Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Diabetic nephropathy: a disorder of oxygen metabolism?

Abstract

Chronic hypoxia induces sequential abnormalities in oxygen metabolism (for example, oxidative stress, nitrosative stress, advanced glycation, carbonyl stress, endoplasmic reticulum stress) in the kidneys of individuals with diabetes. Identification of these abnormalities improves our understanding of therapeutic benefits that can be achieved with antihypertensive agents, the control of hyperglycemia and/or hyperinsulinemia and the dietary correction of obesity. Key to the body's defense against hypoxia is hypoxia-inducible factor, the activity of which is modulated by prolyl hydroxylases (PHDs)—oxygen sensors whose inhibition may prove therapeutic. Renal benefits of small-molecule PHD inhibitors have been documented in several animal models, including those of diabetic nephropathy. Three different PHD isoforms have been identified (PHD1, PHD2 and PHD3) and their respective roles have been delineated in knockout mouse studies. Unfortunately, none of the current inhibitors is specific for a distinct PHD isoform. Nonspecific inhibition of PHDs might induce adverse effects, such as those associated with PHD2 inhibition. Specific disruption of PHD1 induces hypoxic tolerance, without angiogenesis and erythrocytosis, through the reprogramming of basal oxygen metabolism and decreased generation of oxidative stress in hypoxic mitochondria. A specific PHD1 inhibitor might, therefore, offer a novel therapy for abnormal oxygen metabolism not only in the diabetic kidney, but also in other diseases for which hypoxia is a final, common pathway.

Key Points

  • Chronic hypoxia induces sequential abnormalities in oxygen metabolism in the diabetic kidney, leading to oxidative stress, nitrosative stress, advanced glycation, carbonyl stress and endoplasmic reticulum stress

  • Understanding the key features of abnormal oxygen metabolism improves the interpretation of the therapeutic benefits achieved by antihypertensive therapy, the control of hyperglycemia and/or hyperinsulinemia and the dietary correction of obesity

  • Activity of hypoxia-inducible factor—central to the defense against hypoxia—is modulated by prolyl hydroxylases (PHDs), which act as oxygen sensors

  • Three PHD isoforms have been identified and their respective roles have been elucidated, but none of the current PHD inhibitors exhibits absolute specificity for any subtype

  • Disruption of PHD1 induces hypoxic tolerance by reducing oxidative stress in hypoxic mitochondria, indicating that a specific PHD1 inhibitor could be an innovative treatment for abnormal oxygen metabolism in the diabetic kidney

  • Treatment of chronic hypoxia might apply to other chronic diseases that share a final common pathway, including a wide variety of kidney disorders, ischemic heart disease, and stroke

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Causes of hypoxia in the diabetic kidney.
Figure 2
Figure 3: Interplay between hemodynamic or metabolic abnormalities and impaired oxygen metabolism in the diabetic kidney.
Figure 4: The HIF–PHD pathway.
Figure 5: Predicted binding modes of the PHD inhibitors to human PHD2.
Figure 6: Respective role of each PHD isoform in response to hypoxia.
Figure 7: Mechanisms of PHD inhibition, increased oxygen supply, and decreased oxygen demand (hypoxia tolerance).

Similar content being viewed by others

References

  1. Dronavalli, S., Duka, I. & Bakris, G. L. The pathogenesis of diabetic nephropathy. Nat. Clin. Pract. Endocrinol. Metab. 4, 444–452 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Williamson, J. R. et al. Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42, 801–813 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Bravi, M. C. et al. Polyol pathway activation and glutathione redox status in non-insulin-dependent diabetic patients. Metabolism 46, 1194–1198 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Jennings, P. E., Chirico, S., Jones, A. F., Lunec, J. & Barnett, A. H. Vitamin C metabolites and microangiopathy in diabetes mellitus. Diabetes Res. 6, 151–154 (1987).

    CAS  PubMed  Google Scholar 

  5. Suzuki, E. et al. Increased oxidized form of human serum albumin in patients with diabetes mellitus. Diabetes Res. Clin. Pract. 18, 153–158 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Wells-Knecht, M. C., Lyons, T. J., McCance, D. R., Thorpe, S. R. & Baynes, J. W. Age-dependent increase in ortho-tyrosine and methionine sulfoxide in human skin collagen is not accelerated in diabetes. Evidence against a generalized increase in oxidative stress in diabetes. J. Clin. Invest. 100, 839–846 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Horie, K. et al. Immunohistochemical co-localization of glycoxidation products and lipid peroxidation products in diabetic renal glomerular lesions. Implication for glycoxidative stress in the pathogenesis of diabetic nephropathy. J. Clin. Invest. 100, 2995–3004 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suzuki, D. et al. Immunohistochemical evidence for an increased oxidative stress and carbonyl modification of proteins in diabetic glomerular lesions. J. Am. Soc. Nephrol. 10, 822–832 (1999).

    CAS  PubMed  Google Scholar 

  9. Pennathur, S., Wagner, J. D., Leeuwenburgh, C., Litwak, K. N. & Heinecke, J. W. A hydroxyl radical-like species oxidizes cynomolgus monkey artery wall proteins in early diabetic vascular disease. J. Clin. Invest. 107, 853–860 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shah, S. V., Baliga, R., Rajapurkar, M. & Fonseca, V. A. Oxidants in chronic kidney disease. J. Am. Soc. Nephrol. 18, 16–28 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Forbes, J. M., Coughlan, M. T. & Cooper, M. E. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes 57, 1446–1454 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Jaimes, E. A., Galceran, J. M. & Raij, L. Angiotensin II induces superoxide anion production by mesangial cells. Kidney Int. 54, 775–784 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Izuhara, Y. et al. Renoprotective properties of angiotensin receptor blockers beyond blood pressure lowering. J. Am. Soc. Nephrol. 16, 3631–3641 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Gorin, Y. et al. Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J. Biol. Chem. 280, 39616–39626 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Asaba, K. et al. Effects of NADPH oxidase inhibitor in diabetic nephropathy. Kidney Int. 67, 1890–1898 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Thallas-Bonke, V. et al. Inhibition of NADPH oxidase prevents advanced glycation end product-mediated damage in diabetic nephropathy through a protein kinase C-alpha-dependent pathway. Diabetes 57, 460–469 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Szabo, C. Role of nitrosative stress in the pathogenesis of diabetic vascular dysfunction. Br. J. Pharmacol. 156, 713–727 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nishikawa, T. et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycemic damage. Nature 404, 787–790 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Kiritoshi, S. et al. Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes 52, 2570–2577 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Tan, A. L., Forbes, J. M. & Cooper, M. E. AGE, RAGE, and ROS in diabetic nephropathy. Semin. Nephrol. 27, 130–143 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Monnier, V. M. Transition metals redox: reviving an old plot for diabetic vascular disease. J. Clin. Invest. 107, 799–801 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baynes, J. W. & Thorpe, S. R. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48, 1–9 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Aragonés, J. et al. Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat. Genet. 40, 170–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Bonnet, S. et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Kulkarni, A. C., Kuppusamy, P. & Parinandi, N. Oxygen, the lead actor in the pathophysiologic drama: enactment of the trinity of normoxia, hypoxia, and hyperoxia in disease and therapy. Antioxid. Redox. Signal. 9, 1717–1730 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Katavetin, P. et al. High glucose blunts vascular endothelial growth factor response to hypoxia via the oxidativestress-regulated hypoxia-inducible factor/hypoxia-responsible element pathway. J. Am. Soc. Nephrol. 17, 1405–1413 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Rosenberger, C. et al. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int. 73, 34–42 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Yang, Z. Z., Zhang, A. Y., Yi, F. X., Li, P. L. & Zou, A. P. Redox regulation of HIF-1alpha levels and HO-1 expression in renal medullary interstitial cells. Am. J. Physiol. Renal Physiol. 284, F1207–F1215 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Fine, L. G., Orphanides, C. & Norman, J. T. Progressive renal disease: the chronic hypoxia hypothesis. Kidney Int. Suppl. 65, S74–S78 (1998).

    CAS  PubMed  Google Scholar 

  31. Nangaku, M. Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. J. Am. Soc. Nephrol. 17, 17–25 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Singh, D. K., Winocour, P. & Farrington, K. Mechanisms of disease: the hypoxic tubular hypothesis of diabetic nephropathy. Nat. Clin. Pract. Nephrol. 4, 216–226 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Ries, M. et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J. Magn. Reson. Imaging 17, 104–113 (2003).

    Article  PubMed  Google Scholar 

  34. Bernhardt, W. M. et al. Expression of hypoxia-inducible transcription factors in developing human and rat kidneys. Kidney Int. 69, 114–122 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Rosenberger, C. et al. Hypoxia-inducible factors and tubular cell survival in isolated perfused kidneys. Kidney Int. 70, 60–70 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Tanaka, T., Miyata, T., Inagi, R., Fujita, T. & Nangaku, M. Hypoxia in renal disease with proteinuria and/or glomerular hypertension. Am. J. Pathol. 165, 1979–1992 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Singh, P., Deng, A., Weir, M. R. & Blantz, R. C. The balance of angiotensin II and nitric oxide in kidney diseases. Curr. Opin. Nephrol. Hypertens. 17, 51–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Palm, F. et al. Reduced nitric oxide in diabetic kidneys due to increased hepatic arginine metabolism: implications for renomedullary oxygen availability. Am. J. Physiol. Renal Physiol. 294, F30–F37 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Nangaku, M. & Eckardt, K. U. Pathogenesis of renal anemia. Semin. Nephrol. 26, 261–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Bahlmann, F. H. & Fliser, D. Erythropoietin and renoprotection. Curr. Opin. Nephrol. Hypertens. 18, 15–20 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Nath, K. A., Croat, A. J. & Hostettor, T. H. Oxygen consumption and oxidant stress in surviving nephrons. Am. J. Physiol. 258, F1354–F1362 (1990).

    CAS  PubMed  Google Scholar 

  42. Modlinger, P. S., Wilcox, C. S. & Aslam, S. Nitric oxide, oxidative stress, and progression of chronic renal failure. Semin. Nephrol. 24, 354–365 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Wilcox, C. S. Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am. J. Physiol. Regul. Integr. Comp. Physiol. 289, R913–R935 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Prabhakar, S., Starnes, J., Shi, S., Lonis, B. & Tran, R. Diabetic nephropathy is associated with oxidative stress and decreased renal nitric oxide production. J. Am. Soc. Nephrol. 18, 2945–2952 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Palm, F., Teerlink, T. & Hansell, P. Nitric oxide and kidney oxygenation. Curr. Opin. Nephrol. Hypertens. 18, 68–73 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Garcia, S. F. et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat. Med. 7, 108–113 (2001).

    Article  Google Scholar 

  47. Du, X. et al. Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J. Clin. Invest. 112, 1049–1057 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miyata, T., Kurokawa, K. & van Ypersele de Strihou, C. From molecular footprints of disease to new therapeutic interventions in diabetic nephropathy: a detective story (review). Curr. Drug Targets Immune Endocr. Metabol. Disord. 5, 323–329 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Miyata, T. et al. Implication of an increased oxidative stress in the formation of advanced glycation end products in patients with end-stage renal failure. Kidney Int. 51, 1170–1181 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Witko-Sarsat, V. et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Kidney Int. 49, 1304–1313 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Miyata, T., Kurokawa, K. & van Ypersele de Strihou, C. Advanced glycation and lipoxidation end products: Role of reactive carbonyl compounds generated during carbohydrate and lipid metabolism (editorial review). J. Am. Soc. Nephrol. 11, 1744–1752 (2000).

    CAS  PubMed  Google Scholar 

  52. Yan, S. D. et al. Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J. Biol. Chem. 269, 9889–9897 (1994).

    CAS  PubMed  Google Scholar 

  53. Friederich, M., Hansell, P. & Palm, F. Diabetes, oxidative stress, nitric oxide and mitochondria function. Curr. Diabetes Rev. 5, 120–144 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Xu, C., Bailly-Maitre, B. & Reed, J. C. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest. 115, 2656–2664 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lindenmeyer, M. T. et al. Proteinuria and hyperglycemia induce endoplasmic reticulum stress. J. Am. Soc. Nephrol. 19, 2225–2236 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jafar, T. H. et al. Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann. Intern. Med. 135, 73–87 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Lewis, E. J. et al. Collaborative Study Group. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Brenner, B. M. et al. RENAAL Study Investigators. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Parving, H. H. et al. Irbesartan in Patients with type 2 diabetes and Microalbuminuria Study Group. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 345, 870–878 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Viberti, G. & Wheeldon, N. M. Microalbuminuria reduction with valsartan (MARVAL) Study Investigators. Microalbuminuria reduction with valsartan in patients with type 2 diabetes mellitus. A blood pressure-independent effect. Circulation 106, 672–678 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Parving, H. H. et al. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N. Engl. J. Med. 358, 2433–2446 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Seikaly, M. G., Arant, B. S. & Seney, F. D. Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J. Clin. Invest. 86, 1352–1357 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Manotham, K. et al. Evidence of tubular hypoxia in the early phase in the remnant kidney model. J. Am. Soc. Nephrol. 15, 1277–1288 (2004).

    Article  PubMed  Google Scholar 

  64. Palm, F., Connors, S. G., Mendonca, M., Welch, W. J. & Wilcox, C. S. Angiotensin II type 2 receptors and nitric oxide sustain oxygenation in the clipped kidney of early Goldblatt hypertensive rats. Hypertension 51, 345–351 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Onozato, M. L., Tojo, A., Goto, A., Fujita, T. & Wilcox, C. S. Oxidative stress and nitric oxide synthase in rat diabetic nephropathy: effects of ACEI and ARB. Kidney Int. 61, 186–194 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Benigni, A. et al. Disruption of the Ang II type 1 receptor promotes longevity in mice. J. Clin. Invest. 119, 524–530 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Miyata, T. et al. Angiotensine II receptor antagonist and angiotensin converting enzyme (ACE) inhibitor scavenge oxidative radicals and lower the formation of advanced glycation end products. J. Am. Soc. Nephrol. 13, 2478–2487 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Nangaku, M. et al. Anti-hypertensive agents inhibit in vivo the formation of advanced glycation end products and improve renal damage in a type 2 diabetic nephropathy rat model. J. Am. Soc. Nephrol. 14, 1212–1222 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, S. et al. Candesartan suppresses chronic renal inflammation by a novel antioxidant action independent of AT1R blockade. Kidney Int. 74, 1128–1138 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Sun, H. L. et al. ACE-inhibitor suppresses the apoptosis induced by endoplasmic reticulum stress in renal tubular in experimental diabetic rats. Exp. Clin. Endocrinol. Diabetes 117, 336–344 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Izuhara, Y. et al. A novel sartan derivative with very low angiotensin II type 1 receptor affinity protects the kidney in type 2 diabetic rats. Arterioscler. Thromb. Vasc. Biol. 28, 1767–1773 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Takizawa, S. et al. A sartan derivative with a very low angiotensin II receptor affinity ameliorates ischemic cerebral damage. J. Cereb. Blood Flow Metab. 29, 1665–1672 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 290, 2159–2167 (2003).

  74. Sarafidis, P. A. & Ruilope, L. M. Insulin resistance, hyperinsulinemia, and renal injury: mechanisms and implications. Am. J. Nephrol. 26, 232–234 (2006).

    Article  PubMed  Google Scholar 

  75. Makino, H. et al. Altered gene expression related to glomerulogenesis and podocyte structure in early diabetic nephropathy of db/db mice and its restoration by pioglitazone. Diabetes 55, 2747–2756 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Ohtomo, S. et al. Thiazolidinediones provide better renoprotection than insulin in an obese, hypertensive type II diabetic rat model. Kidney Int. 72, 1512–1519 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Rodriguez, W. E. et al. Pioglitazone mitigates renal glomerular vascular changes in high-fat, high-calorie-induced type 2 diabetes mellitus. Am. J. Physiol. Renal Physiol. 291, F694–F701 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Perico, N. & Remuzzi, G. Inhibition of TGF-beta expression: a novel role for thiazolidinediones to implement renoprotection in diabetes. Kidney Int. 72, 1419–1421 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Gredilla, R. & Barja, G. Minireview: the role of oxidative stress in relation to caloric restriction and longevity. Endocrinology 146, 3713–3717 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Cai, W. et al. Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. Am. J. Pathol. 173, 327–336 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Trayhurn, P., Wang, B. & Wood, I. S. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br. J. Nutr. 100, 227–235 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Ye, J. Emerging role of adipose tissue hypoxia in obesity and insulin resistance. Int. J. Obes. (Lond.) 33, 54–66 (2009).

    Article  CAS  Google Scholar 

  83. Crujeiras, A. B. et al. Energy restriction in obese subjects impact differently two mitochondrial function markers. J. Physiol. Biochem. 64, 211–219 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Nangaku, M. et al. In a type 2 diabetic nephropathy rat model, the improvement of obesity by a low calorie diet reduces oxidative/carbonyl stress and prevents diabetic nephropathy. Nephrol. Dial. Transplant. 20, 2661–2669 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Miyata, T. & van Ypersele de Strihou, C. Translation of basic science into clinical medicine: novel targets for diabetic nephropathy. Nephrol. Dial. Transplant. 24, 1373–1377 (2009).

    Article  PubMed  Google Scholar 

  86. Semenza, G. L. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3, 721–732 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Marx, J. How cells endure low oxygen. Science 303, 1454–1456 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Epstein, A. C. et al. Elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43–54 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5, 343–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Hon, W. C. et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417, 975–978 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Ivan, M. et al. HIFa targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292, 464–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Maxwell, P. H. et al. The tumor suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Ohh, M. et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat. Cell Biol. 2, 423–427 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Eguchi, H., Ikuta, T., Tachibana, T., Yoneda, Y. & Kawajiri, K. A nuclear localization signal of human aryl hydrocarbon receptor nuclear translocator/hypoxia-inducible factor 1beta is a novel bipartite type recognized by the two components of nuclear pore-targeting complex. J. Biol. Chem. 272, 17640–17647 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Kaelin, W. G. Jr & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Takeda, K. et al. Regulation of adult erythropoiesis by prolyl hydroxylase domain proteins. Blood 113, 3229–3235 (2008).

    Article  CAS  Google Scholar 

  97. Percy, M. J. et al. A gain-of-function mutation in the HIF2A gene in familial erythrocytosis. N. Engl. J. Med. 358, 162–168 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bernhardt, W. M. et al. Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am. J. Pathol. 170, 830–842 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kojima, I. et al. Protective role of hypoxia-inducible factor-2alpha against ischemic damage and oxidative stress in the kidney. J. Am. Soc. Nephrol. 18, 1218–1226 (2007).

    Article  CAS  PubMed  Google Scholar 

  100. Rosenberger, C. et al. Evidence for sustained renal hypoxia and transient hypoxia adaptation in experimental rhabdomyolysis-induced acute kidney injury. Nephrol. Dial. Transplant. 23, 1135–1143 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Hill, P. et al. Inhibition of hypoxia inducible factor hydroxylases protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 19, 39–46 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5, 343–354 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Koivunen, P., Hirsilä, M., Günzler, V., Kivirikko, K. I. & Myllyharju, J. Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases. J. Biol. Chem. 279, 9899–9904 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Fraisl, P., Aragonés, J. & Carmeliet, P. Inhibition of oxygen sensors as a therapeutic strategy for ischaemic and inflammatory disease. Nat. Rev. Drug Discov. 8, 139–152 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Salnikow, K. et al. Depletion of intracellular ascorbate by the carcinogenic metals nickel and cobalt results in the induction of hypoxic stress. J. Biol. Chem. 279, 40337–40344 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Matsumoto, M. et al. Induction of renoprotective gene expression by cobalt ameliorates ischemic injury of the kidney in rats. J. Am. Soc. Nephrol. 14, 1825–1832 (2003).

    Article  PubMed  Google Scholar 

  107. Tanaka, T. et al. Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. Kidney Int. 68, 2714–2725 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Tanaka, T. et al. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab. Invest. 85, 1292–1307 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Tanaka, T. et al. Hypoxia-inducible factor modulates tubular cell survival in cisplatin nephrotoxicity. Am. J. Physiol. Renal Physiol. 289, F1123–F1133 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Ohtomo, S. et al. Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model. Nephrol. Dial. Transplant. 23, 1166–1172 (2008).

    Article  CAS  PubMed  Google Scholar 

  111. Smith, E. L. Presence of cobalt in the anti-pernicious anemia factor. Nature 162, 144 (1948).

    Article  CAS  PubMed  Google Scholar 

  112. Berk, L., Burchebal, J. H. & Castle, W. B. Erythropoietic effect of cobalt in patients with or without anemia. N. Engl. J. Med. 240, 754–761 (1949).

    Article  CAS  PubMed  Google Scholar 

  113. Edwards, M. S. & Curtis, J. R. Use of cobaltous chloride in anemia of maintenance hemodialysis patients. Lancet 2, 582–583 (1971).

    Article  CAS  PubMed  Google Scholar 

  114. Ivan, M. et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl Acad. Sci. USA 99, 13459–13464 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mole, D. R. et al. 2-oxoglutarate analog inhibitors of HIF prolyl hydroxylase. Bioorg. Med. Chem. Lett. 13, 2677–2680 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. McDonough, M. A. et al. Selective inhibition of factor inhibiting hypoxia-inducible factor. J. Am. Chem. Soc. 127, 7680–7681 (2005).

    Article  CAS  PubMed  Google Scholar 

  117. Nangaku, M. et al. A novel class of prolyl hydroxylase inhibitors induces angiogenesis and exerts organ protection against ischemia. Arterioscler. Thromb. Vasc. Biol. 27, 2548–2554 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Bernhardt, W. M. et al. Preconditional activation of hypoxia-inducible factors ameliorates ischemic acute renal failure. J. Am. Soc. Nephrol. 17, 1970–1978 (2006).

    Article  CAS  PubMed  Google Scholar 

  119. Watanabe, D. et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N. Engl. J. Med. 353, 782–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Metzen, E. et al. Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. J. Cell. Sci. 116, 1319–1326 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Steinhoff, A. et al. Cellular oxygen sensing: Importins and exportins are mediators of intracellular localisation of prolyl-4-hydroxylases PHD1 and PHD2. Biochem. Biophys. Res. Commun. 387, 705–711 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Berchner-Pfannschmidt, U. et al. Nuclear oxygen sensing: induction of endogenous prolyl-hydroxylase 2 activity by hypoxia and nitric oxide. J. Biol. Chem. 283, 31745–31753 (2008).

    Article  CAS  PubMed  Google Scholar 

  123. Fong, G. H. & Takeda, K. Role and regulation of prolyl hydroxylase domain proteins. Cell Death Differ. 15, 635–641 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Tug, S., Delos, R. B., Fandrey, J. & Berchner-Pfannschmidt, U. Non-hypoxic activation of the negative regulatory feedback loop of prolyl-hydroxylase oxygen sensors. Biochem. Biophys. Res. Commun. 384, 519–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Berchner-Pfannschmidt, U., Yamac, H., Trinidad, B. & Fandrey, J. Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J. Biol. Chem. 282, 1788–1796 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Schödel, J. et al. HIF-prolyl hydroxylases in the rat kidney: physiologic expression patterns and regulation in acute kidney injury. Am. J. Pathol. 174, 1663–1674 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Takeda, K., Cowan, A. & Fong, G. H. Essential role for prolyl hydroxylase domain protein 2 in oxygen homeostasis of the adult vascular system. Circulation 116, 774–781 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Loinard, C. et al. Inhibition of prolyl hydroxylase domain proteins promotes therapeutic revascularization. Circulation 120, 50–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Pouysségur, J. et al. Hypoxia signaling in cancer and approaches to enforce tumor regression. Nature 441, 437–443 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Mazzone, M. et al. Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839–851 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cummins, E. P. et al. Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proc. Natl Acad. Sci. USA 103, 18154–18159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mikhaylova, O. et al. The von Hippel–Lindau tumor suppressor protein and Egl-9-Type proline hydroxylases regulate the large subunit of RNA polymerase II in response to oxidative stress. Mol. Cell. Biol. 28, 2701–2717 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Baranova, O. et al. Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J. Neurosci. 27, 6320–6332 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Koditz, J. et al. Oxygen-dependent ATF-4 stability is mediated by the PHD3 oxygen sensor. Blood 110, 3610–3617 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Natarajan, R. et al. Prolyl hydroxylase inhibition attenuates post-ischemic cardiac injury via induction of endoplasmic reticulum stress genes. Vascul. Pharmacol. 51, 110–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Tong, K. I., Kobayashi, A., Katsuoka, F. & Yamamoto, M. Two-site substrate recognition model for the Keap1-Nrf2 system: a hinge and latch mechanism. Biol. Chem. 387, 1311–1320 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Zhou, F. et al. Hibernation, a model of neuroprotection. Am. J. Pathol. 158, 2145–2151 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Drew, K. L. et al. Hypoxia tolerance in mammalian heterotherms. J. Exp. Biol. 207, 3155–3162 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Siddiq, A. et al. Selective inhibition of hypoxia-inducible factor (HIF) prolyl-hydroxylase 1 mediates neuroprotection against normoxic oxidative death via HIF- and CREB-independent pathways. J. Neurosci. 29, 8828–8838 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Minamishima, Y. A. et al. Somatic inactivation of the PHD2 prolyl hydroxylase causes polycythemia and congestive heart failure. Blood 111, 3236–3244 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ladroue, C. et al. PHD2 mutation and congenital erythrocytosis with paraganglioma. N. Engl. J Med. 359, 2685–2692 (2008).

    Article  CAS  PubMed  Google Scholar 

  142. Takeda, K. et al. Placental but not heart defects are associated with elevated hypoxia-inducible factor alpha levels in mice lacking prolyl hydroxylase domain protein 2. Mol. Cell. Biol. 26, 8336–8346 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen, J. X. & Stinnett, A. Ang-1 gene therapy inhibits hypoxia-inducible factor-1alpha (HIF-1alpha)-prolyl-4-hydroxylase-2, stabilizes HIF-1alpha expression, and normalizes immature vasculature in db/db mice. Diabetes 57, 3335–3343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fuchshofer, R. et al. Hypoxia/reoxygenation induces CTGF and PAI-1 in cultured human retinal pigment epithelium cells. Exp. Eye Res. 88, 889–899 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Kroening, S., Neubauer, E., Wessel, J., Wiesener, M. & Goppelt-Struebe, M. Hypoxia interferes with connective tissue growth factor (CTGF) gene expression in human proximal tubular cell lines. Nephrol. Dial. Transplant. 24, 3319–3325 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Ha, H., Oh, E. Y. & Lee, H. B. The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases. Nat. Rev. Nephrol. 5, 203–211 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Izuhara, Y. et al. Inhibition of plasminogen activator inhibitor-1: its mechanism and effectiveness on coagulation and fibrosis. Arterioscler. Thromb. Vasc. Biol. 28, 672–677 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Schwartz, S. et al. Phase 1 study of FG-3019, an anti-CTGF monoclonal antibody, in type 1/2 diabetes mellitus with microalbuminuria (abstract). Diabetes 56 (Suppl.1), A151 (2007).

    Google Scholar 

Download references

Acknowledgements

We thank Dr. Guo-Hua Fong for critically reviewing the manuscript, Drs. Masaomi Nangaku and Kotaro Takeda for helpful discussion, Dr. Noriaki Hirayama for kindly providing a representative picture of docking simulation (human PHD2 and PHD inhibitors), and Dr. Masashi Okamura for help with the preparation of figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Miyata.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyata, T., van Ypersele de Strihou, C. Diabetic nephropathy: a disorder of oxygen metabolism?. Nat Rev Nephrol 6, 83–95 (2010). https://doi.org/10.1038/nrneph.2009.211

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2009.211

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing