Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Management of hepatorenal syndrome in patients with cirrhosis

Abstract

Patients with liver cirrhosis develop progressive circulatory dysfunction, which induces activation of the renin–angiotensin–aldosterone system (RAAS), activation of the sympathetic nervous system and increased activity of antidiuretic hormone. Such activation results in renal fluid retention, ascites and dilutional hyponatremia. In patients with advanced cirrhosis, these processes culminate in renal vasoconstriction and type 2 hepatorenal syndrome (HRS), which is characterized by slowly progressive renal failure and refractory ascites. Type 1 HRS is characterized by acute renal failure and rapid deterioration in the function of other organs in the setting of a precipitating event. Prognosis for both types of HRS is notably poor and orthotopic liver transplantation is the only definitive treatment; however, various therapies that restore renal function can provide a bridge to transplantation. Vasoconstrictors plus albumin improve renal function in 40–60% of patients with type 1 HRS. Transjugular intrahepatic portosystemic shunt (TIPS) placement is also effective in type 1 HRS, but its applicability is low (as it is not suitable for all patients), and it increases the risk of encephalopathy. Albumin dialysis is a potentially effective treatment for type 1 HRS still under investigation. Patients with type 2 HRS are treated with repeated large-volume paracentesis or TIPS.

Key Points

  • Patients with cirrhosis develop progressive impairment in circulatory function owing to splanchnic arterial vasodilatation and deterioration in cardiac function

  • Type 2 hepatorenal syndrome (HRS) is the extreme expression of this circulatory dysfunction, which manifests as slowly progressive functional renal failure associated with refractory ascites

  • Type 1 HRS is an acute functional renal failure accompanied by multiorgan failure that develops in close temporal relationship to a precipitating event, commonly an infection

  • Patients with type 2 HRS and refractory ascites are treated by repeated large volume paracentesis, or by transjugular intrahepatic portosystemic shunt insertion

  • The treatment of choice for patients with type 1 HRS is intravenous administration of vasoconstrictors (terlipressin or norepinephrine) in addition to intravascular volume expansion with albumin

  • Primary prophylaxis for type 1 HRS comprises oral norfloxacin (prophylaxis for bacterial infection) oral pentoxifylline (in acute alcoholic hepatitis), and intravenous albumin (in spontaneous bacterial peritonitis)

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms leading to type 1 HRS and multiorgan failure in patients with SBP.
Figure 2: Mechanisms leading to circulatory and renal dysfunction in cirrhosis.
Figure 3: Changes in serum creatinine levels and vasoconstrictor systems activity over time in nine patients with hepatorenal syndrome (six patients with type 1 HRS and three patients with type 2 HRS) who were treated with terlipressin and intravenous albumin.

Similar content being viewed by others

References

  1. Epstein, M. et al. Renal failure in the patient with cirrhosis. The role of active vasoconstriction. Am. J. Med. 49, 175–185 (1970).

    Article  CAS  PubMed  Google Scholar 

  2. Epstein, M., Schneider, N. & Befeler, B. Relationship of systemic and intrarenal hemodynamics in cirrhosis. J. Lab. Clin. Med. 89, 1175–1187 (1977).

    CAS  PubMed  Google Scholar 

  3. Henriksen, J. H., Ring-Larsen, H. & Christensen, N. J. Catecholamines in plasma from artery, cubital vein, and femoral vein in patients with cirrhosis. Significance of sampling site. Scand. J. Clin. Lab. Invest. 46, 39–44 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Henriksen, J. H. et al. Estimated central blood volume in cirrhosis: relationship to sympathetic nervous activity, beta-adrenergic blockade and atrial natriuretic factor. Hepatology 16, 1163–1170 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Arroyo, V., Fernandez, J. & Ginès, P. Pathogenesis and treatment of hepatorenal syndrome. Semin. Liver Dis. 28, 81–95 (2008).

    Article  PubMed  Google Scholar 

  6. Arroyo, V. & Colmenero, J. Ascites and hepatorenal syndrome in cirrhosis: pathophysiological basis of therapy and current management. J. Hepatol. 38 (Suppl. 1), S69–S89 (2003).

    Article  PubMed  Google Scholar 

  7. Maroto, A. et al. Brachial and femoral artery blood flow in cirrhosis: relationship to kidney dysfunction. Hepatology 17, 788–793 (1993).

    CAS  PubMed  Google Scholar 

  8. Sacerdoti, D. et al. Hepatic arterial resistance in cirrhosis with and without portal vein thrombosis: relationships with portal hemodynamics. Gastroenterology 108, 1152–1158 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Iversen, P. et al. Low cerebral oxygen consumption and blood flow in patients with cirrhosis and an acute episode of hepatic encephalopathy. Gastroenterology 136, 863–871 (2009).

    Article  PubMed  Google Scholar 

  10. Ruiz-del-Arbol, L. et al. Systemic, renal, and hepatic hemodynamic derangement in cirrhotic patients with spontaneous bacterial peritonitis. Hepatology 38, 1210–1218 (2003).

    Article  PubMed  Google Scholar 

  11. Ruiz-del-Arbol, L. et al. Circulatory function and hepatorenal syndrome in cirrhosis. Hepatology 42, 439–447 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Krag, A., Bendtsen, F., Henriksen, J. H. & Møller, S. Low cardiac output predicts development of hepatorenal syndrome and survival in patients with cirrhosis and ascites. Gut 59, 105–110 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Hecker, R. & Sherlock, S. Electrolyte and circulatory changes in terminal liver failure. Lancet 271, 1121–1125 (1956).

    Article  CAS  PubMed  Google Scholar 

  14. Koppel, M. H. et al. Transplantation of cadaveric kidneys from patients with hepatorenal syndrome. Evidence for the functional nature of renal failure in advanced liver disease. N. Engl. J. Med. 280, 1367–1371 (1969).

    Article  CAS  PubMed  Google Scholar 

  15. Guevara, M. et al. Reversibility of hepatorenal syndrome by prolonged administration of ornipressin and plasma volume expansion. Hepatology 27, 35–41 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Hadengue, A. et al. Beneficial effects of the 2-day administration of terlipressin in patients with cirrhosis and hepatorenal syndrome. J. Hepatol. 29, 565–570 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Le Moine, O. et al. Treatment with terlipressin as a bridge to liver transplantation in a patient with hepatorenal syndrome. Acta Gastroenterol. Belg. 61, 268–270 (1998).

    CAS  PubMed  Google Scholar 

  18. Angeli, P. et al. Reversal of type 1 hepatorenal syndrome with the administration of midodrine and octreotide. Hepatology 29, 1690–1697 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Gülberg, V., Bilzer, M. & Gerbes, A. L. Long-term therapy and retreatment of hepatorenal syndrome type 1 with ornipressin and dopamine. Hepatology 30, 870–875 (1999).

    Article  PubMed  Google Scholar 

  20. Uriz, J. et al. Terlipressin plus albumin infusion: an effective and safe therapy of hepatorenal syndrome. J. Hepatol. 33, 43–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Alessandria, C. et al. Renal failure in cirrhotic patients: role of terlipressin in clinical approach to hepatorenal syndrome type 2. Eur. J. Gastroenterol. Hepatol. 14, 1363–1368 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Duvoux, C. et al. Effects of noradrenalin and albumin in patients with type I hepatorenal syndrome: a pilot study. Hepatology 36, 374–380 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Halimi, C. et al. Effect of terlipressin (Glypressin) on hepatorenal syndrome in cirrhotic patients: results of a multicentre pilot study. Eur. J. Gastroenterol. Hepatol. 14, 153–158 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Moreau, R. et al. Terlipressin in patients with cirrhosis and type 1 hepatorenal syndrome: a retrospective multicenter study. Gastroenterology 122, 923–930 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Ortega, R. et al. Terlipressin therapy with and without albumin for patients with hepatorenal syndrome: results of a prospective, nonrandomized study. Hepatology 36, 941–948 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Alessandria, C. et al. Noradrenalin vs terlipressin in patients with hepatorenal syndrome: a prospective, randomized, unblinded, pilot study. J. Hepatol. 47, 499–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Neri, S. et al. Terlipressin and albumin in patients with cirrhosis and type I hepatorenal syndrome. Dig. Dis. Sci. 53, 830–835 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Martín-Llahí, M. et al. Terlipressin and albumin vs albumin in patients with cirrhosis and hepatorenal syndrome: a randomized study. Gastroenterology 134, 1352–1359 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Sanyal, A. J. et al. A randomized, prospective, double-blind, placebo-controlled trial of terlipressin for type 1 hepatorenal syndrome. Gastroenterology 134, 1360–1368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gonwa, T. A., Morris, C. A., Goldstein, R. M., Husberg, B. S. & Klintmalm, G. B. Long-term survival and renal function following liver transplantation in patients with and without hepatorenal syndrome—experience in 300 patients. Transplantation 51, 428–430 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Gonwa, T. A. et al. Continued influence of preoperative renal function on outcome of orthotopic liver transplant (OLTX) in the US: where will MELD lead us? Am. J. Transplant. 6, 2651–2659 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Nair, S., Verma, S. & Thuluvath, P. J. Pretransplant renal function predicts survival in patients undergoing orthotopic liver transplantation. Hepatology 35, 1179–1185 (2002).

    Article  PubMed  Google Scholar 

  33. Restuccia, T. et al. Effects of treatment of hepatorenal syndrome before transplantation on posttransplantation outcome. A case–control study. J. Hepatol. 40, 140–146 (2004).

    Article  PubMed  Google Scholar 

  34. Arroyo, V., Terra, C. & Ginès, P. Advances in the pathogenesis and treatment of type-1 and type-2 hepatorenal syndrome. J. Hepatol. 46, 935–946 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J. Hepatol. 53, 397–417 (2010).

  36. Salerno, F., Gerbes, A., Ginès, P., Wong, F. & Arroyo, V. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut 56, 1310–1318 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Arroyo, V. et al. Definition and diagnostic criteria of refractory ascites and hepatorenal syndrome in cirrhosis. International Ascites Club. Hepatology 23, 164–176 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Follo, A. et al. Renal impairment after spontaneous bacterial peritonitis in cirrhosis: incidence, clinical course, predictive factors and prognosis. Hepatology 20, 1495–1501 (1994).

    Article  CAS  PubMed  Google Scholar 

  39. Toledo, C. et al. Spontaneous bacterial peritonitis in cirrhosis: predictive factors of infection resolution and survival in patients treated with cefotaxime. Hepatology 17, 251–257 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Terra, C. et al. Renal failure in patients with cirrhosis and sepsis unrelated to spontaneous bacterial peritonitis: value of MELD score. Gastroenterology 129, 1944–1953 (2005).

    Article  PubMed  Google Scholar 

  41. Fasolato, S. et al. Renal failure and bacterial infections in patients with cirrhosis: epidemiology and clinical features. Hepatology 45, 223–229 (2007).

    Article  PubMed  Google Scholar 

  42. Francés, R. et al. Translocation of bacterial DNA from Gram-positive microorganisms is associated with a species-specific inflammatory response in serum and ascitic fluid of patients with cirrhosis. Clin. Exp. Immunol. 150, 230–237 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Francés, R. et al. Bacterial DNA induces the complement system activation in serum and ascitic fluid from patients with advanced cirrhosis. J. Clin. Immunol. 27, 438–444 (2007).

    Article  PubMed  Google Scholar 

  44. Such, J., Muñoz, C., Zapater, P. & Pérez-Mateo, M. Bacterial DNA induces a proinflammatory immune response in patients with decompensated cirrhosis. Gut 54, 1500 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Such, J. et al. Detection and identification of bacterial DNA in patients with cirrhosis and culture-negative, nonneutrocytic ascites. Hepatology 36, 135–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Boyer, T. D., Zia, P. & Reynolds, T. B. Effect of indomethacin and prostaglandin A1 on renal function and plasma renin activity in alcoholic liver disease. Gastroenterology 77, 215–222 (1979).

    CAS  PubMed  Google Scholar 

  47. Zipser, R. D., Hoefs, J. C., Speckart, P. F., Zia, P. K. & Horton, R. Prostaglandins: modulators of renal function and pressor resistance in chronic liver disease. J. Clin. Endocrinol. Metab. 48, 895–900 (1979).

    Article  CAS  PubMed  Google Scholar 

  48. Epstein, M., Lifschitz, M., Ramachandran, M. & Rappaport, K. Characterization of renal prostaglandin E responsiveness in decompensated cirrhosis: implications for renal sodium handling. Clin. Sci. (Lond.) 63, 555–563 (1982).

    Article  CAS  Google Scholar 

  49. Zipser, R. D., Radvan, G. H., Kronborg, I. J., Duke, R. & Little, T. E. Urinary thromboxane B2 and prostaglandin E2 in the hepatorenal syndrome: evidence for increased vasoconstrictor and decreased vasodilator factors. Gastroenterology 84, 697–703 (1983).

    CAS  PubMed  Google Scholar 

  50. Pérez-Ayuso, R. M. et al. Evidence that renal prostaglandins are involved in renal water metabolism in cirrhosis. Kidney Int. 26, 72–80 (1984).

    Article  PubMed  Google Scholar 

  51. Laffi, G., La Villa, G., Pinzani, M., Marra, F. & Gentilini, P. Arachidonic acid derivatives and renal function in liver cirrhosis. Semin. Nephrol. 17, 530–548 (1997).

    CAS  PubMed  Google Scholar 

  52. Cabrera, J. et al. Aminoglycoside nephrotoxicity in cirrhosis. Value of urinary beta 2-microglobulin to discriminate functional renal failure from acute tubular damage. Gastroenterology 82, 97–105 (1982).

    CAS  PubMed  Google Scholar 

  53. Garcia-Tsao, G., Parikh, C. R. & Viola, A. Acute kidney injury in cirrhosis. Hepatology 48, 2064–2077 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Guevara, M. et al. Effects of contrast media on renal function in patients with cirrhosis: a prospective study. Hepatology 40, 646–651 (2004).

    Article  PubMed  Google Scholar 

  55. Cárdenas, A. et al. Renal failure after upper gastrointestinal bleeding in cirrhosis: incidence, clinical course, predictive factors, and short-term prognosis. Hepatology 34, 671–676 (2001).

    Article  PubMed  Google Scholar 

  56. Ginés, P. et al. Comparison of paracentesis and diuretics in the treatment of cirrhotics with tense ascites. Results of a randomized study. Gastroenterology 93, 234–241 (1987).

    Article  PubMed  Google Scholar 

  57. European Association for the Study of the Liver. EASL clinical practice guidelines on the management of ascites, spontaneous bacterial peritonitis, and hepatorenal syndrome in cirrhosis. J. Hepatol. 53, 397–417 (2010).

  58. Moore, K. P. et al. The management of ascites in cirrhosis: report on the consensus conference of the International Ascites Club. Hepatology 38, 258–266 (2003).

    Article  PubMed  Google Scholar 

  59. Shear, L., Ching, S. & Gabuzda, G. J. Compartmentalization of ascites and edema in patients with hepatic cirrhosis. N. Engl. J. Med. 282, 1391–1396 (1970).

    Article  CAS  PubMed  Google Scholar 

  60. Sugano, S. Endotoxin levels in cirrhotic rats with sterile and infected ascites. Gastroenterol. Jpn 27, 348–353 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Heller, J. et al. Effects of lipopolysaccharide on TNF-αlpha production, hepatic NOS2 activity, and hepatic toxicity in rats with cirrhosis. J. Hepatol. 33, 376–381 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Navasa, M. et al. Tumor necrosis factor and interleukin-6 in spontaneous bacterial peritonitis in cirrhosis: relationship with the development of renal impairment and mortality. Hepatology 27, 1227–1232 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Sort, P. et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N. Engl. J. Med. 341, 403–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Crawford, D. H. et al. Universal occurrence of glomerular abnormalities in patients receiving liver transplants. Am. J. Kidney Dis. 19, 339–344 (1992).

    Article  CAS  PubMed  Google Scholar 

  65. Axelsen, R. A. et al. Renal glomerular lesions in unselected patients with cirrhosis undergoing orthotopic liver transplantation. Pathology 27, 237–246 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Trawalé, J. M. et al. The spectrum of renal lesions in patients with cirrhosis: a clinicopathological study. Liver Int. 30, 725–732 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Malyszko, J. Biomarkers of acute kidney injury in different clinical settings: a time to change the paradigm? Kidney Blood Press. Res. 33, 368–382 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Duseja, A. et al. Non-hepatic insults are common acute precipitants in patients with acute on chronic liver failure (ACLF). Dig. Dis. Sci. 55, 3188–3192 (2010).

    Article  PubMed  Google Scholar 

  69. Novelli, G. et al. Predictive parameters after molecular absorbent recirculating system treatment integrated with model for end stage liver disease model in patients with acute-on-chronic liver failure. Transplant. Proc. 42, 1182–1187 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Wasmuth, H. E. et al. Patients with acute on chronic liver failure display “sepsis-like” immune paralysis. J. Hepatol. 42, 195–201 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Xing, T., Li, L., Cao, H. & Huang, J. Altered immune function of monocytes in different stages of patients with acute on chronic liver failure. Clin. Exp. Immunol. 147, 184–188 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Escorsell Mañosa, A. & Mas Ordeig, A. Acute on chronic liver failure [Spanish]. Gastroenterol. Hepatol. 33, 126–134 (2010).

    Article  PubMed  Google Scholar 

  73. Ring-Larsen, H., Hesse, B., Henriksen, J. H. & Christensen, N. J. Sympathetic nervous activity and renal and systemic hemodynamics in cirrhosis: plasma norepinephrine concentration, hepatic extraction, and renal release. Hepatology 2, 304–310 (1982).

    Article  CAS  PubMed  Google Scholar 

  74. Ring-Larsen, H. Renal blood flow in cirrhosis: relation to systemic and portal haemodynamics and liver function. Scand. J. Clin. Lab. Invest. 37, 635–642 (1977).

    Article  CAS  PubMed  Google Scholar 

  75. Schrier, R. W. et al. Peripheral arterial vasodilation hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 8, 1151–1157 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. Reichenbach, V., Ros, J. & Jiménez, W. Endogenous cannabinoids in liver disease: many darts for a single target [Spanish]. Gastroenterol. Hepatol. 33, 323–329 (2010).

    Article  PubMed  Google Scholar 

  77. Genesca, J. et al. Adrenomedullin, a vasodilator peptide implicated in hemodynamic alterations of liver cirrhosis: relationship to nitric oxide. Dig. Dis. Sci. 44, 372–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Iwakiri, Y. & Groszmann, R. J. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology 43 (2 Suppl. 1), S121–S131 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Sieber, C. C., Lopez-Talavera, J. C. & Groszmann, R. J. Role of nitric oxide in the in vitro splanchnic vascular hyporeactivity in ascitic cirrhotic rats. Gastroenterology 104, 1750–1754 (1993).

    Article  CAS  PubMed  Google Scholar 

  80. Sikuler, E. & Groszmann, R. J. Hemodynamic studies in long- and short-term portal hypertensive rats: the relation to systemic glucagon levels. Hepatology 6, 414–418 (1986).

    Article  CAS  PubMed  Google Scholar 

  81. De las Heras, D. et al. Increased carbon monoxide production in patients with cirrhosis with and without spontaneous bacterial peritonitis. Hepatology 38, 452–459 (2003).

    Article  PubMed  Google Scholar 

  82. Arroyo, V., Ginés, P., Rimola, A. & Gaya, J. Renal function abnormalities, prostaglandins, and effects of nonsteroidal anti-inflammatory drugs in cirrhosis with ascites. An overview with emphasis on pathogenesis. Am. J. Med. 81, 104–122 (1986).

    Article  CAS  PubMed  Google Scholar 

  83. Fernández-Varo, G. et al. Nitric oxide synthase 3-dependent vascular remodeling and circulatory dysfunction in cirrhosis. Am. J. Pathol. 162, 1985–1993 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Claria, J. et al. Effect of V1-vasopressin receptor blockade on arterial pressure in conscious rats with cirrhosis and ascites. Gastroenterology 100, 494–501 (1991).

    Article  CAS  PubMed  Google Scholar 

  85. Daskalopoulos, G., Pinzani, M., Murray, N., Hirschberg, R. & Zipser, R. D. Effects of captopril on renal function in patients with cirrhosis and ascites. J. Hepatol. 4, 330–336 (1987).

    Article  CAS  PubMed  Google Scholar 

  86. Colmenero, J. et al. Effects of losartan on hepatic expression of nonphagocytic NADPH oxidase and fibrogenic genes in patients with chronic hepatitis C. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G726–G734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ginès, P. et al. Randomized comparative study of therapeutic paracentesis with and without intravenous albumin in cirrhosis. Gastroenterology 94, 1493–1502 (1988).

    Article  PubMed  Google Scholar 

  88. Ginès, A. et al. Randomized trial comparing albumin, dextran 70, and polygeline in cirrhotic patients with ascites treated by paracentesis. Gastroenterology 111, 1002–1010 (1996).

    Article  PubMed  Google Scholar 

  89. Runyon, B. A. & AASLD Practice Guidelines Committee. Management of adult patients with ascites due to cirrhosis: an update. Hepatology 49, 2087–2107 (2009).

    Article  PubMed  Google Scholar 

  90. Colle, I. et al. Clinical course, predictive factors and prognosis in patients with cirrhosis and type 1 hepatorenal syndrome treated with Terlipressin: a retrospective analysis. J. Gastroenterol. Hepatol. 17, 882–888 (2002).

    Article  PubMed  Google Scholar 

  91. Solanki, P. et al. Beneficial effects of terlipressin in hepatorenal syndrome: a prospective, randomized placebo-controlled clinical trial. J. Gastroenterol. Hepatol. 18, 152–156 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Gluud, L. L., Christensen, K., Christensen, E. & Krag, A. Systematic review of randomized trials on vasoconstrictor drugs for hepatorenal syndrome. Hepatology 51, 576–584 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Nazar, A. et al. Predictors of response to therapy with terlipressin and albumin in patients with cirrhosis and type 1 hepatorenal syndrome. Hepatology 51, 219–226 (2010).

    Article  CAS  PubMed  Google Scholar 

  94. Angeli, P. et al. Terlipressin given as continuous intravenous infusion versus terlipressin given as intravenous boluses in the treatment of type 1 hepatorenal syndrome (HRS) in patients with cirrhosis [abstract 175]. J. Hepatol. 50 (Suppl. 1), S73 (2009).

    Article  Google Scholar 

  95. Sharma, P., Kumar, A., Shrama, B. C. & Sarin, S. K. An open label, pilot, randomized controlled trial of noradrenaline versus terlipressin in the treatment of type 1 hepatorenal syndrome and predictors of response. Am. J. Gastroenterol. 103, 1689–1697 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Wong, F., Pantea, L. & Sniderman, K. Midodrine, octreotide, albumin, and TIPS in selected patients with cirrhosis and type 1 hepatorenal syndrome. Hepatology 40, 55–64 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Esrailian, E., Pantangco, E. R., Kyulo, N. L., Hu, K. Q. & Runyon, B. A. Octreotide/midodrine therapy significantly improves renal function and 30-day survival in patients with type 1 hepatorenal syndrome. Dig. Dis. Sci. 52, 742–748 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Skagen, C., Einstein, M., Lucey, M. R. & Said, A. Combination treatment with octreotide, midodrine, and albumin improves survival in patients with type 1 and type 2 hepatorenal syndrome. J. Clin. Gastroenterol. 43, 680–685 (2009).

    Article  CAS  PubMed  Google Scholar 

  99. Guevara, M. et al. Transjugular intrahepatic portosystemic shunt in hepatorenal syndrome: effects on renal function and vasoactive systems. Hepatology 28, 416–422 (1998).

    Article  CAS  PubMed  Google Scholar 

  100. Brensing, K. A. et al. Long-term outcome after transjugular intrahepatic portosystemic stent-shunt in non-transplant cirrhotics with hepatorenal syndrome: a phase II study. Gut 47, 288–295 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Testino, G. et al. Type-2 hepatorenal syndrome and refractory ascites: role of transjugular intrahepatic portosystemic stent-shunt in eighteen patients with advanced cirrhosis awaiting orthotopic liver transplantation. Hepatogastroenterology 50, 1753–1755 (2003).

    PubMed  Google Scholar 

  102. Keller, F. et al. Risk factors and outcome of 107 patients with decompensated liver disease and acute renal failure (including 26 patients with hepatorenal syndrome): the role of hemodialysis. Ren. Fail. 17, 135–146 (1995).

    Article  CAS  PubMed  Google Scholar 

  103. Capling, R. K. & Bastani, B. The clinical course of patients with type 1 hepatorenal syndrome maintained on hemodialysis. Ren. Fail. 26, 563–568 (2004).

    Article  PubMed  Google Scholar 

  104. Hassanein, T. I. et al. Randomized controlled study of extracorporeal albumin dialysis for hepatic encephalopathy in advanced cirrhosis. Hepatology 46, 1853–1862 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Rifai, K. et al. Extracorporeal liver support by fractionated plasma separation and adsorption (Prometheus) in patients with acute-on-chronic liver failure (Helios study): a prospective randomized controlled multicenter study [abstract 6]. J. Hepatol. 52 (Suppl. 1), S3 (2010).

    Article  Google Scholar 

  106. Bañares, R. et al. Extracorporeal liver support with the molecular adsorbent recirculating system (MARS) in patients with acute-on-chronic liver failure (AOCLF). The RELIEF trial [abstract 1184]. J. Hepatol. 52 (Suppl. 1), S459–S460 (2010).

    Article  Google Scholar 

  107. Henriksen, J. H., Kiszka-Kanowitz, M. & Bendtsen, F. Review article: volume expansion in patients with cirrhosis. Aliment. Pharmacol. Ther. 16 (Suppl. 5), 12–23 (2002).

    Article  PubMed  Google Scholar 

  108. Fernández, J. et al. Primary prophylaxis of spontaneous bacterial peritonitis delays hepatorenal syndrome and improves survival in cirrhosis. Gastroenterology 133, 818–824 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Terg, R. et al. Ciprofloxacin in primary prophylaxis of spontaneous bacterial peritonitis: a randomized, placebo-controlled study. J. Hepatol. 48, 774–779 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Akriviadis, E. et al. Pentoxifylline improves short-term survival in severe acute alcoholic hepatitis: a double-blind, placebo-controlled trial. Gastroenterology 119, 1637–1648 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

V. Arroyo and J. Fernández are both supported by the Centro de Investigación Biomédica en Red en el Área temática de enfermedades hepáticas y digestivas (CIBERehd). C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

V. Arroyo and J. Fernández contributed equally to researching data, discussion of content, writing and review/editing of the manuscript before submission.

Corresponding author

Correspondence to Vicente Arroyo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arroyo, V., Fernández, J. Management of hepatorenal syndrome in patients with cirrhosis. Nat Rev Nephrol 7, 517–526 (2011). https://doi.org/10.1038/nrneph.2011.96

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2011.96

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing