized bovine serum albumin. Res. Vet. Sci. 38, 322–328 (1985).

    Article  CAS  PubMed  Google Scholar 

  52. Koyama, A. et al. Role of antigenic charge and antibody avidity on the glomerular immune complex localization in serum sickness of mice. Clin. Exp. Immunol. 64, 606–614 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen, J. S. et al. Mouse model of membranous nephropathy induced by cationic bovine serum albumin: antigen dose-response relations and strain differences. Nephrol. Dial. Transplant. 19, 2721–2728 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Wu, C. C. et al. Kinetics of adaptive immunity to cationic bovine serum albumin-induced membranous nephropathy. Kidney Int. 72, 831–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Urizar, R. E., Cerda, J. & Reilly, A. Glomerulitis induced by cationized bovine serum albumin in the rat. Pediatr. Nephrol. 3, 149–155 (1989).

    Article  CAS  PubMed  Google Scholar 

  56. Schmiedeke, T. M. et al. Histones have high affinity for the glomerular basement membrane. Relevance for immune complex formation in lupus nephritis. J. Exp. Med. 169, 1879–1894 (1989).

    Article  CAS  PubMed  Google Scholar 

  57. Termaat, R. M. et al. Anti-DNA antibodies can bind to the glomerulus via two distinct mechanisms. Kidney Int. 42, 1363–1371 (1992).

    Article  CAS  PubMed  Google Scholar 

  58. Matsuo, S. et al. Experimental glomerulonephritis induced in rats by a lectin and its antibodies. Kidney Int. 36, 1011–1021 (1989).

    Article  CAS  PubMed  Google Scholar 

  59. Iskandar, S. S., Zhang, J. M. & Rodriguez, E. Nephropathy induced in a nephritis-resistant inbred mouse strain with the use of a cationized antigen. Am. J. Pathol. 123, 67–72 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ronco, P. & Debiec, H. Molecular pathomechanisms of membranous nephropathy: from Heymann nephritis to alloimmunization. J. Am. Soc. Nephrol. 16, 1205–1213 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Stahl, R., Hoxha, E. & Fechner, K. PLA2R autoantibodies and recurrent membranous nephropathy after transplantation. N. Engl. J. Med. 363, 496–498 (2010).

    Article  PubMed  Google Scholar 

  62. Debiec, H. et al. Autoantibodies specific for the phospholipase A2 receptor in recurrent and de novo membranous nephropathy. Am. J. Transplant. 11, 2144–2152 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. East, L. & Isacke, C. M. The mannose receptor family. Biochim. Biophys. Acta 1572, 364–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. West, A. P. Jr, Herr, A. B. & Bjorkman, P. J. The chicken yolk sac IgY receptor, a functional equivalent of the mammalian MHC-related Fc receptor, is a phospholipase A2 receptor homolog. Immunity 20, 601–610 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Llorca, O. Extended and bent conformations of the mannose receptor family. Cell. Mol. Life Sci. 65, 1302–1310 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Pedchenko, V. et al. Molecular architecture of the Goodpasture autoantigen in anti-GBM nephritis. N. Engl. J. Med. 363, 343–354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pedchenko, V., Vanacore, R. & Hudson, B. Goodpasture's disease: molecular architecture of the autoantigen provides clues to etiology and pathogenesis. Curr. Opin. Nephrol. Hypertens. 20, 290–296 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bagchus, W. M., Hoedemaeker, P. J., Vos, J. T. & Bakker, W. W. Thymocytes reacting with heterologous antibodies against GP 330 in autologous immune complex glomerulopathy (AICG) in the rat. The relation between susceptibility for AICG and anti-GP 330-binding thymocytes. Immunobiology 179, 432–444 (1989).

    Article  CAS  PubMed  Google Scholar 

  69. Vaughan, R. W., Demaine, A. G. & Welsh, K. I. A DQA1 allele is strongly associated with idiopathic membranous nephropathy. Tissue Antigens 34, 261–269 (1989).

    Article  CAS  PubMed  Google Scholar 

  70. Dyer, P. A., Short, C. D., Clarke, E. A. & Mallick, N. P. HLA antigen and gene polymorphisms and haplotypes established by family studies in membranous nephropathy. Nephrol. Dial. Transplant. 7 (Suppl. 1), 42–47 (1992).

    PubMed  Google Scholar 

  71. Berthoux, F. C. et al. Immunogenetics and immunopathology of human primary membranous glomerulonephritis: HLA-A, B, DR antigens; functional activity of splenic macrophage Fc-receptors and peripheral blood T-lymphocyte subpopulations. Clin. Nephrol. 22, 15–20 (1984).

    CAS  PubMed  Google Scholar 

  72. Sacks, S. H., Warner, C., Campbell, R. D. & Dunham, I. Molecular mapping of the HLA class II region in HLA-DR3 associated idiopathic membranous nephropathy. Kidney Int. Suppl. 39, S13–S19 (1993).

    CAS  PubMed  Google Scholar 

  73. Liu, Y. H. et al. Association of phospholipase A2 receptor 1 polymorphisms with idiopathic membranous nephropathy in Chinese patients in Taiwan. J. Biomed. Sci. 17, 81–88 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Kim, S. et al. Single nucleotide polymorphisms in the phospholipase A2 receptor gene are associated with genetic susceptibility to idiopathic membranous nephropathy. Nephron Clin. Pract. 117, c253–c258 (2011).

    Article  PubMed  CAS  Google Scholar 

  75. Bantis, C. et al. Tumor necrosis factor-α gene G-308A polymorphism is a risk factor for the development of membranous glomerulonephritis. Am. J. Nephrol. 26, 12–15 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Thibaudin, D. et al. TNFA2 and d2 alleles of the tumor necrosis factor alpha gene polymorphism are associated with onset/occurrence of idiopathic membranous nephropathy. Kidney Int. 71, 431–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Honkanen, E., von Willebrand, E., Teppo, A. M., Törnroth, T. & Grönhagen-Riska, C. Adhesion molecules and urinary tumor necrosis factor-α in idiopathic membranous glomerulonephritis. Kidney Int. 53, 909–917 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Neale, T. J. et al. Tumor necrosis factor-alpha is expressed by glomerular visceral epithelial cells in human membranous nephropathy. Am. J. Pathol. 146, 1444–1454 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tabibzadeh, S. et al. TNF-α induces dyscohesion of epithelial cells. Association with disassembly of actin filaments. Endocrine 3, 549–556 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Huber, T. B. & Benzing, T. The slit diaphragm: a signaling platform to regulate podocyte function. Curr. Opin. Nephrol. Hypertens. 14, 211–216 (2005).

    Article  PubMed  Google Scholar 

  81. Lo, W. Y. et al. Association between genetic polymorphisms of the NPHS1 gene and membranous glomerulonephritis in the Taiwanese population. Clin. Chim. Acta 411, 714–718 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Chen, C. H. et al. Impact of plasminogen activator inhibitor-1 gene polymorphisms on primary membranous nephropathy. Nephrol. Dial. Transplant. 23, 3166–3173 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Chen, S. Y. et al. Association of STAT4 polymorphisms with susceptibility to primary membranous glomerulonephritis and renal failure. Clin. Chim. Acta 412, 1899–1904 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Chen, S. Y. et al. Effect of IL-6 C-572G polymorphism on idiopathic membranous nephropathy risk in a Han Chinese population. Ren. Fail. 32, 1172–1176 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Qin, W. et al. Anti-phospholipase A2 receptor antibody in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1137–1143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Knehtl, M. et al. A case of phospholipase A2 receptor-positive membranous nephropathy preceding sarcoid-associated granulomatous tubulointerstitial nephritis. Am. J. Kidney Dis. 57, 140–143 (2011).

    Article  PubMed  Google Scholar 

  87. Hoxha, E. et al. An immunofluorescence test for phospholipase-A2-receptor antibodies and its clinical usefulness in patients with membranous glomerulonephritis. Nephrol. Dial. Transplant. 26, 2526–2532 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Hofstra, J. M., Beck, L. H. Jr, Beck, D. M., Wetzels, J. F. & Salant, D. J. Anti-phospholipase A2 receptor antibodies correlate with clinical status in idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol. 6, 1286–1291 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Beck, L. H. Jr & Salant, D. J. Membranous nephropathy: recent travels and new roads ahead. Kidney Int. 77, 765–770 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Beck, L. H. Jr et al. Rituximab-induced depletion of anti-PLA2R autoantibodies predicts response in membranous nephropathy. J. Am. Soc. Nephrol. 22, 1543–1550 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Debiec, H. & Ronco, P. PLA2R autoantibodies and PLA2R glomerular deposits in membranous nephropathy. N. Engl. J. Med. 364, 689–690 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, M. et al. Identification of the target self-antigens in reperfusion injury. J. Exp. Med. 203, 141–152 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Herrera, O. B. et al. A novel pathway of alloantigen presentation by dendritic cells. J. Immunol. 173, 4828–4837 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Terrier, B. et al. Alpha-enolase: a target of antibodies in infectious and autoimmune diseases. Autoimmun. Rev. 6, 176–182 (2007).

    Article  CAS  PubMed  Google Scholar 

  95. Servettaz, A. et al. Identification of target antigens of antiendothelial cell antibodies in healthy individuals: A proteomic approach. Proteomics 8, 1000–1008 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Jordan, S. C., Buckingham, B., Sakai, R. & Olson, D. Studies of immune-complex glomerulonephritis mediated by human thyroglobulin. N. Engl. J. Med. 304, 1212–1215 (1981).

    Article  CAS  PubMed  Google Scholar 

  97. Takekoshi, Y. et al. Free “small” and IgG-associated “large” hepatitis B e antigen in the serum and glomerular capillary walls of two patients with membranous glomerulonephritis. N. Engl. J. Med. 300, 814–819 (1979).

    Article  CAS  PubMed  Google Scholar 

  98. Hörl, W. H. & Kerjaschki, D. Membranous glomerulonephritis (MGN). J. Nephrol. 13, 291–316 (2000).

    PubMed  Google Scholar 

  99. Kain, R. et al. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat. Med. 14, 1088–1096 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lundberg, K. & Venables, P. J. Epitope spreading in animal models: array of hope in rheumatoid arthritis and multiple sclerosis. Arthritis Res. Ther. 10, 122 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Chen, L. et al. A nephritogenic peptide induces intermolecular epitope spreading on collagen IV in experimental autoimmune glomerulonephritis. J. Am. Soc. Nephrol. 17, 3076–3081 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Tipping, P. G. & Kitching, A. R. Glomerulonephritis, Th1 and Th2: what's new? Clin. Exp. Immunol. 142, 207–215 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kuroki, A., Iyoda, M., Shibata, T. & Sugisaki, T. Th2 cytokines increase and stimulate B cells to produce IgG4 in idiopathic membranous nephropathy. Kidney Int. 68, 302–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. van der Zee, J. S., van Swieten, P. & Aalberse, R. C. Inhibition of complement activation by IgG4 antibodies. Clin. Exp. Immunol. 64, 415–422 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Aalberse, R. C. & Schuurman, J. IgG4 breaking the rules. Immunology 105, 9–19 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lhotta, K., Würzner, R. & König, P. Glomerular deposition of mannose-binding lectin in human glomerulonephritis. Nephrol. Dial. Transplant. 14, 881–886 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Spicer, S. T. et al. Induction of passive Heymann nephritis in complement component 6-deficient PVG rats. J. Immunol. 179, 172–178 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Leenaerts, P. L., Hall, B. M., Van Damme, B. J., Daha, M. R. & Vanrenterghem, Y. F. Active Heymann nephritis in complement component C6 deficient rats. Kidney Int. 47, 1604–1614 (1995).

    Article  CAS  PubMed  Google Scholar 

  109. Kerjaschki, D. et al. Pathogenic antibodies inhibit the binding of apolipoproteins to megalin/gp330 in passive Heymann nephritis. J. Clin. Invest. 100, 2303–2309 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lambeau, G. & Gelb, M. H. Biochemistry and physiology of mammalian secreted phospholipases A2. Annu. Rev. Biochem. 77, 495–520 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Hanasaki, K. & Arita, H. Phospholipase A2 receptor: a regulator of biological functions of secretory phospholipase A2. Prostaglandins Other Lipid Mediat. 68–69, 71–82 (2002).

    Article  PubMed  Google Scholar 

  112. Cybulsky, A. V., Takano, T., Papillon, J. & McTavish, A. J. Complement-induced phospholipase A2 activation in experimental membranous nephropathy. Kidney Int. 57, 1052–1062 (2000).

    Article  CAS  PubMed  Google Scholar 

  113. Zvaritch, E., Lambeau, G. & Lazdunski, M. Endocytic properties of the M-type 180-kDa receptor for secretory phospholipases A2 . J. Biol. Chem. 271, 250–257 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Augert, A. et al. The M-type receptor PLA2R regulates senescence through the p53 pathway. EMBO Rep. 10, 271–277 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sis, B. et al. Accelerated expression of senescence associated cell cycle inhibitor p16INK4A in kidneys with glomerular disease. Kidney Int. 71, 218–226 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Berg, A. L., Nilsson-Ehle, P. & Arnadottir, M. Beneficial effects of ACTH on the serum lipoprotein profile and glomerular function in patients with membranous nephropathy. Kidney Int. 56, 1534–1543 (1999).

    Article  CAS  PubMed  Google Scholar 

  117. Bomback, A. S. et al. Treatment of nephrotic syndrome with adrenocorticotropic hormone (ACTH) gel. Drug Des. Devel. Ther. 5, 147–153 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mountjoy, K. G., Robbins, L. S., Mortrud, M. T. & Cone, R. D. The cloning of a family of genes that encode the melanocortin receptors. Science 257, 1248–1251 (1992).

    Article  CAS  PubMed  Google Scholar 

  119. Lindskog, A. et al. Melanocortin 1 receptor agonists reduce proteinuria. J. Am. Soc. Nephrol. 21, 1290–1298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nortier, J. L. et al. Neonatal disease in neutral endopeptidase alloimmunization: lessons for immunological monitoring. Pediatr. Nephrol. 21, 1399–1405 (2006).

    Article  PubMed  Google Scholar 

  121. Atkinson, C., Qiao, F., Song, H., Gilkeson, G. S. & Tomlinson, S. Low-dose targeted complement inhibition protects against renal disease and other manifestations of autoimmune disease in MRL/lpr mice. J. Immunol. 180, 1231–1238 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Huang, Y., Qiao, F., Atkinson, C., Holers, V. M. & Tomlinson, S. A novel targeted inhibitor of the alternative pathway of complement and its therapeutic application in ischemia/reperfusion injury. J. Immunol. 181, 8068–8076 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research of the authors is supported by grants from Agence Nationale de la Recherche (ANR-07-Physio-016–01), and Coordination Theme 1 (Health) of the European Community's Seventh Framework Programme, grant agreement number HEALTH-F2-2007-201,590. The authors thank C. Vial for assistance with language editing.

Author information

Authors and Affiliations

Authors

Contributions

P. Ronco and H. Debiec contributed equally to discussion of content for the article, researching data to include in the manuscript, writing, and reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Pierre Ronco.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ronco, P., Debiec, H. Pathogenesis of membranous nephropathy: recent advances and future challenges. Nat Rev Nephrol 8, 203–213 (2012). https://doi.org/10.1038/nrneph.2012.35

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.35

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing