Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An update on peritoneal dialysis solutions

Abstract

Peritoneal dialysis (PD) has achieved its current position as the most commonly used home-based dialysis therapy—and with patient survival equal to that seen with hemodialysis—despite the use of glucose-based dialysis solutions with high concentrations of glucose, glucose degradation products and lactate, high osmolality, and low pH, features that are harmful both for the peritoneum and the patient. Newer PD solutions with alternative buffers, a higher pH and fewer glucose degradation products, or ones that contain icodextrin or amino acids as osmotic agents, have been introduced in many countries and have been shown to improve peritoneal membrane health and viability. Icodextrin solution enhances fluid and sodium removal, and the once-daily use of icodextrin and/or amino acid solutions can lessen the harmful effects caused by the exposure of the peritoneal membrane to glucose. However, whether the newer PD solutions improve patient survival over the older solutions is not clear. Use of PD therapy, with or without the newer PD solutions, is associated with an improvement in patient survival that is equivalent to that obtained with hemodialysis. Therefore, the conventional glucose-based solutions—despite their known negative features—continue to have a well-established role in PD therapy, particularly in the many countries where the newer PD solutions are not easily available.

Key Points

  • Newer peritoneal dialysis (PD) solutions are less harmful for the peritoneal membrane than are conventional glucose-based solutions

  • Non-glucose-based PD solutions offer some protection against the metabolic effects of peritoneal glucose exposure

  • Icodextrin-based solutions improve fluid and sodium removal during the long (8–12 h) dialysis exchange, particularly in patients with an increased peritoneal solute transport rate

  • No firm evidence is available to support improved patient survival with the newer PD solutions

  • Patient survival on PD, both with conventional and with newer PD solutions, is comparable to survival on hemodialysis

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic presentation of the potential beneficial effects of newer peritoneal dialysis solutions.

Similar content being viewed by others

References

  1. Topley, N. Membrane longevity in peritoneal dialysis: impact of infection and bio-incompatible solutions. Adv. Ren. Replace. Ther. 5, 179–184 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Hoff, C. M. In vitro biocompatibility performance of Physioneal. Kidney Int. Suppl. S57–S74 (2003).

  3. Higuchi, C., Nishimura, H. & Sanaka, T. Biocompatibility of peritoneal dialysis fluid and influence of compositions on peritoneal fibrosis. Ther. Apher. Dial. 10, 372–379 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. McIntyre, C. W. Update on peritoneal dialysis solutions. Kidney Int. 71, 486–490 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Mortier, S. et al. Effects of conventional and new peritoneal dialysis fluids on leukocyte recruitment in the rat peritoneal membrane. J. Am. Soc. Nephrol. 14, 1296–1306 (2003).

    Article  PubMed  Google Scholar 

  6. Witowski, J. et al. Effect of glucose degradation products on human peritoneal mesothelial cell function. J. Am. Soc. Nephrol. 11, 729–739 (2000).

    CAS  PubMed  Google Scholar 

  7. Morgan, L. W. et al. Glucose degradation products (GDP) retard remesothelialization independently of D-glucose concentration. Kidney Int. 64, 1854–1866 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Witowski, J. et al. Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells. J. Am. Soc. Nephrol. 12, 2434–2441 (2001).

    CAS  PubMed  Google Scholar 

  9. Perl, J., Nessim, S. J. & Bargman, J. M. The biocompatibility of neutral pH, low-GDP peritoneal dialysis solutions: benefit at bench, bedside, or both? Kidney Int. 79, 814–824 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Selgas, R. et al. Risk factors responsible for ultrafiltration failure in early stages of peritoneal dialysis. Perit. Dial. Int. 20, 631–636 (2000).

    CAS  PubMed  Google Scholar 

  11. Aroeira, L. S. et al. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: pathologic significance and potential therapeutic interventions. J. Am. Soc. Nephrol. 18, 2004–2013 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Mortier, S., Faict, D., Schalkwijk, C. G., Lameire, N. H. & De Vriese, A. S. Long-term exposure to new peritoneal dialysis solutions: effects on the peritoneal membrane. Kidney Int. 66, 1257–1265 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Mortier, S., Faict, D., Lameire, N. H. & De Vriese, A. S. Benefits of switching from a conventional to a low-GDP bicarbonate/lactate-buffered dialysis solution in a rat model. Kidney Int. 67, 1559–1565 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Honda, K. et al. Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration. Nephrol. Dial. Transplant. 14, 1541–1549 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Zeier, M. et al. Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney Int. 63, 298–305 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Posthuma, N. et al. Amadori albumin and advanced glycation end-product formation in peritoneal dialysis using icodextrin. Perit. Dial. Int. 21, 43–51 (2001).

    CAS  PubMed  Google Scholar 

  17. Ho-dac-Pannekeet, M. M. et al. Peritoneal transport characteristics with glucose polymer based dialysate. Kidney Int. 50, 979–986 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Lopez, E. & Lindholm, B. Icodextrin metabolites in peritoneal dialysis. Perit. Dial. Int. 29, 370–376 (2009).

    CAS  PubMed  Google Scholar 

  19. Taylor, G. S., Patel, V., Spencer, S., Fluck, R. J. & McIntyre, C. W. Long-term use of 1.1% amino acid dialysis solution in hypoalbuminemic continuous ambulatory peritoneal dialysis patients. Clin. Nephrol. 58, 445–450 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Jones, M. et al. Treatment of malnutrition with 1.1% amino acid peritoneal dialysis solution: results of a multicenter outpatient study. Am. J. Kidney Dis. 32, 761–769 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Dombros, N. et al. European best practice guidelines for peritoneal dialysis. 5 Peritoneal dialysis solutions. Nephrol. Dial. Transplant. 20 (Suppl. 9), ix16–ix20 (2005).

    PubMed  Google Scholar 

  22. Passlick-Deetjen, J. & Lage, C. Lactate-buffered and bicarbonate-buffered solutions with less glucose degradation products in a two-chamber system. Perit. Dial. Int. 20 (Suppl. 2), S42–S47 (2000).

    PubMed  Google Scholar 

  23. Boulanger, E. et al. The triggering of human peritoneal mesothelial cell apoptosis and oncosis by glucose and glycoxydation products. Nephrol. Dial. Transplant. 19, 2208–2216 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Ciszewicz, M., Wu, G., Tam, P., Polubinska, A. & Breborowicz, A. Changes in peritoneal mesothelial cells phenotype after chronic exposure to glucose or N-acetylglucosamine. Transl. Res. 150, 337–342 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Di Paolo, N., Garosi, G., Petrini, G. & Monaci, G. Morphological and morphometric changes in mesothelial cells during peritoneal dialysis in the rabbit. Nephron 74, 594–599 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Ishibashi, Y. et al. Glucose dialysate induces mitochondrial DNA damage in peritoneal mesothelial cells. Perit. Dial. Int. 22, 11–21 (2002).

    PubMed  Google Scholar 

  27. Catalan, M. P., Santamaría, B., Reyero, A., Ortiz, A. & Egido, J. 3,4-di-deoxyglucosone-3-ene promotes leukocyte apoptosis. Kidney Int. 68, 1303–1311 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Noh, H. et al. Oxidative stress during peritoneal dialysis: implications in functional and structural changes in the membrane. Kidney Int. 69, 2022–2028 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Kang, D. H. et al. High glucose solution and spent dialysate stimulate the synthesis of transforming growth factor-β1 of human peritoneal mesothelial cells: effect of cytokine costimulation. Perit. Dial. Int. 19, 221–230 (1999).

    CAS  PubMed  Google Scholar 

  30. Ha, H., Yu, M. R. & Lee, H. B. High glucose-induced PKC activation mediates TGF-β1 and fibronectin synthesis by peritoneal mesothelial cells. Kidney Int. 59, 463–470 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Inagi, R. et al. Glucose degradation product methylglyoxal enhances the production of vascular endothelial growth factor in peritoneal cells: role in the functional and morphological alterations of peritoneal membranes in peritoneal dialysis. FEBS Lett. 463, 260–264 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Leung, J. C. et al. Glucose degradation products downregulate ZO-1 expression in human peritoneal mesothelial cells: the role of VEGF. Nephrol. Dial. Transplant. 20, 1336–1349 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. De Vriese, A. S., Tilton, R. G., Stephan, C. C. & Lameire, N. H. Vascular endothelial growth factor is essential for hyperglycemia-induced structural and functional alterations of the peritoneal membrane. J. Am. Soc. Nephrol. 12, 1734–1741 (2001).

    CAS  Google Scholar 

  34. Bajo, M. A. et al. Low-GDP peritoneal dialysis fluid ('balance') has less impact in vitro and ex vivo on epithelial-to-mesenchymal transition (EMT) of mesothelial cells than a standard fluid. Nephrol. Dial. Transplant. 26, 282–291 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Visser, C. E. et al. Cancer antigen 125: a bulk marker for the mesothelial mass in stable peritoneal dialysis patients. Nephrol. Dial. Transplant. 10, 64–69 (1995).

    CAS  PubMed  Google Scholar 

  36. Krediet, R. T. Dialysate cancer antigen 125 concentration as marker of peritoneal membrane status in patients treated with chronic peritoneal dialysis. Perit. Dial. Int. 21, 560–567 (2001).

    CAS  PubMed  Google Scholar 

  37. Sampimon, D. E. et al. Early diagnostic markers for encapsulating peritoneal sclerosis: a case-control study. Perit. Dial. Int. 30, 163–169 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, S. et al. Benefits of biocompatible PD fluid for preservation of residual renal function in incident CAPD patients: a 1-year study. Nephrol. Dial. Transplant. 24, 2899–2908 (2009).

    Article  PubMed  Google Scholar 

  39. Haag-Weber, M. et al. Low-GDP fluid (Gambrosol trio) attenuates decline of residual renal function in PD patients: a prospective randomized study. Nephrol. Dial. Transplant. 25, 2288–2296 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Rippe, B. et al. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney Int. 59, 348–357 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Choi, H. Y. et al. The clinical usefulness of peritoneal dialysis fluids with neutral pH and low glucose degradation product concentration: an open randomized prospective trial. Perit. Dial. Int. 28, 174–182 (2008).

    CAS  PubMed  Google Scholar 

  42. Haas, S. et al. Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. J. Am. Soc. Nephrol. 14, 2632–2638 (2003).

    Article  PubMed  Google Scholar 

  43. Fusshoeller, A., Plail, M., Grabensee, B. & Plum, J. Biocompatibility pattern of a bicarbonate/lactate-buffered peritoneal dialysis fluid in APD: a prospective, randomized study. Nephrol. Dial. Transplant. 19, 2101–2106 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Williams, J. D. et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney Int. 66, 408–418 (2004).

    Article  PubMed  Google Scholar 

  45. Szeto, C. C. et al. Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products—a 1-year randomized control trial. Nephrol. Dial. Transplant. 22, 552–559 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Cho, J. H. et al. Impact of systemic and local peritoneal inflammation on peritoneal solute transport rate in new peritoneal dialysis patients: a 1-year prospective study. Nephrol. Dial. Transplant. 25, 1964–1973 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Mandl-Weber, S., Cohen, C. D., Haslinger, B., Kretzler, M. & Sitter, T. Vascular endothelial growth factor production and regulation in human peritoneal mesothelial cells. Kidney Int. 61, 570–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Pecoits-Filho, R. et al. Plasma and dialysate IL-6 and VEGF concentrations are associated with high peritoneal solute transport rate. Nephrol. Dial. Transplant. 17, 1480–1486 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. van Esch, S. et al. Determinants of peritoneal solute transport rates in newly started nondiabetic peritoneal dialysis patients. Perit. Dial. Int. 24, 554–561 (2004).

    PubMed  Google Scholar 

  50. Hekking, L. H. et al. Better preservation of peritoneal morphologic features and defense in rats after long-term exposure to a bicarbonate/lactate-buffered solution. J. Am. Soc. Nephrol. 12, 2775–2786 (2001).

    CAS  PubMed  Google Scholar 

  51. Cooker, L. A. et al. Interleukin-6 levels decrease in effluent from patients dialyzed with bicarbonate/lactate-based peritoneal dialysis solutions. Perit. Dial. Int. 21 (Suppl. 3), S102–S107 (2001).

    PubMed  Google Scholar 

  52. Witowski, J. et al. Peritoneal dialysis with solutions low in glucose degradation products is associated with improved biocompatibility profile towards peritoneal mesothelial cells. Nephrol. Dial. Transplant. 19, 917–924 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Zweers, M. M., de Waart, D. R., Smit, W., Struijk, D. G. & Krediet, R. T. Growth factors VEGF and TGF-β1 in peritoneal dialysis. J. Lab. Clin. Med. 134, 124–132 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Oh, K. H. et al. Intra-peritoneal interleukin-6 system is a potent determinant of the baseline peritoneal solute transport in incident peritoneal dialysis patients. Nephrol. Dial. Transplant. 25, 1639–1646 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Davies, S. J. et al. Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney Int. 67, 1609–1615 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Martikainen, T. A., Teppo, A. M., Gronhagen-Riska, C. & Ekstrand, A. V. Glucose-free dialysis solutions: inductors of inflammation or preservers of peritoneal membrane? Perit. Dial. Int. 25, 453–460 (2005).

    CAS  PubMed  Google Scholar 

  57. Moriishi, M., Kawanishi, H., Watanabe, H. & Tsuchiya, S. Effect of icodextrin-based peritoneal dialysis solution on peritoneal membrane. Adv. Perit. Dial. 21, 21–24 (2005).

    CAS  PubMed  Google Scholar 

  58. Bajo, M. A. et al. Icodextrin effluent leads to a greater proliferation than glucose effluent of human mesothelial cells studied ex vivo. Perit. Dial. Int. 20, 742–747 (2000).

    CAS  PubMed  Google Scholar 

  59. Zareie, M. et al. Better preservation of the peritoneum in rats exposed to amino acid-based peritoneal dialysis fluid. Perit. Dial. Int. 25, 58–67 (2005).

    CAS  PubMed  Google Scholar 

  60. Garosi, G., Gaggiotti, E., Monaci, G., Brardi, S. & Di Paolo, N. Biocompatibility of a peritoneal dialysis solution with amino acids: histological evaluation in the rabbit. Perit. Dial. Int. 18, 610–619 (1998).

    CAS  PubMed  Google Scholar 

  61. Ates¸, K. et al. Effect of fluid and sodium removal on mortality in peritoneal dialysis patients. Kidney Int. 60, 767–776 (2001).

    Article  PubMed  Google Scholar 

  62. Brown, E. A. et al. Survival of functionally anuric patients on automated peritoneal dialysis: the European APD Outcome Study. J. Am. Soc. Nephrol. 14, 2948–2957 (2003).

    Article  PubMed  Google Scholar 

  63. Davies, S. J. Longitudinal relationship between solute transport and ultrafiltration capacity in peritoneal dialysis patients. Kidney Int. 66, 2437–2445 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Smit, W. et al. Analysis of the prevalence and causes of ultrafiltration failure during long-term peritoneal dialysis: a cross-sectional study. Perit. Dial. Int. 24, 562–570 (2004).

    PubMed  Google Scholar 

  65. Krediet, R. T. & Balafa, O. Cardiovascular risk in the peritoneal dialysis patient. Nat. Rev. Nephrol. 6, 451–460 (2010).

    Article  PubMed  Google Scholar 

  66. Krediet, R. T. Dry body weight: water and sodium removal targets in PD. Contrib. Nephrol. 150, 104–110 (2006).

    Article  PubMed  Google Scholar 

  67. Mistry, C. D., Gokal, R. & Peers, E. A randomized multicenter clinical trial comparing isosmolar icodextrin with hyperosmolar glucose solutions in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Peritoneal Dialysis. Kidney Int. 46, 496–503 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Posthuma, N. et al. Assessment of the effectiveness, safety, and biocompatibility of icodextrin in automated peritoneal dialysis. The Dextrin in APD in Amsterdam (DIANA) Group. Perit. Dial. Int. 20 (Suppl. 2), S106–S113 (2000).

    PubMed  Google Scholar 

  69. Woodrow, G. et al. Comparison of icodextrin and glucose solutions for the daytime dwell in automated peritoneal dialysis. Nephrol. Dial. Transplant. 14, 1530–1535 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Wolfson, M., Piraino, B., Hamburger, R. J. & Morton, A. R. A randomized controlled trial to evaluate the efficacy and safety of icodextrin in peritoneal dialysis. Am. J. Kidney Dis. 40, 1055–1065 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Finkelstein, F. et al. Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. J. Am. Soc. Nephrol. 16, 546–554 (2005).

    Article  CAS  PubMed  Google Scholar 

  72. Lin, A. et al. Randomized controlled trial of icodextrin versus glucose containing peritoneal dialysis fluid. Clin. J. Am. Soc. Nephrol. 4, 1799–1804 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Davies, S. J. et al. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. J. Am. Soc. Nephrol. 14, 2338–2344 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Adachi, Y., Nakagawa, Y. & Nishio, A. Icodextrin preserves residual renal function in patients treated with automated peritoneal dialysis. Perit. Dial. Int. 26, 405–407 (2006).

    CAS  PubMed  Google Scholar 

  75. Konings, C. J. et al. Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney Int. 63, 1556–1563 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Asghar, R. B., Diskin, A. M., Spanel, P., Smith, D. & Davies, S. J. Influence of convection on the diffusive transport and sieving of water and small solutes across the peritoneal membrane. J. Am. Soc. Nephrol. 16, 437–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Justo, P., Sanz, A. B., Egido, J. & Ortiz, A. 3,4-Dideoxyglucosone-3-ene induces apoptosis in renal tubular epithelial cells. Diabetes 54, 2424–2429 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Forbes, J. M., Cooper, M. E., Oldfield, M. D. & Thomas, M. C. Role of advanced glycation end products in diabetic nephropathy. J. Am. Soc. Nephrol. 14, S254–S258 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Montenegro, J. et al. Long-term clinical experience with pure bicarbonate peritoneal dialysis solutions. Perit. Dial. Int. 26, 89–94 (2006).

    CAS  PubMed  Google Scholar 

  80. Fan, S. L., Pile, T., Punzalan, S., Raftery, M. J. & Yaqoob, M. M. Randomized controlled study of biocompatible peritoneal dialysis solutions: effect on residual renal function. Kidney Int. 73, 200–206 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Delarue, J. et al. Glucose oxidation after a peritoneal and an oral glucose load in dialyzed patients. Kidney Int. 45, 1147–1152 (1994).

    Article  CAS  PubMed  Google Scholar 

  82. Prinsen, B. H. et al. A broad-based metabolic approach to study VLDL apoB100 metabolism in patients with ESRD and patients treated with peritoneal dialysis. Kidney Int. 65, 1064–1075 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Marshall, J., Jennings, P., Scott, A., Fluck, R. J. & McIntyre, C. W. Glycemic control in diabetic CAPD patients assessed by continuous glucose monitoring system (CGMS). Kidney Int. 64, 1480–1486 (2003).

    Article  PubMed  Google Scholar 

  84. Paniagua, R. et al. Icodextrin improves metabolic and fluid management in high and high-average transport diabetic patients. Perit. Dial. Int. 29, 422–432 (2009).

    CAS  PubMed  Google Scholar 

  85. Babazono, T. et al. Effects of icodextrin on glycemic and lipid profiles in diabetic patients undergoing peritoneal dialysis. Am. J. Nephrol. 27, 409–415 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Floré, K. M. & Delanghe, J. R. Analytical interferences in point-of-care testing glucometers by icodextrin and its metabolites: an overview. Perit. Dial. Int. 29, 377–383 (2009).

    PubMed  Google Scholar 

  87. McDonald, S. P., Collins, J. F. & Johnson, D. W. Obesity is associated with worse peritoneal dialysis outcomes in the Australia and New Zealand patient populations. J. Am. Soc. Nephrol. 14, 2894–2901 (2003).

    Article  PubMed  Google Scholar 

  88. Abbott, K. C. et al. Body mass index, dialysis modality, and survival: analysis of the United States Renal Data System Dialysis Morbidity and Mortality Wave II Study. Kidney Int. 65, 597–605 (2004).

    Article  PubMed  Google Scholar 

  89. Aslam, N., Bernardini, J., Fried, L. & Piraino, B. Large body mass index does not predict short-term survival in peritoneal dialysis patients. Perit. Dial. Int. 22, 191–196 (2002).

    PubMed  Google Scholar 

  90. Lu, Q. et al. Visceral fat, arterial stiffness, and endothelial function in peritoneal dialysis patients. J. Ren. Nutr. 18, 495–502 (2008).

    Article  PubMed  Google Scholar 

  91. Holmes, C. J. Reducing cardiometabolic risk in peritoneal dialysis patients: role of the dialysis solution. J. Diabetes Sci. Technol. 3, 1472–1480 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Wang, X. et al. Changes in fat mass after initiation of maintenance dialysis is influenced by the uncoupling protein 2 exon 8 insertion/deletion polymorphism. Nephrol. Dial. Transplant. 22, 196–202 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Teta, D. et al. Glucose-containing peritoneal dialysis fluids regulate leptin secretion from 3T3-L1 adipocytes. Nephrol. Dial. Transplant. 20, 1329–1335 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Furuya, R., Odamaki, M., Kumagai, H. & Hishida, A. Beneficial effects of icodextrin on plasma level of adipocytokines in peritoneal dialysis patients. Nephrol. Dial. Transplant. 21, 494–498 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Takeguchi, F., Nakayama, M. & Nakao, T. Effects of icodextrin on insulin resistance and adipocytokine profiles in patients on peritoneal dialysis. Ther. Apher. Dial. 12, 243–249 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Ateshkadi, A., Johnson, C. A., Founds, H. W. & Zimmerman, S. W. Serum advanced glycosylation end-products in patients on hemodialysis and CAPD. Perit. Dial. Int. 15, 129–233 (1995).

    CAS  PubMed  Google Scholar 

  97. Stenvinkel, P. et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 55, 1899–1911 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Stenvinkel, P., Lindholm, B., Heimbürger, M. & Heimbürger, O. Elevated serum levels of soluble adhesion molecules predict death in pre-dialysis patients: association with malnutrition, inflammation, and cardiovascular disease. Nephrol. Dial. Transplant. 15, 1624–1630 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Park, S. H. et al. Effects of neutral pH and low-glucose degradation product-containing peritoneal dialysis fluid on systemic markers of inflammation and endothelial dysfunction: a randomized controlled 1-year follow-up study. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfr451.

  100. Welten, A. G. et al. Single exposure of mesothelial cells to glucose degradation products (GDPs) yields early advanced glycation end-products (AGEs) and a proinflammatory response. Perit. Dial. Int. 23, 213–221 (2003).

    CAS  PubMed  Google Scholar 

  101. Wang, A. Y. et al. N-terminal pro-brain natriuretic peptide: an independent risk predictor of cardiovascular congestion, mortality, and adverse cardiovascular outcomes in chronic peritoneal dialysis patients. J. Am. Soc. Nephrol. 18, 321–330 (2007).

    Article  CAS  PubMed  Google Scholar 

  102. Wang, A. Y. Vascular and other tissue calcification in peritoneal dialysis patients. Perit. Dial. Int. 29 (Suppl. 2), S9–S14 (2009).

    PubMed  Google Scholar 

  103. Tjiong, H. L. et al. Dialysate as food: combined amino acid and glucose dialysate improves protein anabolism in renal failure patients on automated peritoneal dialysis. J. Am. Soc. Nephrol. 16, 1486–1493 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. de Jager, D. J. et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA 302, 1782–1789 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Kato, S. et al. Endotoxin-induced chemokine expression in murine peritoneal mesothelial cells: the role of toll-like receptor 4. J. Am. Soc. Nephrol. 15, 1289–1299 (2004).

    CAS  PubMed  Google Scholar 

  106. Catalan, M. P., Reyero, A., Egido, J. & Ortiz, A. Acceleration of neutrophil apoptosis by glucose-containing peritoneal dialysis solutions: role of caspases. J. Am. Soc. Nephrol. 12, 2442–2449 (2001).

    CAS  PubMed  Google Scholar 

  107. Brulez, H. F., ter Wee, P. M., Snijders, S. V., Donker, A. J. & Verbrugh, H. A. Mononuclear leucocyte function tests in the assessment of the biocompatibility of peritoneal dialysis fluids. J. Clin. Pathol. 52, 901–909 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ha, H. et al. Effects of conventional and new peritoneal dialysis solutions on human peritoneal mesothelial cell viability and proliferation. Perit. Dial. Int. 20 (Suppl. 5), S10–S8 (2000).

    PubMed  Google Scholar 

  109. Plum, J., Schoenicke, G. & Grabensee, B. Osmotic agents and buffers in peritoneal dialysis solution: monocyte cytokine release and in vitro cytotoxicity. Am. J. Kidney Dis. 30, 413–422 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Pajek, J. et al. Short-term effects of a new bicarbonate/lactate-buffered and conventional peritoneal dialysis fluid on peritoneal and systemic inflammation in CAPD patients: a randomized controlled study. Perit. Dial. Int. 28, 44–52 (2008).

    CAS  PubMed  Google Scholar 

  111. Posthuma, N. et al. Peritoneal defense using icodextrin or glucose for daytime dwell in CCPD patients. Perit. Dial. Int. 19, 334–342 (1999).

    CAS  PubMed  Google Scholar 

  112. Gokal, R., Mistry, C. D. & Peers, E. M. Peritonitis occurrence in a multicenter study of icodextrin and glucose in CAPD. MIDAS Study Group. Multicenter Investigation of Icodextrin in Ambulatory Dialysis. Perit. Dial. Int. 15, 226–230 (1995).

    CAS  PubMed  Google Scholar 

  113. Vychytil, A. et al. Icodextrin does not impact infectious and culture-negative peritonitis rates in peritoneal dialysis patients: a 2-year multicentre, comparative, prospective cohort study. Nephrol. Dial. Transplant. 23, 3711–3719 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Peers, E. & Gokal, R. Icodextrin provides long dwell peritoneal dialysis and maintenance of intraperitoneal volume. Artif. Organs 22, 8–12 (1998).

    Article  CAS  PubMed  Google Scholar 

  115. Libetta, C. et al. Effects of different peritoneal dialysis fluids on the TH1/TH2 balance. Eur. Cytokine Netw. 22, 24–31 (2011).

    CAS  PubMed  Google Scholar 

  116. Lee, H. Y. et al. Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (Balance). Perit. Dial. Int. 25, 248–255 (2005).

    PubMed  Google Scholar 

  117. Lee, H. Y. et al. Changing prescribing practice in CAPD patients in Korea: increased utilization of low GDP solutions improves patient outcome. Nephrol. Dial. Transplant. 21, 2893–2899 (2006).

    Article  CAS  PubMed  Google Scholar 

  118. Montenegro, J. et al. Use of pure bicarbonate-buffered peritoneal dialysis fluid reduces the incidence of CAPD peritonitis. Nephrol. Dial. Transplant. 22, 1703–1708 (2007).

    Article  CAS  PubMed  Google Scholar 

  119. Ahmad, S. et al. Impact of new dialysis solutions on peritonitis rates. Kidney Int. Suppl. S63–S66 (2006).

  120. Furkert, J., Zeier, M. & Schwenger, V. Effects of peritoneal dialysis solutions low in GDPs on peritonitis and exit-site infection rates. Perit. Dial. Int. 28, 637–640 (2008).

    PubMed  Google Scholar 

  121. Srivastava, S., Hildebrand, S. & Fan, S. L. Long-term follow-up of patients randomized to biocompatible or conventional peritoneal dialysis solutions show no difference in peritonitis or technique survival. Kidney Int. 80, 986–991 (2011).

    Article  CAS  PubMed  Google Scholar 

  122. Aslam, N., Bernardini, J., Fried, L., Burr, R. & Piraino, B. Comparison of infectious complications between incident hemodialysis and peritoneal dialysis patients. Clin. J. Am. Soc. Nephrol. 1, 1226–1233 (2006).

    Article  PubMed  Google Scholar 

  123. Mehrotra, R., Chiu, Y. W., Kalantar-Zadeh, K., Bargman, J. & Vonesh, E. Similar outcomes with hemodialysis and peritoneal dialysis in patients with end-stage renal disease. Arch. Intern. Med. 171, 110–118 (2011).

    Article  PubMed  Google Scholar 

  124. Weinhandl, E. D. et al. Propensity-matched mortality comparison of incident hemodialysis and peritoneal dialysis patients. J. Am. Soc. Nephrol. 21, 499–506 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Stenvinkel, P. et al. Emerging biomarkers for evaluating cardiovascular risk in the chronic kidney disease patient: how do new pieces fit into the uremic puzzle? Clin. J. Am. Soc. Nephrol. 3, 505–521 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chaudhary, K. & Khanna, R. Biocompatible peritoneal dialysis solutions: do we have one? Clin. J. Am. Soc. Nephrol. 5, 723–732 (2010).

    Article  PubMed  Google Scholar 

  127. Paniagua, R. et al. Echocardiographic, electrocardiographic and blood pressure changes induced by icodextrin solution in diabetic patients on peritoneal dialysis. Kidney Int. Suppl. S125–S130 (2008).

  128. Davies, S. J. et al. Longitudinal relationships between fluid status, inflammation, urine volume and plasma metabolites of icodextrin in patients randomized to glucose or icodextrin for the long exchange. Nephrol. Dial. Transplant. 23, 2982–2988 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Rodriguez-Carmona, A., Fontan, M. P., Lopez, E. G., Falcon, T. G. & Cambre, H. D. Use of icodextrin during nocturnal automated peritoneal dialysis allows sustained ultrafiltration while reducing the peritoneal glucose load: a randomized crossover study. Perit. Dial. Int. 27, 260–266 (2007).

    CAS  PubMed  Google Scholar 

  130. Wilkie, M. E., Plant, M. J., Edwards, L. & Brown, C. B. Icodextrin 7.5% dialysate solution (glucose polymer) in patients with ultrafiltration failure: extension of CAPD technique survival. Perit. Dial. Int. 17, 84–87 (1997).

    CAS  PubMed  Google Scholar 

  131. Takatori, Y. et al. Icodextrin increases technique survival rate in peritoneal dialysis patients with diabetic nephropathy by improving body fluid management: a randomized controlled trial. Clin. J. Am. Soc. Nephrol. 6, 1337–1344 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kuriyama, R., Tranaeus, A. & Ikegami, T. Icodextrin reduces mortality and the drop-out rate in Japanese peritoneal dialysis patients. Adv. Perit. Dial. 22, 108–110 (2006).

    CAS  PubMed  Google Scholar 

  133. Han, S. H., Ahn, S. V., Yun, J. Y., Tranaeus, A. & Han, D. S. Effects of icodextrin on patient survival and technique success in patients undergoing peritoneal dialysis. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfr580.

  134. Li, F. K. et al. A 3-year, prospective, randomized, controlled study on amino acid dialysate in patients on CAPD. Am. J. Kidney Dis. 42, 173–183 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Han, S. H., Ahn, S. V., Yun, J. Y., Tranaeus, A. & Han, D. S. Mortality and technique failure in peritoneal dialysis patients using advanced peritoneal dialysis solutions. Am. J. Kidney Dis. 54, 711–720 (2009).

    Article  PubMed  Google Scholar 

  136. Pajek, J. et al. Short-term effects of bicarbonate/lactate-buffered and conventional lactate-buffered dialysis solutions on peritoneal ultrafiltration: a comparative crossover study. Nephrol. Dial. Transplant. 24, 1617–1625 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov [online], (2011).

  138. Johnson, D. W., Clarke, M., Wilson, V., Woods, F. & Brown, F. G. Rationale and design of the balANZ trial: a randomised controlled trial of low GDP, neutral pH versus standard peritoneal dialysis solution for the preservation of residual renal function. BMC Nephrol. 11, 25 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Johnson, D. W. Biocompatibility: Insights from the balANZ Study. Presented at the 10th European Peritoneal Dialysis meeting, Birmingham, UK, October 20–24, 2011.

  140. Bonomini, M. et al. L-carnitine is an osmotic agent suitable for peritoneal dialysis. Kidney Int. 80, 645–654 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Davies, S. J. L-carnitine: more than just an alternative to glucose as an osmotic agent for peritoneal dialysis? Kidney Int. 80, 565–566 (2011).

    Article  CAS  PubMed  Google Scholar 

  142. Nakayama, M., Kasai, K., Imai, H. & TRM-280 Study Group. Novel low Na peritoneal dialysis solutions designed to optimize Na gap of effluent: kinetics of Na and water removal. Perit. Dial. Int. 29, 528–535 (2009).

    CAS  PubMed  Google Scholar 

  143. Davies, S. et al. The effects of low-sodium peritoneal dialysis fluids on blood pressure, thirst and volume status. Nephrol. Dial. Transplant. 24, 1609–1617 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. de Graaff, M. et al. The effects of a dialysis solution with a combination of glycerol/amino acids/dextrose on the peritoneal membrane in chronic renal failure. Perit. Dial. Int. 30, 192–200 (2010).

    Article  CAS  PubMed  Google Scholar 

  145. Riser, B. L. et al. Daily peritoneal administration of sodium pyrophosphate in a dialysis solution prevents the development of vascular calcification in a mouse model of uraemia. Nephrol. Dial. Transplant. 26, 3349–3357 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this article.

Corresponding author

Correspondence to Bengt Lindholm.

Ethics declarations

Competing interests

Bengt Lindholm is employed by Baxter Healthcare Corporation, owns stock options from Baxter Healthcare Corporation and receives research funding from Baxter Healthcare Corporation. Simon Davies declares an association with Baxter Healthcare Corporation (consultant, speaker's bureau, grant/research support) and is a consultant and has received honoraria for speaking from Gambro and Fresenius Medical Care. Elvia García-López declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-López, E., Lindholm, B. & Davies, S. An update on peritoneal dialysis solutions. Nat Rev Nephrol 8, 224–233 (2012). https://doi.org/10.1038/nrneph.2012.13

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.13

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing