Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aldosterone: effects on the kidney and cardiovascular system

Abstract

Aldosterone, a steroid hormone with mineralocorticoid activity, is mainly recognized for its action on sodium reabsorption in the distal nephron of the kidney, which is mediated by the epithelial sodium channel (ENaC). Beyond this well-known action, however, aldosterone exerts other effects on the kidney, blood vessels and the heart, which can have pathophysiological consequences, particularly in the presence of a high salt intake. Aldosterone is implicated in renal inflammatory and fibrotic processes, as well as in podocyte injury and mesangial cell proliferation. In the cardiovascular system, aldosterone has specific hypertrophic and fibrotic effects and can alter endothelial function. Several lines of evidence support the existence of crosstalk between aldosterone and angiotensin II in vascular smooth muscle cells. The deleterious effects of aldosterone on the cardiovascular system require concomitant pathophysiological conditions such as a high salt diet, increased oxidative stress, or inflammation. Large interventional trials have confirmed the benefits of adding mineralocorticoid-receptor antagonists to standard therapy, in particular to angiotensin-converting-enzyme inhibitor and angiotensin II receptor blocker therapy, in patients with heart failure. Small interventional studies in patients with chronic kidney disease have shown promising results, with a significant reduction of proteinuria associated with aldosterone antagonism, but large interventional trials that test the efficacy and safety of mineralocorticoid-receptor antagonists in chronic kidney disease are needed.

Key Points

  • Beyond its role in the regulation of renal sodium reabsorption in the distal nephron, aldosterone may exert deleterious effects on the kidney and the cardiovascular system particularly in the presence of a high-salt diet

  • Aldosterone induces inflammation, fibrosis, mesangial cell proliferation and podocyte injury in the kidney

  • Aldosterone contributes to cardiovascular remodeling and fibrosis in animals on a high-salt diet

  • Large clinical trials have demonstrated the efficacy of mineralocorticoid-receptor antagonists in patients with heart failure

  • Despite encouraging results from small interventional studies, large interventional studies in patients with chronic kidney disease are needed to test the efficacy and safety of mineralocorticoid-receptor antagonists

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of ENaC by aldosterone.
Figure 2: Mechanisms of aldosterone-induced kidney injury.
Figure 3: Synergistic effects of aldosterone and Ang II in vascular smooth muscle cells.

Similar content being viewed by others

References

  1. Loffing, J. & Korbmacher, C. Regulated sodium transport in the renal connecting tubule (CNT) via the epithelial sodium channel (ENaC). Pflugers Arch. 458, 111–135 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Bhalla, V., Soundararajan, R., Pao, A. C., Li, H. & Pearce, D. Disinhibitory pathways for control of sodium transport: regulation of ENaC by SGK1 and GILZ. Am. J. Physiol. Renal Physiol. 291, F714–F721 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Náray-Fejes-Tóth, A., Snyder, P. M. & Fejes-Tóth, G. The kidney-specific WNK1 isoform is induced by aldosterone and stimulates epithelial sodium channel-mediated Na+ transport. Proc. Natl Acad. Sci. USA 101, 17434–17439 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Rozansky, D. J. et al. Aldosterone mediates activation of the thiazide-sensitive Na-Cl cotransporter through an SGK1 and WNK4 signaling pathway. J. Clin. Invest. 119, 2601–2612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Greene, E. L., Kren, S. & Hostetter, T. H. Role of aldosterone in the remnant kidney model in the rat. J. Clin. Invest. 98, 1063–1068 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Young, M., Fullerton, M., Dilley, R. & Funder, J. Mineralocorticoids, hypertension, and cardiac fibrosis. J. Clin. Invest. 93, 2578–2583 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blasi, E. R. et al. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 63, 1791–1800 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Nishiyama, A. et al. Possible contributions of reactive oxygen species and mitogen-activated protein kinase to renal injury in aldosterone/salt-induced hypertensive rats. Hypertension 43, 841–848 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Funder, J. W., Pearce, P. T., Smith, R. & Campbell, J. Vascular type I aldosterone binding sites are physiological mineralocorticoid receptors. Endocrinology 125, 2224–2226 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Caprio, M. et al. Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule-1 expression and promote leukocyte adhesion. Circ. Res. 102, 1359–1367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lombès, M. et al. Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ. Res. 71, 503–510 (1992).

    Article  PubMed  Google Scholar 

  12. Jaffe, I. Z. & Mendelsohn, M. E. Angiotensin II and aldosterone regulate gene transcription via functional mineralocortocoid receptors in human coronary artery smooth muscle cells. Circ. Res. 96, 643–650 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Nishiyama, A. et al. Involvement of aldosterone and mineralocorticoid receptors in rat mesangial cell proliferation and deformability. Hypertension 45, 710–716 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Johar, S., Cave, A. C., Narayanapanicker, A., Grieve, D. J. & Shah, A. M. Aldosterone mediates angiotensin II-induced interstitial cardiac fibrosis via a Nox2-containing NADPH oxidase. FASEB J. 20, 1546–1548 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Rocha, R., Chander, P. N., Zuckerman, A. & Stier, C. T. Jr. Role of aldosterone in renal vascular injury in stroke-prone hypertensive rats. Hypertension 33, 232–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Pitt, B. et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N. Engl. J. Med. 348, 1309–1321 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Pitt, B. et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N. Engl. J. Med. 341, 709–717 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Ma, J. et al. Plasminogen activator inhibitor-1 deficiency protects against aldosterone-induced glomerular injury. Kidney Int. 69, 1064–1072 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Shibata, S., Nagase, M., Yoshida, S., Kawachi, H. & Fujita, T. Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension 49, 355–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Du, J. et al. Mineralocorticoid receptor blockade and calcium channel blockade have different renoprotective effects on glomerular and interstitial injury in rats. Am. J. Physiol. Renal Physiol. 297, F802–F808 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Aldigier, J. C., Kanjanbuch, T., Ma, L. J., Brown, N. J. & Fogo, A. B. Regression of existing glomerulosclerosis by inhibition of aldosterone. J. Am. Soc. Nephrol. 16, 3306–3314 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Fujisawa, G. et al. Spironolactone prevents early renal injury in streptozotocin-induced diabetic rats. Kidney Int. 66, 1493–1502 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Ikeda, H. et al. Spironolactone suppresses inflammation and prevents L-NAME-induced renal injury in rats. Kidney Int. 75, 147–155 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Siragy, H. M. & Xue, C. Local renal aldosterone production induces inflammation and matrix formation in kidneys of diabetic rats. Exp. Physiol. 93, 817–824 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Terada, Y. et al. Aldosterone-stimulated SGK1 activity mediates profibrotic signaling in the mesangium. J. Am. Soc. Nephrol. 19, 298–309 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Riser, B. L. et al. Cyclic stretching of mesangial cells up-regulates intercellular adhesion molecule-1 and leukocyte adherence: a possible new mechanism for glomerulosclerosis. Am. J. Pathol. 158, 11–17 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, S., Zhang, A., Ding, G. & Chen, R. Aldosterone-induced mesangial cell proliferation is mediated by EGF receptor transactivation. Am. J. Physiol. Renal Physiol. 296, F1323–F1333 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Virdis, A. et al. Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension 40, 504–510 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Beswick, R. A., Dorrance, A. M., Leite, R. & Webb, R. C. NADH/NADPH oxidase and enhanced superoxide production in the mineralocorticoid hypertensive rat. Hypertension 38, 1107–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Onozato, M. L. et al. Dual blockade of aldosterone and angiotensin II additively suppresses TGF-beta and NADPH oxidase in the hypertensive kidney. Nephrol. Dial. Transplant. 22, 1314–1322 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Beswick, R. A. et al. Long-term antioxidant administration attenuates mineralocorticoid hypertension and renal inflammatory response. Hypertension 37, 781–786 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Nagai, Y. et al. Aldosterone stimulates collagen gene expression and synthesis via activation of ERK1/2 in rat renal fibroblasts. Hypertension 46, 1039–1045 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, A., Jia, Z., Guo, X. & Yang, T. Aldosterone induces epithelial-mesenchymal transition via ROS of mitochondrial origin. Am. J. Physiol. Renal Physiol. 293, F723–F731 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Lai, L., Chen, J., Hao, C. M., Lin, S. & Gu, Y. Aldosterone promotes fibronectin production through a Smad2-dependent TGF-beta1 pathway in mesangial cells. Biochem. Biophys. Res. Commun. 348, 70–75 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Chun, T. Y., Chander, P. N., Kim, J. W., Pratt, J. H. & Stier, C. T. Jr. Aldosterone, but not angiotensin II, increases profibrotic factors in kidney of adrenalectomized stroke-prone spontaneously hypertensive rats. Am. J. Physiol. Endocrinol. Metab. 295, E305–E312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Juknevicius, I., Segal, Y., Kren, S., Lee, R. & Hostetter, T. H. Effect of aldosterone on renal transforming growth factor-beta. Am. J. Physiol. Renal Physiol. 286, F1059–F1062 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Sun, Y., Zhang, J., Zhang, J. Q. & Ramires, F. J. Local angiotensin II and transforming growth factor-beta1 in renal fibrosis of rats. Hypertension 35, 1078–1084 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Han, K. H. et al. Spironolactone ameliorates renal injury and connective tissue growth factor expression in type II diabetic rats. Kidney Int. 70, 111–120 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Yuan, J., Jia, R. & Bao, Y. Aldosterone up-regulates production of plasminogen activator inhibitor-1 by renal mesangial cells. J. Biochem. Mol. Biol. 40, 180–188 (2007).

    CAS  PubMed  Google Scholar 

  40. Brown, N. J. et al. Aldosterone modulates plasminogen activator inhibitor-1 and glomerulosclerosis in vivo. Kidney Int. 58, 1219–1227 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Huang, W. et al. Aldosterone and TGF-beta1 synergistically increase PAI-1 and decrease matrix degradation in rat renal mesangial and fibroblast cells. Am. J. Physiol. Renal Physiol. 294, F1287–F1295 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Shimokawa, H. & Rashid, M. Development of Rho-kinase inhibitors for cardiovascular medicine. Trends Pharmacol. Sci. 28, 296–302 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Sun, G. P. et al. Involvements of Rho-kinase and TGF-beta pathways in aldosterone-induced renal injury. J. Am. Soc. Nephrol. 17, 2193–2201 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Kretzler, M., Koeppen-Hagemann, I. & Kriz, W. Podocyte damage is a critical step in the development of glomerulosclerosis in the uninephrectomised-desoxycorticosterone hypertensive rat. Virchows Arch. 425, 181–193 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Nagase, M. et al. Podocyte injury underlies the glomerulopathy of Dahl salt-hypertensive rats and is reversed by aldosterone blocker. Hypertension 47, 1084–1093 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Whaley-Connell, A. et al. Mineralocorticoid receptor antagonism attenuates glomerular filtration barrier remodeling in the transgenic Ren2 rat. Am. J. Physiol. Renal Physiol. 296, F1013–F1022 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shibata, S., Nagase, M., Yoshida, S., Kawachi, H. & Fujita, T. Podocyte as the target for aldosterone: roles of oxidative stress and Sgk1. Hypertension 49, 355–364 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Nagase, M., Matsui, H., Shibata, S., Gotoda, T. & Fujita, T. Salt-induced nephropathy in obese spontaneously hypertensive rats via paradoxical activation of the mineralocorticoid receptor: role of oxidative stress. Hypertension 50, 877–883 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Lee, S. H. et al. Activation of local aldosterone system within podocytes is involved in apoptosis under diabetic conditions. Am. J. Physiol. Renal Physiol. 297, F1381–F1390 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Shibata, S. et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat. Med. 14, 1370–1376 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Otani, H. et al. Antagonistic effects of bone morphogenetic protein-4 and -7 on renal mesangial cell proliferation induced by aldosterone through MAPK activation. Am. J. Physiol. Renal Physiol. 292, F1513–F1525 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Terada, Y. et al. Aldosterone stimulates proliferation of mesangial cells by activating mitogen-activated protein kinase 1/2, cyclin D1, and cyclin A. J. Am. Soc. Nephrol. 16, 2296–2305 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Jackson, C. E. et al. Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet 374, 543–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Mercado, N. et al. Usefulness of proteinuria as a prognostic marker of mortality and cardiovascular events among patients undergoing percutaneous coronary intervention (data from the Evaluation of Oral Xemilofiban in Controlling Thrombotic Events [EXCITE] trial). Am. J. Cardiol. 102, 1151–1155 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Lambers Heerspink, H. J. et al. Albuminuria assessed from first-morning-void urine samples versus 24-hour urine collections as a predictor of cardiovascular morbidity and mortality. Am. J. Epidemiol. 168, 897–905 (2008).

    Article  PubMed  Google Scholar 

  56. Brantsma, A. H., Bakker, S. J., de Zeeuw, D., de Jong, P. E. & Gansevoort, R. T. Extended prognostic value of urinary albumin excretion for cardiovascular events. J. Am. Soc. Nephrol. 19, 1785–1791 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Eijkelkamp, W. B. et al. Albuminuria is a target for renoprotective therapy independent from blood pressure in patients with type 2 diabetic nephropathy: post hoc analysis from the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. J. Am. Soc. Nephrol. 18, 1540–1546 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Wühl, E. et al. Strict blood-pressure control and progression of renal failure in children. N. Engl. J. Med. 361, 1639–1650 (2009).

    Article  PubMed  Google Scholar 

  59. Ruggenenti, P., Perna, A., Benini, R. & Remuzzi, G. Effects of dihydropyridine calcium channel blockers, angiotensin-converting enzyme inhibition, and blood pressure control on chronic, nondiabetic nephropathies. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). J. Am. Soc. Nephrol. 9, 2096–2101 (1998).

    CAS  PubMed  Google Scholar 

  60. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N. Engl. J. Med. 329, 1456–1462 (1993).

    Article  CAS  PubMed  Google Scholar 

  61. Maschio, G. et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N. Engl. J. Med. 334, 939–945 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Ruggenenti, P. et al. Renal function and requirement for dialysis in chronic nephropathy patients on long-term ramipril: REIN follow-up trial. Gruppo Italiano di Studi Epidemiologici in Nefrologia (GISEN). Ramipril Efficacy in Nephropathy. Lancet 352, 1252–1256 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Bianchi, S., Bigazzi, R. & Campese, V. M. Long-term effects of spironolactone on proteinuria and kidney function in patients with chronic kidney disease. Kidney Int. 70, 2116–2123 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. van den Meiracker, A. H. et al. Spironolactone in type 2 diabetic nephropathy: effects on proteinuria, blood pressure and renal function. J. Hypertens. 24, 2285–2292 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Schjoedt, K. J. et al. Beneficial impact of spironolactone in diabetic nephropathy. Kidney Int. 68, 2829–2836 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Rossing, K., Schjoedt, K. J., Smidt, U. M., Boomsma, F. & Parving, H. H. Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: a randomized, double-masked, cross-over study. Diabetes Care 28, 2106–2112 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Chrysostomou, A., Pedagogos, E., MacGregor, L. & Becker, G. J. Double-blind, placebo-controlled study on the effect of the aldosterone receptor antagonist spironolactone in patients who have persistent proteinuria and are on long-term angiotensin-converting enzyme inhibitor therapy, with or without an angiotensin II receptor blocker. Clin. J. Am. Soc. Nephrol. 1, 256–262 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Schjoedt, K. J. et al. Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int. 70, 536–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Epstein, M. et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin. J. Am. Soc. Nephrol. 1, 940–951 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Furumatsu, Y. et al. Effect of renin-angiotensin-aldosterone system triple blockade on non-diabetic renal disease: addition of an aldosterone blocker, spironolactone, to combination treatment with an angiotensin-converting enzyme inhibitor and angiotensin II receptor blocker. Hypertens. Res. 31, 59–67 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Tylicki, L. et al. Triple pharmacological blockade of the renin-angiotensin-aldosterone system in nondiabetic CKD: an open-label crossover randomized controlled trial. Am. J. Kidney Dis. 52, 486–493 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Levey, A. S. et al. Proteinuria as a surrogate outcome in CKD: report of a scientific workshop sponsored by the National Kidney Foundation and the US Food and Drug Administration. Am. J. Kidney Dis. 54, 205–226 (2009).

    Article  PubMed  Google Scholar 

  74. de Zeeuw, D. Targeting proteinuria as a valid surrogate for individualized kidney protective therapy. Am. J. Kidney Dis. 51, 713–716 (2008).

    Article  PubMed  Google Scholar 

  75. Bomback, A. S., Kshirsagar, A. V. & Klemmer, P. J. Renal aspirin: will all patients with chronic kidney disease one day take spironolactone? Nat. Clin. Pract. Nephrol. 5, 74–75 (2009).

    Article  CAS  PubMed  Google Scholar 

  76. Brilla, C. G. & Weber, K. T. Mineralocorticoid excess, dietary sodium, and myocardial fibrosis. J. Lab. Clin. Med. 120, 893–901 (1992).

    CAS  PubMed  Google Scholar 

  77. Lacolley, P. et al. Prevention of aortic and cardiac fibrosis by spironolactone in old normotensive rats. J. Am. Coll. Cardiol. 37, 662–667 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Benetos, A., Lacolley, P. & Safar, M. E. Prevention of aortic fibrosis by spironolactone in spontaneously hypertensive rats. Arterioscler. Thromb. Vasc. Biol. 17, 1152–1156 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Rizzoni, D. et al. Vascular hypertrophy and remodeling in secondary hypertension. Hypertension 28, 785–790 (1996).

    Article  CAS  PubMed  Google Scholar 

  80. Callera, G. E. et al. Aldosterone activates vascular p38MAP kinase and NADPH oxidase via c-Src. Hypertension 45, 773–779 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Iwashima, F. et al. Aldosterone induces superoxide generation via Rac1 activation in endothelial cells. Endocrinology 149, 1009–1014 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Sun, Y. et al. Aldosterone-induced inflammation in the rat heart: role of oxidative stress. Am. J. Pathol. 161, 1773–1781 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hayashi, H. et al. Aldosterone nongenomically produces NADPH oxidase-dependent reactive oxygen species and induces myocyte apoptosis. Hypertens. Res. 31, 363–375 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Petry, A. et al. NOX2 and NOX4 mediate proliferative response in endothelial cells. Antioxid. Redox Signal. 8, 1473–1484 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Stas, S. et al. Mineralocorticoid receptor blockade attenuates chronic overexpression of the renin-angiotensin-aldosterone system stimulation of reduced nicotinamide adenine dinucleotide phosphate oxidase and cardiac remodeling. Endocrinology 148, 3773–3780 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Nakano, S., Kobayashi, N., Yoshida, K., Ohno, T. & Matsuoka, H. Cardioprotective mechanisms of spironolactone associated with the angiotensin-converting enzyme/epidermal growth factor receptor/extracellular signal-regulated kinases, NAD(P)H oxidase/lectin-like oxidized low-density lipoprotein receptor-1, and Rho-kinase pathways in aldosterone/salt-induced hypertensive rats. Hypertens. Res. 28, 925–936 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Nakamura, T. et al. Critical role of apoptosis signal-regulating kinase 1 in aldosterone/salt-induced cardiac inflammation and fibrosis. Hypertension 54, 544–551 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Leopold, J. A. et al. Aldosterone impairs vascular reactivity by decreasing glucose-6-phosphate dehydrogenase activity. Nat. Med. 13, 189–197 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Iglarz, M., Touyz, R. M., Viel, E. C., Amiri, F. & Schiffrin, E. L. Involvement of oxidative stress in the profibrotic action of aldosterone. Interaction wtih the renin-angiotension system. Am. J. Hypertens. 17, 597–603 (2004).

    CAS  PubMed  Google Scholar 

  90. Park, Y. M., Park, M. Y., Suh, Y. L. & Park, J. B. NAD(P)H oxidase inhibitor prevents blood pressure elevation and cardiovascular hypertrophy in aldosterone-infused rats. Biochem. Biophys. Res. Commun. 313, 812–817 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Michea, L. et al. Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and prevents oxidative stress in uremic rats. Hypertension 52, 295–300 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Rocha, R. et al. Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am. J. Physiol. Heart Circ. Physiol 283, H1802–H1810 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Rocha, R. et al. Selective aldosterone blockade prevents angiotensin II/salt-induced vascular inflammation in the rat heart. Endocrinology 143, 4828–4836 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Rickard, A. J. et al. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension 54, 537–543 (2009).

    Article  CAS  PubMed  Google Scholar 

  95. Min, L. J. et al. Aldosterone and angiotensin II synergistically induce mitogenic response in vascular smooth muscle cells. Circ. Res. 97, 434–442 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Nakamura, Y. et al. MDM2: a novel mineralocorticoid-responsive gene involved in aldosterone-induced human vascular structural remodeling. Am. J. Pathol. 169, 362–371 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jeong, Y. et al. Aldosterone activates endothelial exocytosis. Proc. Natl Acad. Sci. USA 106, 3782–3787 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Irita, J. et al. Plasma osteopontin levels are higher in patients with primary aldosteronism than in patients with essential hypertension. Am. J. Hypertens. 19, 293–297 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Luther, J. M. et al. Angiotensin II induces interleukin-6 in humans through a mineralocorticoid receptor-dependent mechanism. Hypertension 48, 1050–1057 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Savoia, C., Touyz, R. M., Amiri, F. & Schiffrin, E. L. Selective mineralocorticoid receptor blocker eplerenone reduces resistance artery stiffness in hypertensive patients. Hypertension 51, 432–439 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Robert, V. et al. Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: role in aldosterone-salt-induced fibrosis. Hypertension 33, 981–986 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Schiffrin, E. L., Thomé, F. S. & Genest, J. Vascular angiotensin II receptors in renal and DOCA-salt hypertensive rats. Hypertension 5, V16–V21 (1983).

    Article  CAS  PubMed  Google Scholar 

  103. Schiffrin, E. L., Gutkowska, J. & Genest, J. Effect of angiotensin II and deoxycorticosterone infusion on vascular angiotensin II receptors in rats. Am. J. Physiol. 246, H608–H614 (1984).

    CAS  PubMed  Google Scholar 

  104. Schiffrin, E. L., Franks, D. J. & Gutkowska, J. Effect of aldosterone on vascular angiotensin II receptors in the rat. Can. J. Physiol. Pharmacol. 63, 1522–1527 (1985).

    Article  CAS  PubMed  Google Scholar 

  105. Lemarié, C. A. et al. Aldosterone-induced activation of signaling pathways requires activity of angiotensin type 1a receptors. Circ. Res. 105, 852–859 (2009).

    Article  PubMed  CAS  Google Scholar 

  106. Min, L. J. et al. Cross-talk between aldosterone and angiotensin II in vascular smooth muscle cell senescence. Cardiovasc. Res. 76, 506–516 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Montezano, A. C. et al. Aldosterone and angiotensin II synergistically stimulate migration in vascular smooth muscle cells through c-Src-regulated redox-sensitive RhoA pathways. Arterioscler. Thromb. Vasc. Biol. 28, 1511–1518 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Blanco-Rivero, J. et al. Participation of prostacyclin in endothelial dysfunction induced by aldosterone in normotensive and hypertensive rats. Hypertension 46, 107–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Imanishi, T. et al. Addition of eplerenone to an angiotensin-converting enzyme inhibitor effectively improves nitric oxide bioavailability. Hypertension 51, 734–741 (2008).

    Article  CAS  PubMed  Google Scholar 

  110. Rajagopalan, S., Duquaine, D., King, S., Pitt, B. & Patel, P. Mineralocorticoid receptor antagonism in experimental atherosclerosis. Circulation 105, 2212–2216 (2002).

    Article  CAS  PubMed  Google Scholar 

  111. Garnier, A. et al. Cardiac specific increase in aldosterone production induces coronary dysfunction in aldosterone synthase-transgenic mice. Circulation 110, 1819–1825 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Xavier, F. E. et al. Aldosterone induces endothelial dysfunction in resistance arteries from normotensive and hypertensive rats by increasing thromboxane A2 and prostacyclin. Br. J. Pharmacol. 154, 1225–1235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Farquharson, C. A. & Struthers, A. D. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation 101, 594–597 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Peng, X., Haldar, S., Deshpande, S., Irani, K. & Kass, D. A. Wall stiffness suppresses Akt/eNOS and cytoprotection in pulse-perfused endothelium. Hypertension 41, 378–381 (2003).

    Article  CAS  PubMed  Google Scholar 

  115. Kidoaki, S. & Matsuda, T. Shape-engineered vascular endothelial cells: nitric oxide production, cell elasticity, and actin cytoskeletal features. J. Biomed. Mater. Res. A 81, 728–735 (2007).

    Article  PubMed  CAS  Google Scholar 

  116. Oberleithner, H. et al. Human endothelium: target for aldosterone. Hypertension 43, 952–956 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Hillebrand, U. et al. Dose-dependent endothelial cell growth and stiffening by aldosterone: endothelial protection by eplerenone. J. Hypertens. 25, 639–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Oberleithner, H. et al. Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc. Natl Acad. Sci. USA 104, 16281–16286 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mutoh, A., Isshiki, M. & Fujita, T. Aldosterone enhances ligand-stimulated nitric oxide production in endothelial cells. Hypertens. Res. 31, 1811–1820 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Liu, S. L., Schmuck, S., Chorazcyzewski, J. Z., Gros, R. & Feldman, R. D. Aldosterone regulates vascular reactivity: short-term effects mediated by phosphatidylinositol 3-kinase-dependent nitric oxide synthase activation. Circulation 108, 2400–2406 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Nietlispach, F. et al. Influence of acute and chronic mineralocorticoid excess on endothelial function in healthy men. Hypertension 50, 82–88 (2007).

    Article  CAS  PubMed  Google Scholar 

  122. Farquharson, C. A. & Struthers, A. D. Aldosterone induces acute endothelial dysfunction in vivo in humans: evidence for an aldosterone-induced vasculopathy. Clin. Sci. (Lond.) 103, 425–431 (2002).

    Article  CAS  Google Scholar 

  123. Romagni, P., Rossi, F., Guerrini, L., Quirini, C. & Santiemma, V. Aldosterone induces contraction of the resistance arteries in man. Atherosclerosis 166, 345–349 (2003).

    Article  CAS  PubMed  Google Scholar 

  124. Schmidt, B. M. et al. Short term cardiovascular effects of aldosterone in healthy male volunteers. J. Clin. Endocrinol. Metab. 84, 3528–3533 (1999).

    CAS  PubMed  Google Scholar 

  125. Schmidt, B. M. et al. Rapid nongenomic effects of aldosterone on human forearm vasculature. Hypertension 42, 156–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  126. Arima, S. et al. Nongenomic vascular action of aldosterone in the glomerular microcirculation. J. Am. Soc. Nephrol. 14, 2255–2263 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Wehling, M., Neylon, C. B., Fullerton, M., Bobik, A. & Funder, J. W. Nongenomic effects of aldosterone on intracellular Ca2+ in vascular smooth muscle cells. Circ. Res. 76, 973–979 (1995).

    Article  CAS  PubMed  Google Scholar 

  128. Calò, L. A. et al. Absence of vascular remodelling in a high angiotensin-II state (Bartter's and Gitelman's syndromes): implications for angiotensin II signalling pathways. Nephrol. Dial. Transplant. 23, 2804–2809 (2008).

    Article  PubMed  CAS  Google Scholar 

  129. Endemann, D. H., Touyz, R. M., Iglarz, M., Savoia, C. & Schiffrin, E. L. Eplerenone prevents salt-induced vascular remodeling and cardiac fibrosis in stroke-prone spontaneously hypertensive rats. Hypertension 43, 1252–1257 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Nagata, K. et al. Mineralocorticoid receptor antagonism attenuates cardiac hypertrophy and failure in low-aldosterone hypertensive rats. Hypertension 47, 656–664 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Funder, J. W. Reconsidering the roles of the mineralocorticoid receptor. Hypertension 53, 286–290 (2009).

    CAS  PubMed  Google Scholar 

  132. Young, M. & Funder, J. W. Eplerenone, but not steroid withdrawal, reverses cardiac fibrosis in deoxycorticosterone/salt-treated rats. Endocrinology 145, 3153–3157 (2004).

    Article  CAS  PubMed  Google Scholar 

  133. Young, M. J., Moussa, L., Dilley, R. & Funder, J. W. Early inflammatory responses in experimental cardiac hypertrophy and fibrosis: effects of 11 beta-hydroxysteroid dehydrogenase inactivation. Endocrinology 144, 1121–1125 (2003).

    Article  CAS  PubMed  Google Scholar 

  134. Jorde, U. P. et al. Elevated plasma aldosterone levels despite complete inhibition of the vascular angiotensin-converting enzyme in chronic heart failure. Circulation 106, 1055–1057 (2002).

    Article  CAS  PubMed  Google Scholar 

  135. Iraqi, W. et al. Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS) study. Circulation 119, 2471–2479 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Edwards, N. C., Steeds, R. P., Stewart, P. M., Ferro, C. J. & Townend, J. N. Effect of spironolactone on left ventricular mass and aortic stiffness in early-stage chronic kidney disease: a randomized controlled trial. J. Am. Coll. Cardiol. 54, 505–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Pitt, B., Bakris, G., Ruilope, L. M., DiCarlo, L. & Mukherjee, R. Serum potassium and clinical outcomes in the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EPHESUS). Circulation 118, 1643–1650 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Juurlink, D. N. et al. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N. Engl. J. Med. 351, 543–551 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Masoudi, F. A. et al. Adoption of spironolactone therapy for older patients with heart failure and left ventricular systolic dysfunction in the United States, 1998–2001. Circulation 112, 39–47 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Bozkurt, B., Agoston, I. & Knowlton, A. A. Complications of inappropriate use of spironolactone in heart failure: when an old medicine spirals out of new guidelines. J. Am. Coll. Cardiol. 41, 211–214 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Lea, W. B. et al. Aldosterone antagonism or synthase inhibition reduces end-organ damage induced by treatment with angiotensin and high salt. Kidney Int. 75, 936–944 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work described in this Review was supported by the Canadian Institutes of Health Research (CIHR) grants 37917 and 82790, a Canada Research Chair (CRC) on Hypertension and Vascular Research from the CIHR/CRC Program of the Government of Canada, and the Canada Fund for Innovation (all to E. L. S.). M. B. was supported by the Heart and Stroke Foundation of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto L. Schiffrin.

Ethics declarations

Competing interests

E. L. Schiffrin receives grant/research support from the Canadian Institutes of Health Research and receives grant/research support from and is a consultant for Pfizer Canada. M. Briet declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briet, M., Schiffrin, E. Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol 6, 261–273 (2010). https://doi.org/10.1038/nrneph.2010.30

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2010.30

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing