Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Water quality in conventional and home haemodialysis

Abstract

Dialysis water can be contaminated by chemical and microbiological factors, all of which are potentially hazardous to patients on haemodialysis. The quality of dialysis water has seen incremental improvements over the years, with advances in water preparation, monitoring and disinfection methods, and high standards are now readily achievable in clinical practice. Advances in dialysis membrane technology have refocused attention on water quality and its potential role in the bioincompatibility of haemodialysis circuits and adverse patient outcomes. The role of ultrapure dialysate is increasingly being advocated, given its proposed clinical benefits and relative ease of production as a result of the widespread use of reverse osmosis and ultrafiltration. Many of the issues pertaining to water quality in hospital-based dialysis units are also pertinent to haemodialysis in the home. Furthermore, an increased awareness of the environmental and financial consequences of home haemodialysis has resulted in the development of automated and more efficient dialysis machines. These new machines have an increased emphasis on water conservation and recycling along with a decreased need for a complex infrastructure for water purification and maintenance.

Key Points

  • High-quality dialysis water is an essential part of the provision of conventional haemodialysis and home haemodialysis

  • Dialysis water can be contaminated by various chemical and bacterial factors, which have the potential to cause morbidity and—in severe cases—mortality

  • High-quality dialysis fluid standards are now readily achievable with existing infrastructure and current dialysis fluid guidelines

  • Bacterial fragments and endotoxins have been implicated in adverse patient outcomes and the use of ultrapure dialysate has been linked to improved clinical outcomes, but further evaluation is needed

  • New technologies and materials will enable the dialysis water infrastructure to be more compatible with newer and more effective disinfection agents

  • Home haemodialysis places additional challenges in our ability to translate the existing water purification infrastructure into the home setting, but new developments will allow for simplified and integrated dialysis infrastructure

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical water purification system for a haemodialysis system.

Similar content being viewed by others

Katherine A. Barraclough & John W. M. Agar

References

  1. Marshall, M. R. et al. Home hemodialysis and mortality risk in Australian and New Zealand populations. Am. J. Kidney Dis. 58, 782–793 (2011).

    Article  PubMed  Google Scholar 

  2. Saran, R. et al. Longer treatment time and slower ultrafiltration in hemodialysis: associations with reduced mortality in the DOPPS. Kidney Int. 69, 1222–1228 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Culleton, B. F. et al. Effect of frequent nocturnal hemodialysis vs conventional hemodialysis on left ventricular mass and quality of life: a randomized controlled trial. JAMA 298, 1291–1299 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Kerr, P. G., Agar, J. W. & Hawley, C. M. Alternate night nocturnal hemodialysis: the Australian experience. Semin. Dial. 24, 664–667 (2011).

    Article  PubMed  Google Scholar 

  5. Masterson, R. The advantages and disadvantages of home hemodialysis. Hemodial. Int. 12 (Suppl. 1), S16–S20 (2008).

    Article  PubMed  Google Scholar 

  6. ANSI/AAMI/ISO. ISO 26722:2009. Water treatment equipment for hemodialysis applications and related therapies [online], (2009).

  7. Tsuchida, K., Nakamura, M., Yoshikawa, K., Minakuchi, J. & Takesawa, S. Current situation of endotoxin retentive filter. Blood Purif. 27 (Suppl. 1), 28–35 (2009).

    Article  PubMed  Google Scholar 

  8. Junglee, N. A. et al. When pure is not so pure: chloramine-related hemolytic anemia in home hemodialysis patients. Hemodial. Int. 14, 327–332 (2010).

    Article  PubMed  Google Scholar 

  9. Freeman, R. M., Lawton, R. L. & Chamberlain, M. A. Hard-water syndrome. N. Engl. J. Med. 276, 1113–1118 (1967).

    Article  CAS  PubMed  Google Scholar 

  10. Dunea, G., Mahurkar, S. D., Mamdani, B. & Smith, E. C. Role of aluminum in dialysis dementia. Ann. Intern. Med. 88, 502–504 (1978).

    Article  CAS  PubMed  Google Scholar 

  11. Alfrey, A. C., LeGendre, G. R. & Kaehny, W. D. The dialysis encephalopathy syndrome. Possible aluminum intoxication. N. Engl. J. Med. 294, 184–188 (1976).

    Article  CAS  PubMed  Google Scholar 

  12. Parkinson, I. S., Ward, M. K. & Kerr, D. N. Dialysis encephalopathy, bone disease and anaemia: the aluminum intoxication syndrome during regular haemodialysis. J. Clin. Pathol. 34, 1285–1294 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hoenich, N. A. & Levin, R. The implications of water quality in hemodialysis. Semin. Dial. 16, 492–497 (2003).

    Article  PubMed  Google Scholar 

  14. Johnson, W. J. & Taves, D. R. Exposure to excessive fluoride during hemodialysis. Kidney Int. 5, 451–454 (1974).

    Article  CAS  PubMed  Google Scholar 

  15. Lough, J., Noonan, R., Gagnon, R. & Kaye, M. Effects of fluoride on bone in chronic renal failure. Arch. Pathol. 99, 484–487 (1975).

    CAS  PubMed  Google Scholar 

  16. Rao, T. K. & Friedman, E. A. Editorial: fluoride and bone disease in uremia. Kidney Int. 7, 125–129 (1975).

    Article  CAS  PubMed  Google Scholar 

  17. Eaton, J. W., Kolpin, C. F., Swofford, H. S., Kjellstrand, C. M. & Jacob, H. S. Chlorinated urban water: a cause of dialysis-induced hemolytic anemia. Science 181, 463–464 (1973).

    Article  CAS  PubMed  Google Scholar 

  18. Ward, D. M. Chloramine removal from water used in hemodialysis. Adv. Ren. Replace. Ther. 3, 337–347 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Neilan, B. A., Ehlers, S. M., Kolpin, C. F. & Eaton, J. W. Prevention of chloramine-induced hemolysis in dialyzed patients. Clin. Nephrol. 10, 105–108 (1978).

    CAS  PubMed  Google Scholar 

  20. Kathuria, P., Nair, B., Schram, D. & Medlock, R. Outbreak of lead poisoning in a hemodialysis unit. J. Am. Soc. Nephrol. 15, 617A (2004).

    Google Scholar 

  21. Lin, J. L. et al. Blood lead levels, malnutrition, inflammation, and mortality in patients with diabetes treated by long-term hemodialysis. Am. J. Kidney Dis. 51, 107–115 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Davenport, A., Murcutt, G. & Whiting, S. Cross-sectional audit of blood lead levels in regular outpatient haemodialysis patients dialysing in north London. Nephrology (Carlton) 14, 476–481 (2009).

    Article  CAS  Google Scholar 

  23. Tonelli, M. et al. Trace elements in hemodialysis patients: a systematic review and meta-analysis. BMC Med. 7, 25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. ANSI/AAMI/ISO. ISO 13959:2009. Water for haemodialysis and related therapies [online], (2009).

  25. Poli, D. et al. Organic contamination in dialysis water: trichloroethylene as a model compound. Nephrol. Dial. Transplant. 21, 1618–1625 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Borges, C. R., Lascowski, K. M., Filho, N. R. & Pelayo, J. S. Microbiological quality of water and dialysate in a haemodialysis unit in Ponta Grossa-PR, Brazil. J. Appl. Microbiol. 103, 1791–1797 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Klein, E., Pass, T., Harding, G. B., Wright, R. & Million, C. Microbial and endotoxin contamination in water and dialysate in the central United States. Artif. Organs 14, 85–94 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Doern, G. V., Brogden, B. E., DiFederico, J. D., Earls, J. E. & Quinn, M. L. Quantitative microbiological monitoring of hemodialysis fluids: evaluation of methods and demonstration of lack of test relevance in single-pass hemodialysis machines with automatic dialysate proportioning with reverse osmosis-treated tap water. J. Clin. Microbiol. 16, 1025–1029 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bland, L. A., Ridgeway, M. R., Aguero, S. M., Carson, L. A. & Favero, M. S. Potential bacteriologic and endotoxin hazards associated with liquid bicarbonate concentrate. ASAIO Trans. 33, 542–545 (1987).

    CAS  PubMed  Google Scholar 

  30. Lonnemann, G. The quality of dialysate: an integrated approach. Kidney Int. Suppl. 76, S112–S119 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Ebben, J. P., Hirsch, D. N., Luehmann, D. A., Collins, A. J. & Keshaviah, P. R. Microbiologic contamination of liquid bicarbonate concentrate for hemodialysis. ASAIO Trans. 33, 269–273 (1987).

    CAS  PubMed  Google Scholar 

  32. Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Costerton, J. W., Stewart, P. S. & Greenberg, E. P. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Schindler, R. et al. Short bacterial DNA fragments: detection in dialysate and induction of cytokines. J. Am. Soc. Nephrol. 15, 3207–3214 (2004).

    Article  PubMed  Google Scholar 

  35. Navarro, M. D. et al. Bacterial DNA prolongs the survival of inflamed mononuclear cells in haemodialysis patients. Nephrol. Dial. Transplant. 22, 3580–3585 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Nystrand, R. Microbiology of water and fluids for hemodialysis. J. Chin. Med. Assoc. 71, 223–229 (2008).

    Article  PubMed  Google Scholar 

  37. Hindman, S. H. et al. Pyrogenic reactions during haemodialysis caused by extramural endotoxin. Lancet 2, 732–734 (1975).

    Article  CAS  PubMed  Google Scholar 

  38. Bernick, J. J., Port, F. K., Favero, M. S. & Brown, D. G. Bacterial and endotoxin permeability of hemodialysis membranes. Kidney Int. 16, 491–496 (1979).

    Article  CAS  PubMed  Google Scholar 

  39. Gordon, S. M. et al. Pyrogenic reactions in patients receiving conventional, high-efficiency, or high-flux hemodialysis treatments with bicarbonate dialysate containing high concentrations of bacteria and endotoxin. J. Am. Soc. Nephrol. 2, 1436–1444 (1992).

    CAS  PubMed  Google Scholar 

  40. ANSI/AAMI/ISO. ISO 11663:2009. Quality of dialysis fluid for haemodialysis and related therapies [online], (2009).

  41. ANSI/AAMI/ISO. ISO 13958:2009. Concentrates for hemodialysis and related therapies [online], (2009).

  42. ANSI/AAMI/ISO. ISO 23500:2011. Guidance for the preparation and quality management of fluids for hemodialysis and related therapies [online], (2011).

  43. World Health Organization. Guidelines for drinking-water quality (World Health Organization, Geneva, 2011).

  44. Gomila, M. et al. A molecular microbial ecology approach to studying hemodialysis water and fluid. Kidney Int. 70, 1567–1576 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Harding, G. B. et al. Bacterial contamination of hemodialysis center water and dialysate: are current assays adequate? Artif. Organs 13, 155–159 (1989).

    Article  CAS  PubMed  Google Scholar 

  46. Lonnemann, G. Assessment of the quality of dialysate. Nephrol. Dial. Transplant. 13 (Suppl. 5), 17–20 (1998).

    Article  PubMed  Google Scholar 

  47. Reasoner, D. J. & Geldreich, E. E. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 49, 1–7 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Pass, T., Wright, R., Sharp, B. & Harding, G. B. Culture of dialysis fluids on nutrient-rich media for short periods at elevated temperatures underestimate microbial contamination. Blood Purif. 14, 136–145 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. van der Linde, K., Lim, B. T., Rondeel, J. M., Antonissen, L. P. & de Jong, G. M. Improved bacteriological surveillance of haemodialysis fluids: a comparison between Tryptic soy agar and Reasoner's 2A media. Nephrol. Dial. Transplant. 14, 2433–2437 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Harding, G. B., Pass, T. & Wright, R. Bacteriology of hemodialysis fluids: are current methodologies meaningful? Artif. Organs 16, 448–456 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Riepl, M. et al. Applicability of solid-phase cytometry and epifluorescence microscopy for rapid assessment of the microbiological quality of dialysis water. Nephrol. Dial. Transplant. 26, 3640–3645 (2011).

    Article  PubMed  Google Scholar 

  52. Kharazmi, A., Giwercman, B. & Hoiby, N. Robbins device in biofilm research. Methods Enzymol. 310, 207–215 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Hurley, J. C. Endotoxemia: methods of detection and clinical correlates. Clin. Microbiol. Rev. 8, 268–292 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Tsuchida, K. et al. Detection of peptidoglycan and endotoxin in dialysate, using silkworm larvae plasma and limulus amebocyte lysate methods. Nephron 75, 438–443 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Glorieux, G. et al. A novel bio-assay increases the detection yield of microbiological impurity of dialysis fluid, in comparison to the LAL-test. Nephrol. Dial. Transplant. 24, 548–554 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Cappelli, G. et al. Water treatment and monitor disinfection. Hemodial. Int. 10 (Suppl. 1), S13–S18 (2006).

    Article  PubMed  Google Scholar 

  57. Vincent, F. C., Tibi, A. R. & Darbord, J. C. A bacterial biofilm in a hemodialysis system. Assessment of disinfection and crossing of endotoxin. ASAIO Trans. 35, 310–313 (1989).

    Article  CAS  PubMed  Google Scholar 

  58. Morin, P. Identification of the bacteriological contamination of a water treatment line used for haemodialysis and its disinfection. J. Hosp. Infect. 45, 218–224 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Stragier, A. & Jadoul, M. Ultraviolet irradiation to preserve high reverse osmosis water quality. Clin. Nephrol. 63, 35–40 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Tarrass, F., Benjelloun, M. & Benjelloun, O. Current understanding of ozone use for disinfecting hemodialysis water treatment systems. Blood Purif. 30, 64–70 (2010).

    Article  PubMed  Google Scholar 

  61. Pontoriero, G., Pozzoni, P., Andrulli, S. & Locatelli, F. The quality of dialysis water. Nephrol. Dial. Transplant. 18 (Suppl. 7), vii21–vii25; discussion vii56 (2003).

    CAS  PubMed  Google Scholar 

  62. Chang, C. Y., Hsieh, Y. H., Hsu, S. S., Hu, P. Y. & Wang, K. H. The formation of disinfection by-products in water treated with chlorine dioxide. J. Hazard Mater. 79, 89–102 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Sakuma, K. et al. Experience of using heat citric acid disinfection method in central dialysis fluid delivery system. J. Artif. Organs 13, 145–150 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Libman, V. Use of Reynolds number as a criterion for design of high-purity water systems. Ultrapure Water 23, 26–34 (2006).

    Google Scholar 

  65. Cheung, A. K. & Leypoldt, J. K. The hemodialysis membranes: a historical perspective, current state and future prospect. Semin. Nephrol. 17, 196–213 (1997).

    CAS  PubMed  Google Scholar 

  66. Kerr, P. G. & Huang, L. Review: membranes for haemodialysis. Nephrology (Carlton) 15, 381–385 (2010).

    Article  Google Scholar 

  67. Hakim, R. M., Wingard, R. L., Husni, L., Parker, R. A. & Parker, T. F. 3rd. The effect of membrane biocompatibility on plasma beta 2-microglobulin levels in chronic hemodialysis patients. J. Am. Soc. Nephrol. 7, 472–478 (1996).

    CAS  PubMed  Google Scholar 

  68. Hakim, R. M. et al. Effect of the dialysis membrane on mortality of chronic hemodialysis patients. Kidney Int. 50, 566–570 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Hakim, R. M. Influence of the dialysis membrane on outcome of ESRD patients. Am. J. Kidney Dis. 32, S71–S75 (1998).

    Article  CAS  PubMed  Google Scholar 

  70. van Ypersele de Strihou, C., Jadoul, M., Malghem, J., Maldague, B. & Jamart, J. Effect of dialysis membrane and patient's age on signs of dialysis-related amyloidosis. The Working Party on Dialysis Amyloidosis. Kidney Int. 39, 1012–1019 (1991).

    Article  CAS  PubMed  Google Scholar 

  71. Woods, H. F. & Nandakumar, M. Improved outcome for haemodialysis patients treated with high-flux membranes. Nephrol. Dial. Transplant. 15 (Suppl. 1), 36–42 (2000).

    Article  PubMed  Google Scholar 

  72. Port, F. K. et al. Mortality risk by hemodialyzer reuse practice and dialyzer membrane characteristics: results from the USRDS dialysis morbidity and mortality study. Am. J. Kidney Dis. 37, 276–286 (2001).

    Article  CAS  PubMed  Google Scholar 

  73. Bloembergen, W. E. et al. Relationship of dialysis membrane and cause-specific mortality. Am. J. Kidney Dis. 33, 1–10 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. Cheung, A. K. et al. Effects of high-flux hemodialysis on clinical outcomes: results of the HEMO study. J. Am. Soc. Nephrol. 14, 3251–3263 (2003).

    Article  PubMed  Google Scholar 

  75. Locatelli, F. et al. Effect of membrane permeability on survival of hemodialysis patients. J. Am. Soc. Nephrol. 20, 645–654 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Schiffl, H. High-flux dialyzers, backfiltration, and dialysis fluid quality. Semin. Dial. 24, 1–4 (2011).

    Article  PubMed  Google Scholar 

  77. Pertosa, G., Grandaliano, G., Gesualdo, L. & Schena, F. P. Clinical relevance of cytokine production in hemodialysis. Kidney. Int. Suppl. 76, S104–S111 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Pertosa, G., Gesualdo, L., Bottalico, D. & Schena, F. P. Endotoxins modulate chronically tumour necrosis factor alpha and interleukin 6 release by uraemic monocytes. Nephrol. Dial. Transplant. 10, 328–333 (1995).

    CAS  PubMed  Google Scholar 

  79. Dinarello, C. A. Interleukin-1 and interleukin-1 receptor antagonist production during haemodialysis: which cytokine is a surrogate marker for dialysis-related complications? Nephrol. Dial. Transplant. 10 (Suppl. 3), 25–28 (1995).

    Article  PubMed  Google Scholar 

  80. Memoli, B. et al. Hemodialysis related induction of interleukin-6 production by peripheral blood mononuclear cells. Kidney Int. 42, 320–326 (1992).

    Article  CAS  PubMed  Google Scholar 

  81. Arici, M. & Walls, J. End-stage renal disease, atherosclerosis, and cardiovascular mortality: is C-reactive protein the missing link? Kidney Int. 59, 407–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  82. Zimmermann, J., Herrlinger, S., Pruy, A., Metzger, T. & Wanner, C. Inflammation enhances cardiovascular risk and mortality in hemodialysis patients. Kidney Int. 55, 648–658 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Stenvinkel, P. et al. Strong association between malnutrition, inflammation, and atherosclerosis in chronic renal failure. Kidney Int. 55, 1899–1911 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Sitter, T., Bergner, A. & Schiffl, H. Dialysate related cytokine induction and response to recombinant human erythropoietin in haemodialysis patients. Nephrol. Dial. Transplant. 15, 1207–1211 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Canaud, B. & Granger-Vallee, A. Should ultrapure dialysate be part of standard therapy in hemodialysis? Semin. Dial. 24, 426–427 (2011).

    Article  PubMed  Google Scholar 

  86. Rahmati, M. A. et al. The role of improved water quality on inflammatory markers in patients undergoing regular dialysis. Int. J. Artif. Organs 27, 723–727 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Arizono, K. et al. Use of ultrapure dialysate in reduction of chronic inflammation during hemodialysis. Blood Purif. 22 (Suppl. 2), 26–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Hsu, P. Y. et al. Ultrapure dialysate improves iron utilization and erythropoietin response in chronic hemodialysis patients—a prospective cross-over study. J. Nephrol. 17, 693–700 (2004).

    CAS  PubMed  Google Scholar 

  89. Schiffl, H., Lang, S. M. & Fischer, R. Ultrapure dialysis fluid slows loss of residual renal function in new dialysis patients. Nephrol. Dial. Transplant. 17, 1814–1818 (2002).

    Article  CAS  PubMed  Google Scholar 

  90. Lederer, S. R. & Schiffl, H. Ultrapure dialysis fluid lowers the cardiovascular morbidity in patients on maintenance hemodialysis by reducing continuous microinflammation. Nephron 91, 452–455 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Lonnemann, G. & Koch, K. M. β2-microglobulin amyloidosis: effects of ultrapure dialysate and type of dialyzer membrane. J. Am. Soc. Nephrol. 13 (Suppl. 1), S72–S77 (2002).

    CAS  PubMed  Google Scholar 

  92. Izuhara, Y. et al. Ultrapure dialysate decreases plasma pentosidine, a marker of “carbonyl stress”. Am. J. Kidney Dis. 43, 1024–1029 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Canaud, B. et al. Mortality risk for patients receiving hemodiafiltration versus hemodialysis: European results from the DOPPS. Kidney Int. 69, 2087–2093 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Panichi, V. et al. Chronic inflammation and mortality in haemodialysis: effect of different renal replacement therapies. Results from the RISCAVID study. Nephrol. Dial. Transplant. 23, 2337–2343 (2008).

    Article  PubMed  Google Scholar 

  95. Jirka, T. et al. Mortality risk for patients receiving hemodiafiltration versus hemodialysis. Kidney Int. 70, 1524; author reply 1524–1525 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. Penne, E. L. et al. Microbiological quality and quality control of purified water and ultrapure dialysis fluids for online hemodiafiltration in routine clinical practice. Kidney Int. 76, 665–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Ayus, J. C. et al. Effects of short daily versus conventional hemodialysis on left ventricular hypertrophy and inflammatory markers: a prospective, controlled study. J. Am. Soc. Nephrol. 16, 2778–2788 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Yuen, D., Richardson, R. M., Fenton, S. S., McGrath-Chong, M. E. & Chan, C. T. Quotidian nocturnal hemodialysis improves cytokine profile and enhances erythropoietin responsiveness. ASAIO J. 51, 236–241 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Susantitaphong, P., Koulouridis, I., Balk, E. M., Madias, N. E. & Jaber, B. L. Effect of frequent or extended hemodialysis on cardiovascular parameters: a meta-analysis. Am. J. Kidney Dis. 59, 689–699 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Weinhandl, E. D., Liu, J., Gilbertson, D. T., Arneson, T. J. & Collins, A. J. Survival in daily home hemodialysis and matched thrice-weekly in-center hemodialysis patients. J. Am. Soc. Nephrol. 23, 895–904 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Chertow, G. M. et al. In-center hemodialysis six times per week versus three times per week. N. Engl. J. Med. 363, 2287–2300 (2010).

    Article  CAS  PubMed  Google Scholar 

  102. Pierratos, A. et al. Nocturnal hemodialysis: three-year experience. J. Am. Soc. Nephrol. 9, 859–868 (1998).

    CAS  PubMed  Google Scholar 

  103. Agar, J. W. Conserving water in and applying solar power to haemodialysis: 'green dialysis' through wiser resource utilization. Nephrology (Carlton) 15, 448–453 (2010).

    Article  Google Scholar 

  104. Agar, J. W., Simmonds, R. E., Knight, R. & Somerville, C. A. Using water wisely: new, affordable, and essential water conservation practices for facility and home hemodialysis. Hemodial. Int. 13, 32–37 (2009).

    Article  PubMed  Google Scholar 

  105. Agar, J. W., Perkins, A. & Tjipto, A. Solar-assisted hemodialysis. Clin. J. Am. Soc. Nephrol. 7, 310–314 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Agar, J. W. Review: understanding sorbent dialysis systems. Nephrology (Carlton) 15, 406–411 (2010).

    Article  CAS  Google Scholar 

  107. Gordon, A. et al. Clinical maintenance hemodialysis with a sorbent-based, low-volume dialysate regeneration system. Trans. Am. Soc. Artif. Intern. Organs 17, 253–258 (1971).

    CAS  PubMed  Google Scholar 

  108. Ash, S. R. The Allient dialysis system. Semin. Dial. 17, 164–166 (2004).

    Article  PubMed  Google Scholar 

  109. Shapiro, W. B. The current status of sorbent hemodialysis. Semin. Dial. 3, 40–45 (1990).

    Google Scholar 

  110. Clark, W. R. & Turk, J. E. Jr. The NxStage System One. Semin. Dial. 17, 167–170 (2004).

    Article  PubMed  Google Scholar 

  111. Tipple, M. A. et al. Illness in hemodialysis patients after exposure to chloramine contaminated dialysate. ASAIO Trans. 37, 588–591 (1991).

    CAS  PubMed  Google Scholar 

  112. Arnow, P. M., Bland, L. A., Garcia-Houchins, S., Fridkin, S. & Fellner, S. K. An outbreak of fatal fluoride intoxication in a long-term hemodialysis unit. Ann. Intern. Med. 121, 339–344 (1994).

    Article  CAS  PubMed  Google Scholar 

  113. Carlson, D. J. & Shapiro, F. L. Methemoglobinemia from well water nitrates: a complication of home dialysis. Ann. Intern. Med. 73, 757–759 (1970).

    Article  CAS  PubMed  Google Scholar 

  114. Manzler, A. D. & Schreiner, A. W. Copper-induced acute hemolytic anemia. A new complication of hemodialysis. Ann. Intern. Med. 73, 409–412 (1970).

    Article  CAS  PubMed  Google Scholar 

  115. Gallery, E. D., Blomfield, J. & Dixon, S. R. Acute zinc toxicity in haemodialysis. Br. Med. J. 4, 331–333 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of this manuscript.

Corresponding author

Correspondence to Peter G. Kerr.

Ethics declarations

Competing interests

P. G. Kerr declares associations with the following companies: Baxter (consultant), Fresenius Australia (consultant). The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damasiewicz, M., Polkinghorne, K. & Kerr, P. Water quality in conventional and home haemodialysis. Nat Rev Nephrol 8, 725–734 (2012). https://doi.org/10.1038/nrneph.2012.241

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2012.241

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing