Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New insights into postrenal transplant hemolytic uremic syndrome

Abstract

After renal transplantation, hemolytic uremic syndrome (HUS) may occur either as a recurrent or de novo form. Over the past decade, much effort has been devoted to elucidating the pathogenesis of atypical HUS (aHUS). Approximately 60–70% patients with aHUS have mutations in regulatory factors of the complement system or antibodies against complement factor H. The risk of post-transplant recurrence of aHUS depends on the genetic abnormality involved, and ranges from 15% to 20% in patients with mutations in the gene that encodes membrane cofactor protein and from 50% to 100% in patients with mutations in the genes that encode circulating regulators of complement. Given the poor outcomes associated with recurrence, isolated renal transplantation had been contraindicated in patients at high risk of aHUS recurrence. However, emerging therapies, including pre-emptive plasma therapy and anti-C5 component monoclonal antibody (eculizumab) treatment have provided promising results and should further limit indications for the risky procedure of combined liver–kidney transplantation. Studies from the past 2 years have demonstrated genetic abnormalities in complement regulators in 30% of renal transplant recipients who experienced de novo HUS after renal transplantation. This finding suggests that the burden of endothelial injury in a post-transplantation setting may trigger de novo HUS in the presence of mild genetic susceptibility to HUS.

Key Points

  • Mutations in genes that encode components of the alternative complement pathway (for example, CFH, CFI, MCP, C3 and CFB) and anti-complement factor H antibodies have been identified in 60–70% of patients with atypical hemolytic uremic syndrome (aHUS)

  • Mutations in genes that encode regulatory factors of the complement system (for example, CFH, CFI and MCP) have been identified in 30% of cases of de novo post-transplant hemolytic uremic syndrome (HUS)

  • The risk of aHUS recurrence after renal transplantation varies according to which factor is mutated: the risk is low (15%) for mutations in membrane cofactor protein and high (80%) for mutations in circulating proteins

  • Post-transplant recurrence of aHUS is associated with a poor outcome; therefore living-donor renal transplantation is currently not recommended in the setting of aHUS

  • The multitude of endothelial aggressors in the post-transplant setting may trigger de novo HUS in patients with mild genetic susceptibility to HUS

  • Innovative therapeutic avenues, including pre-emptive plasma therapy and anti-C5 antibody therapy are extremely promising for the prevention or cure of recurrent aHUS, and should limit the indications for combined liver–kidney transplantation

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulated and deregulated activation of the alternative complement pathway.
Figure 2: Paradigm for post-transplant HUS.
Figure 3: Flowchart of investigations that should be undertaken if a patient experiences de novo post-transplant HUS and/or subclinical TMA.

Similar content being viewed by others

References

  1. Ferraris, J. R. et al. Shiga toxin-associated hemolytic uremic syndrome: absence of recurrence after renal transplantation. Pediatr. Nephrol. 17, 809–814 (2002).

    Article  PubMed  Google Scholar 

  2. Loirat, C. & Niaudet, P. The risk of recurrence of hemolytic uremic syndrome after renal transplantation in children. Pediatr. Nephrol. 18, 1095–1101 (2003).

    Article  PubMed  Google Scholar 

  3. Noris, M. & Remuzzi, G. Atypical hemolytic-uremic syndrome. N. Engl. J. Med. 361, 1676–1687 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Bresin, E. et al. Outcome of renal transplantation in patients with non-Shiga toxin-associated hemolytic uremic syndrome: prognostic significance of genetic background. Clin. J. Am. Soc. Nephrol. 1, 88–99 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Caprioli, J. et al. Genetics of HUS: the impact of, MCP, CFH, and IF mutations on clinical presentation, response to treatment, and outcome. Blood 108, 1267–1279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kavanagh, D. & Goodship, T. H. Membrane cofactor protein and factor I: mutations and transplantation. Semin. Thromb. Hemost. 32, 155–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Pickering, M. C. et al. Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat. Genet. 31, 424–428 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Pickering, M. C. et al. Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition domains. J. Exp. Med. 204, 1249–1256 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dragon-Durey, M. A. et al. Heterozygous and homozygous factor h deficiencies associated with hemolytic uremic syndrome or membranoproliferative glomerulonephritis: report and genetic analysis of 16 cases. J. Am. Soc. Nephrol. 15, 787–795 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Sellier-Leclerc, A. L. et al. Differential impact of complement mutations on clinical characteristics in atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 18, 2392–2400 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Bienaime, F. et al. Mutations in components of complement influence the outcome of Factor I-associated atypical hemolytic uremic syndrome. Kidney Int. 77, 339–349 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Caprioli, J. et al. The molecular basis of familial hemolytic uremic syndrome: mutation analysis of factor H gene reveals a hot spot in short consensus repeat 20. J. Am. Soc. Nephrol. 12, 297–307 (2001).

    CAS  PubMed  Google Scholar 

  13. Noris, M. et al. Complement factor H mutation in familial thrombotic thrombocytopenic purpura with ADAMTS13 deficiency and renal involvement. J. Am. Soc. Nephrol. 16, 1177–1183 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Fremeaux-Bacchi, V. et al. Complement factor I: a susceptibility gene for atypical haemolytic uraemic syndrome. J. Med. Genet. 41, e84 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kavanagh, D. et al. Mutations in complement factor I predispose to development of atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 16, 2150–2155 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Kavanagh, D. et al. Characterization of mutations in complement factor I (CFI) associated with hemolytic uremic syndrome. Mol. Immunol. 45, 95–105 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Noris, M. et al. Familial haemolytic uraemic syndrome and an MCP mutation. Lancet 362, 1542–1547 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Richards, A. et al. Mutations in human complement regulator, membrane cofactor protein (CD46), predispose to development of familial hemolytic uremic syndrome. Proc. Natl Acad. Sci. USA 100, 12966–12971 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fremeaux-Bacchi, V. et al. Genetic and functional analyses of membrane cofactor protein (CD46) mutations in atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 17, 2017–2025 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Goicoechea de Jorge, E. et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc. Natl Acad. Sci. USA 104, 240–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Roumenina, L. T. et al. Hyperfunctional C3 convertase leads to complement deposition on endothelial cells and contributes to atypical hemolytic uremic syndrome. Blood 114, 2837–2845 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Frémeaux-Bacchi, V. et al. Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood 112, 4948–4952 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Delvaeye, M. et al. Thrombomodulin mutations in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 361, 345–357 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dragon-Durey, M. A. et al. Anti-Factor H autoantibodies associated with atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 16, 555–563 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Józsi, M. et al. Factor H autoantibodies in atypical hemolytic uremic syndrome correlate with CFHR1/CFHR3 deficiency. Blood 111, 1512–1514 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Józsi, M. et al. Anti factor H autoantibodies block C-terminal recognition function of factor H in hemolytic uremic syndrome. Blood 110, 1516–1518 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Abarrategui-Garrido, C., Martínez-Barricarte, R., López-Trascasa, M., de Córdoba, S. R. & Sánchez-Corral, P. Characterization of complement factor H-related (CFHR) proteins in plasma reveals novel genetic variations of CFHR1 associated with atypical hemolytic uremic syndrome. Blood 114, 4261–4271 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Moore, I. et al. Association of factor H autoantibodies with deletions of CFHR1, CFHR3, CFHR4, and with mutations in, CFH, CFI, CD46, and C3 in patients with atypical hemolytic uremic syndrome. Blood 115, 379–387 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Esparza-Gordillo, J. et al. Predisposition to atypical hemolytic uremic syndrome involves the concurrence of different susceptibility alleles in the regulators of complement activation gene cluster in 1q32. Hum. Mol. Genet. 14, 703–712 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Esparza-Gordillo, J. et al. Insights into hemolytic uremic syndrome: segregation of three independent predisposition factors in a large, multiple affected pedigree. Mol. Immunol. 43, 1769–1775 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Fremeaux-Bacchi, V. et al. The development of atypical haemolytic-uraemic syndrome is influenced by susceptibility factors in factor H and membrane cofactor protein: evidence from two independent cohorts. J. Med. Genet. 42, 852–856 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cruzado, J. M. et al. Successful renal transplantation in a patient with atypical hemolytic uremic syndrome carrying mutations in both factor I and MCP. Am. J. Transplant. 9, 1477–1483 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Le Quintrec, M. et al. Complement mutation-associated de novo thrombotic microangiopathy following kidney transplantation. Am. J. Transplant. 8, 1694–1701 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Martinez-Barricarte, R. et al. The complement factor H R1210C mutation is associated with atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 19, 639–646 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Blom, A. M. et al. A novel non-synonymous polymorphism (p.Arg240His) in C4b-binding protein is associated with atypical hemolytic uremic syndrome and leads to impaired alternative pathway cofactor activity. J. Immunol. 180, 6385–6391 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Caprioli, J. et al. Complement factor H mutations and gene polymorphisms in haemolytic uraemic syndrome: the C-257T, the A2089G and the G2881T polymorphisms are strongly associated with the disease. Hum. Mol. Genet. 12, 3385–3395 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Saunders, R. E. et al. The interactive factor H-atypical hemolytic uremic syndrome mutation database and website: update and integration of membrane cofactor protein and factor I mutations with structural models. Hum. Mutat. 28, 222–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Dragon-Durey, M. A. et al. The high frequency of complement factor H related CFHR1 gene deletion is restricted to specific subgroups of patients with atypical haemolytic uraemic syndrome. J. Med. Genet. 46, 447–450 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. FH-aHUS Mutation Database [online], (2010).

  40. Jablonski, M. et al. Kidney transplant outcome in atypical hemolytic uremic syndrome: the French experience. Am. Soc. Nephrol. Abstract #F-PO2074 (2009).

  41. Heinen, S. et al. De novo gene conversion in the RCA gene cluster (1q32) causes mutations in complement factor H associated with atypical hemolytic uremic syndrome. Hum. Mutat. 27, 292–293 (2006).

    Article  PubMed  Google Scholar 

  42. Venables, J. P. et al. Atypical haemolytic uraemic syndrome associated with a hybrid complement gene. PLoS Med. 3, e431 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zipfel, P. F. et al. Deletion of complement factor H-related genes CFHR1 and CFHR3 is associated with atypical hemolytic uremic syndrome. PLoS Genet. 3, e41 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heinen, S. et al. Factor H-related protein 1 (CFHR-1) inhibits complement C5 convertase activity and terminal complex formation. Blood 114, 2439–2447 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Artz, M. A., Steenbergen, E. J., Hoitsma, A. J., Monnens, L. A. & Wetzels, J. F. Renal transplantation in patients with hemolytic uremic syndrome: high rate of recurrence and increased incidence of acute rejections. Transplantation 76, 821–826 (2003).

    Article  PubMed  Google Scholar 

  46. Lahlou, A. et al. Hemolytic uremic syndrome. Recurrence after renal transplantation. Groupe Coopératif de l'Ile-de-France (GCIF). Medicine (Baltimore) 79, 90–102 (2000).

    Article  CAS  Google Scholar 

  47. Quan, A., Sullivan, E. K. & Alexander, S. R. Recurrence of hemolytic uremic syndrome after renal transplantation in children: a report of the North American Pediatric Renal Transplant Cooperative Study. Transplantation 72, 742–745 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Loirat, C. & Fremeaux-Bacchi, V. Hemolytic uremic syndrome recurrence after renal transplantation. Pediatr. Transplant. 12, 619–629 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Saland, J. M., Ruggenenti, P. & Remuzzi, G. Liver-kidney transplantation to cure atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 20, 940–949 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Strobel, S. et al. Functional analyses indicate a pathogenic role of factor H autoantibodies in atypical haemolytic uraemic syndrome. Nephrol. Dial. Transplant. 25, 136–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Kwon, T. et al. Successful pre-transplant management of a patient with anti-factor H autoantibodies-associated haemolytic uraemic syndrome. Nephrol. Dial. Transplant. 23, 2088–2090 (2008).

    Article  PubMed  Google Scholar 

  52. Le Quintrec, M. et al. Anti-factor H autoantibodies in a fifth renal transplant recipient with atypical hemolytic and uremic syndrome. Am. J. Transplant. 9, 1223–1229 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Waters, A. M. et al. Successful renal transplantation in factor H autoantibody associated HUS with CFHR1 and 3 deficiency and CFH variant G2850T. Am. J. Transplant. 10, 168–172 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Chan, M. R. et al. Recurrent atypical hemolytic uremic syndrome associated with factor I mutation in a living related renal transplant recipient. Am. J. Kidney Dis. 53, 321–326 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Geelen, J. et al. A missense mutation in factor I (IF) predisposes to atypical haemolytic uraemic syndrome. Pediatr. Nephrol. 22, 371–375 (2007).

    Article  PubMed  Google Scholar 

  56. Nilsson, S. C. et al. A mutation in factor I that is associated with atypical hemolytic uremic syndrome does not affect the function of factor I in complement regulation. Mol. Immunol. 44, 1835–1844 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Davin, J. C. et al. Prophylactic plasma exchange in CD46-associated atypical haemolytic uremic syndrome. Pediatr. Nephrol. 24, 1757–1760 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Frémeaux-Bacchi, V. et al. Recurrence of HUS due to CD46/MCP mutation after renal transplantation: a role for endothelial microchimerism. Am. J. Transplant. 7, 2047–2051 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Ishii, H. & Majerus, P. W. Thrombomodulin is present in human plasma and urine. J. Clin. Invest. 76, 2178–2181 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pratt, J. R., Basheer, S. A. & Sacks, S. H. Local synthesis of complement component C3 regulates acute renal transplant rejection. Nat. Med. 8, 582–587 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Zheng, X. et al. Preventing renal ischemia-reperfusion injury using small interfering RNA by targeting complement 3 gene. Am. J. Transplant. 6, 2099–2108 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Pham, P. T. et al. Cyclosporine and tacrolimus-associated thrombotic microangiopathy. Am. J. Kidney Dis. 36, 844–850 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Reynolds, J. C., Agodoa, L. Y., Yuan, C. M. & Abbott, K. C. Thrombotic microangiopathy after renal transplantation in the United States. Am. J. Kidney Dis. 42, 1058–1068 (2003).

    Article  PubMed  Google Scholar 

  64. Zarifian, A., Meleg-Smith, S., O'Donovan, R., Tesi, R. J. & Batuman, V. Cyclosporine-associated thrombotic microangiopathy in renal allografts. Kidney Int. 55, 2457–2466 (1999).

    Article  CAS  PubMed  Google Scholar 

  65. Hastings, M. C. et al. Diagnosis of de novo localized thrombotic microangiopathy by surveillance biopsy. Pediatr. Nephrol. 22, 742–746 (2007).

    Article  PubMed  Google Scholar 

  66. Ruggenenti, P. Post-transplant hemolytic-uremic syndrome. Kidney Int. 62, 1093–1104 (2002).

    Article  PubMed  Google Scholar 

  67. Schwimmer, J., Nadasdy, T. A., Spitalnik, P. F., Kaplan, K. L. & Zand, M. S. De novo thrombotic microangiopathy in renal transplant recipients: a comparison of hemolytic uremic syndrome with localized renal thrombotic microangiopathy. Am. J. Kidney Dis. 41, 471–479 (2003).

    Article  PubMed  Google Scholar 

  68. Ruggenenti, P., Noris, M. & Remuzzi, G. Thrombotic microangiopathy, hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Kidney Int. 60, 831–846 (2001).

    Article  CAS  PubMed  Google Scholar 

  69. Al-Lamki, R. S., Bradley, J. R. & Pober, J. S. Endothelial cells in allograft rejection. Transplantation 86, 1340–1348 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Karthikeyan, V., Parasuraman, R., Shah, V., Vera, E. & Venkat, K. K. Outcome of plasma exchange therapy in thrombotic microangiopathy after renal transplantation. Am. J. Transplant. 3, 1289–1294 (2003).

    Article  PubMed  Google Scholar 

  71. Satoskar, A. A. et al. De novo thrombotic microangiopathy in renal allograft biopsies—role of antibody-mediated rejection. Am. J. Transplant. 10, 1804–1811 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Canaud, G. et al. Severe vascular lesions and poor functional outcome in kidney transplant recipients with lupus anticoagulant antibodies. Am. J. Transplant. 10, 2051–2060 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Kwon, O., Hong, S. M., Sutton, T. A. & Temm, C. J. Preservation of peritubular capillary endothelial integrity and increasing pericytes may be critical to recovery from postischemic acute kidney injury. Am. J. Physiol. Renal Physiol. 295, F351–F359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Waiser, J., Budde, K., Rudolph, B., Ortner, M. A. & Neumayer, H. H. De novo hemolytic uremic syndrome postrenal transplant after cytomegalovirus infection. Am. J. Kidney Dis. 34, 556–559 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Olie, K. H. et al. Posttransplantation cytomegalovirus-induced recurrence of atypical hemolytic uremic syndrome associated with a factor H mutation: successful treatment with intensive plasma exchanges and ganciclovir. Am. J. Kidney Dis. 45, e12–e15 (2005).

    Article  PubMed  Google Scholar 

  76. Ardalan, M. R., Shoja, M. M., Tubbs, R. S., Esmaili, H. & Keyvani, H. Postrenal transplant hemophagocytic lymphohistiocytosis and thrombotic microangiopathy associated with parvovirus b19 infection. Am. J. Transplant. 8, 1340–1344 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Murer, L. et al. Thrombotic microangiopathy associated with parvovirus B 19 infection after renal transplantation. J. Am. Soc. Nephrol. 11, 1132–1137 (2000).

    CAS  PubMed  Google Scholar 

  78. Naesens, M., Kuypers, D. R. & Sarwal, M. Calcineurin inhibitor nephrotoxicity. Clin. J. Am. Soc. Nephrol. 4, 481–508 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Liptak, P. & Ivanyi, B. Primer: histopathology of calcineurin-inhibitor toxicity in renal allografts. Nat. Clin. Pract. Nephrol. 2, 398–404 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Ponticelli, C. De novo thrombotic microangiopathy. An underrated complication of renal transplantation. Clin. Nephrol. 67, 335–340 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Andreoni, K. A., Brayman, K. L., Guidinger, M. K., Sommers, C. M. & Sung, R. S. Kidney and pancreas transplantation in the United States, 1996–2005. Am. J. Transplant. 7, 1359–1375 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. English, J., Evan, A., Houghton, D. C. & Bennett, W. M. Cyclosporine-induced acute renal dysfunction in the rat. Evidence of arteriolar vasoconstriction with preservation of tubular function. Transplantation 44, 135–141 (1987).

    Article  CAS  PubMed  Google Scholar 

  83. Lanese, D. M. & Conger, J. D. Effects of endothelin receptor antagonist on cyclosporine-induced vasoconstriction in isolated rat renal arterioles. J. Clin. Invest. 91, 2144–2149 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ramzy, D. et al. Role of endothelin-1 and nitric oxide bioavailability in transplant-related vascular injury: comparative effects of rapamycin and cyclosporine. Circulation 114 (Suppl.), I214–I219 (2006).

    PubMed  Google Scholar 

  85. Al-Massarani, G. et al. Impact of immunosuppressive treatment on endothelial biomarkers after kidney transplantation. Am. J. Transplant. 8, 2360–2367 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Fortin, M. C. et al. Increased risk of thrombotic microangiopathy in patients receiving a cyclosporin-sirolimus combination. Am. J. Transplant. 4, 946–952 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Robson, M., Côte, I., Abbs, I., Koffman, G. & Goldsmith, D. Thrombotic micro-angiopathy with sirolimus-based immunosuppression: potentiation of calcineurin-inhibitor-induced endothelial damage? Am. J. Transplant. 3, 324–327 (2003).

    Article  PubMed  Google Scholar 

  88. Sartelet, H. et al. Sirolimus-induced thrombotic microangiopathy is associated with decreased expression of vascular endothelial growth factor in kidneys. Am. J. Transplant. 5, 2441–2447 (2005).

    Article  PubMed  Google Scholar 

  89. Eremina, V. et al. VEGF inhibition and renal thrombotic microangiopathy. N. Engl. J. Med. 358, 1129–1136 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Miriuka, S. G. et al. mTOR inhibition induces endothelial progenitor cell death. Am. J. Transplant. 6, 2069–2079 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Simmonds, J. et al. Endothelial dysfunction and cytomegalovirus replication in pediatric heart transplantation. Circulation 117, 2657–2661 (2008).

    Article  PubMed  Google Scholar 

  92. Bolovan-Fritts, C. A. & Spector, S. A. Endothelial damage from cytomegalovirus-specific host immune response can be prevented by targeted disruption of fractalkine-CX3CR1 interaction. Blood 111, 175–182 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Petrogiannis-Haliotis, T. et al. BK-related polyomavirus vasculopathy in a renal-transplant recipient. N. Engl. J. Med. 345, 1250–1255 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Taylor, C. M., Machin, S., Wigmore, S. J. & Goodship, T. H. Clinical practice guidelines for the management of atypical haemolytic uraemic syndrome in the United Kingdom. Br. J. Haematol. 148, 37–47 (2010).

    Article  CAS  PubMed  Google Scholar 

  95. Fang, C. J. et al. Membrane cofactor protein mutations in atypical hemolytic uremic syndrome (aHUS), fatal Stx-HUS, C3 glomerulonephritis, and the HELLP syndrome. Blood 111, 624–632 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. The European Society for Paediatric Nephrology [online], (2010).

  97. Nöthen, M. M. & Dewald, G. Dinucleotide repeat polymorphism at the human CD59 locus. Clin. Genet. 47, 165–166 (1995).

    Article  PubMed  Google Scholar 

  98. Rey-Campos, J., Rubinstein, P. & Rodriguez de Cordoba, S. Decay-accelerating factor. Genetic polymorphism and linkage to the RCA (regulator of complement activation) gene cluster in humans. J. Exp. Med. 166, 246–252 (1987).

    Article  CAS  PubMed  Google Scholar 

  99. Brown, K. M. et al. Influence of donor C3 allotype on late renal-transplantation outcome. N. Engl. J. Med. 354, 2014–2023 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Varagunam, M., Yaqoob, M. M., Döhler, B. & Opelz, G. C3 polymorphisms and allograft outcome in renal transplantation. N. Engl. J. Med. 360, 874–880 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Heeger, P. S. et al. Decay-accelerating factor modulates induction of T cell immunity. J. Exp. Med. 201, 1523–1530 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu, J. et al. The complement inhibitory protein DAF (CD55) suppresses T cell immunity in vivo. J. Exp. Med. 201, 567–577 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Raedler, H., Yang, M., Lalli, P. N., Medof, M. E. & Heeger, P. S. Primed CD8(+) T-cell responses to allogeneic endothelial cells are controlled by local complement activation. Am. J. Transplant. 9, 1784–1795 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Vieyra, M. B. & Heeger, P. S. Novel aspects of complement in kidney injury. Kidney Int. 77, 495–499 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Oyen, O. et al. Calcineurin inhibitor-free immunosuppression in renal allograft recipients with thrombotic microangiopathy/hemolytic uremic syndrome. Am. J. Transplant. 6, 412–418 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Conlon, P. J. et al. Renal transplantation in adults with thrombotic thrombocytopenic purpura/haemolytic-uraemic syndrome. Nephrol. Dial. Transplant. 11, 1810–1814 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Miller, R. B. et al. Recurrence of haemolytic-uraemic syndrome in renal transplants: a single-centre report. Nephrol. Dial. Transplant. 12, 1425–1430 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Ashman, N. et al. Belatacept as maintenance immunosuppression for postrenal transplant de novo drug-induced thrombotic microangiopathy. Am. J. Transplant. 9, 424–427 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Midtvedt, K., Bitter, J., Dørje, C., Bjørneklett, R. & Holdaas, H. Belatacept as immunosuppression in patient with recurrence of hemolytic uremic syndrome after renal transplantation. Transplantation 87, 1901–1903 (2009).

    Article  PubMed  Google Scholar 

  110. Davin, J. C. et al. Maintenance of kidney function following treatment with eculizumab and discontinuation of plasma exchange after a third kidney transplant for atypical hemolytic uremic syndrome associated with a CFH mutation. Am. J. Kidney Dis. 55, 708–711 (2010).

    Article  PubMed  Google Scholar 

  111. Davin, J. C., Strain, L. & Goodship, T. H. Plasma therapy in atypical haemolytic uremic syndrome: lessons from a family with a factor H mutation. Pediatr. Nephrol. 23, 1517–1521 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hirt-Minkowski, P. et al. Haemolytic uraemic syndrome caused by factor H mutation: is single kidney transplantation under intensive plasmatherapy an option? Nephrol. Dial. Transplant. 24, 3548–3551 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Chatelet, V., Frémeaux-Bacchi, V., Lobbedez, T., Ficheux, M. & Hurault de Ligny, B. Safety and long-term efficacy of eculizumab in a renal transplant patient with recurrent atypical hemolytic-uremic syndrome. Am. J. Transplant. 9, 2644–2645 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Boyer, O. et al. Pulse cyclophosphamide therapy and clinical remission in atypical hemolytic uremic syndrome with anti-complement factor H autoantibodies. Am. J. Kidney Dis. 55, 923–927 (2010).

    Article  PubMed  Google Scholar 

  115. Cheong, H. I. et al. Attempted treatment of factor H deficiency by liver transplantation. Pediatr. Nephrol. 19, 454–458 (2004).

    Article  PubMed  Google Scholar 

  116. Remuzzi, G. et al. Combined kidney and liver transplantation for familial haemolytic uraemic syndrome. Lancet 359, 1671–1672 (2002).

    Article  PubMed  Google Scholar 

  117. Remuzzi, G. et al. Hemolytic uremic syndrome: a fatal outcome after kidney and liver transplantation performed to correct factor H gene mutation. Am. J. Transplant. 5, 1146–1150 (2005).

    Article  PubMed  Google Scholar 

  118. Jalanko, H. et al. Successful liver-kidney transplantation in two children with aHUS caused by a mutation in complement factor H. Am. J. Transplant. 8, 216–221 (2008).

    CAS  PubMed  Google Scholar 

  119. Saland, J. M. et al. Favorable long-term outcome after liver-kidney transplant for recurrent hemolytic uremic syndrome associated with a factor H mutation. Am. J. Transplant. 6, 1948–1952 (2006).

    Article  CAS  PubMed  Google Scholar 

  120. Saland, J. M. et al. Successful split liver-kidney transplant for factor H associated hemolytic uremic syndrome. Clin. J. Am. Soc. Nephrol. 4, 201–206 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Parker, C. Eculizumab for paroxysmal nocturnal haemoglobinuria. Lancet 373, 759–767 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Gruppo, R. A. & Rother, R. P. Eculizumab for congenital atypical hemolytic-uremic syndrome. N. Engl. J. Med. 360, 544–546 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Nürnberger, J. et al. Eculizumab for atypical hemolytic-uremic syndrome. N. Engl. J. Med. 360, 542–544 (2009).

    Article  PubMed  Google Scholar 

  124. Larrea, C. F. et al. Efficacy of eculizumab in the treatment of recurrent atypical hemolytic-uremic syndrome after renal transplantation. Transplantation 89, 903–904 (2010).

    Article  PubMed  Google Scholar 

  125. Zimmerhackl, L. B. et al. Prophylactic eculizumab after renal transplantation in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 362, 1746–1748 (2010).

    Article  PubMed  Google Scholar 

  126. Alexion clinical trials [online], (2010).

  127. LFB Biotechnologies [online], (2010).

  128. Sakai, M., Ikezoe, T., Bandobashi, K., Togitani, K. & Yokoyama, A. Successful treatment of transplantation-associated thrombotic microangiopathy with recombinant human soluble thrombomodulin. Bone Marrow Transplant. 45, 803–805 (2009).

    Article  PubMed  Google Scholar 

  129. Wagner, E. & Frank, M. M. Therapeutic potential of complement modulation. Nat. Rev. Drug Discov. 9, 43–56 (2010).

    Article  CAS  PubMed  Google Scholar 

  130. Walport, M. J. Complement. First of two parts. N. Engl. J. Med. 344, 1058–1066 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Eto, N. et al. Protection of endothelial cells by dextran sulfate in rats with thrombotic microangiopathy. J. Am. Soc. Nephrol. 16, 2997–3005 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Jungraithmayr, T. C. et al. Successful renal transplantation in a 10-year old boy with factor H associated hemolytic uremic syndrome (aHUS) with plasmapheresis and eculizumab. 5th Congress of the International Pediatric Transplantation Association, Istanbul, LB17 (2009).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to M. Essig (Service de Néphrologie, CHU de Limoges, Limoges, France), B. Moulin (Service de Néphrologie et Hémodialyze, Hôpital Civil, Strasbourg, France) and E. Rondeau (Service de Néphrologie, Hôpital Tenon, Paris, France) for providing updated data on the outcomes of their patients transplanted under pre-emptive plasma therapy. We would also like to thank B. Hurault de Ligny (Service de Néphrologie, CHU de Caen, Caen, France), M. Lozano (Department of Hemotherapy and Hemostasis, Hospital Clinic Barcelona, Barcelona, Spain) and J. Nürnberger (University Duisburg-Essen, Essen, Germany) for providing updated data on the late outcomes of their patients treated with eculizumab. The renal transplant department of Hôpital Necker belongs to the Fondation Centaure Network, which supports clinical and basic research in organ transplantation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to the discussion of this article's content and reviewed/edited the manuscript before submission. J. Zuber and M. Le Quintrec researched data for the article and J. Zuber, C. Loirat, and V. Fremeaux-Bacchi wrote the article.

Corresponding author

Correspondence to Julien Zuber.

Ethics declarations

Competing interests

J. Zuber and V. Frémeaux-Bacchi have received honoria from Alexion Pharmaceuticals for invited lectures. C. Loirat has received grant research support from Alexion Pharmaceuticals and has consulted for LFB Biotechnologies (as a member of the board of experts for the development of plasma-derived concentrated complement factor H). C. Legendre is a member of the French Advisory Board for Alexion Pharmaceuticals. M. Le Quintrec and R. Sberro-Soussan declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuber, J., Le Quintrec, M., Sberro-Soussan, R. et al. New insights into postrenal transplant hemolytic uremic syndrome. Nat Rev Nephrol 7, 23–35 (2011). https://doi.org/10.1038/nrneph.2010.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing