Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evidence-based treatment recommendations for uremic bleeding

Abstract

Uremic bleeding syndrome is a recognized consequence of renal failure and can result in clinically significant sequelae. Although the pathophysiology of the condition has yet to be fully elucidated, it is believed to be multifactorial. This article is a review of both the normal hemostatic and homeostatic mechanisms that operate within the body to prevent unnecessary bleeding, as well as an in-depth discussion of the dysfunctional components that contribute to the complications associated with uremic bleeding syndrome. As a result of the multifactorial nature of this syndrome, prevention and treatment options can include one or a combination of the following: dialysis, erythropoietin, cryoprecipitate, desmopressin, and conjugated estrogens. Here, these treatment options are compared with regard to their mechanism of action, and onset and duration of efficacy. An extensive review of the clinical trials that have evaluated each treatment is also presented. Lastly, we have created an evidence-based treatment algorithm to help guide clinicians through most clinical scenarios, and answered common questions related to the management of uremic bleeding.

Key Points

  • Pathophysiology of uremic bleeding in patients with chronic renal failure is incompletely elucidated, but probably involves dysfunctional von Willebrand factor, increased levels of cyclic AMP and cyclic GMP, uremic toxins and anemia

  • Typical presenting symptoms include ecchymoses, purpura, epistaxis, and bleeding from venipuncture sites; gastrointestinal and intracranial bleeding might also be evident

  • Evaluation of bleeding time is the most useful clinical test; normal bleeding time ranges from 1–7 minutes

  • Prevention and treatment options include dialysis, erythropoietin, cryoprecipitate, desmopressin and conjugated estrogens, used alone or in combination

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Algorithm for the management of uremic platelet dysfunction

Similar content being viewed by others

References

  1. Noris M and Remuzzi G (1999) Uremic bleeding: closing the circle after 30 years of controversies? Blood 94: 2569–2574

    CAS  PubMed  Google Scholar 

  2. Reisman D (1907) Hemorrhages in the course of Bright's disease, with especial reference to the occurrence of a hemorrhage diathesis of nephritic origin. Am J Med Sci 134: 709–712

    Google Scholar 

  3. Santoro SA and Cowan JF (1982) Adsorption of von Willebrand factor by fibrillar collagen—implications concerning the adhesion of platelets to collagen. Coll Relat Res 2: 31–43

    CAS  PubMed  Google Scholar 

  4. Engvall E et al. (1978) Affinity of fibronectin to collagens of different genetic types and to fibrinogen. J Exp Med 147: 1584–1595

    CAS  PubMed  Google Scholar 

  5. Mumby SM et al. (1984) Interactions of thrombospondin with extracellular matrix proteins: selective binding to type V collagen. J Cell Biol 98: 646–652

    CAS  PubMed  Google Scholar 

  6. Hartwig JH et al. (1999) The elegant platelet: signals controlling actin assembly. Thromb Haemost 82: 392–398

    CAS  PubMed  Google Scholar 

  7. Wenel-Drake JD et al. (1985) Ultrastructural localization of human platelet thrombospondin, fibrinogen, fibronectin, and von Willebrand factor in frozen thin section. Blood 65: 929–938

    Google Scholar 

  8. Deykin D (1983) Uremic bleeding. Kidney Int 24: 698–705

    CAS  PubMed  Google Scholar 

  9. Mutucumarana VP et al. (1992) The active site of factor IXa is located far above the membrane surface and its conformation is altered upon association with factor VIIIa: a fluorescence study. J Biol Chem 267: 17012–17021

    CAS  PubMed  Google Scholar 

  10. Furie B and Furie BC (1992) Molecular and cellular biology of blood coagulation. N Engl J Med 326: 800–806

    CAS  PubMed  Google Scholar 

  11. Blomback B et al. (1978) A two-step fibrinogen–fibrin transition in blood coagulation. Nature 275: 501–505

    CAS  PubMed  Google Scholar 

  12. Blomback B et al. (1981) Mechanism of fibrin formation and its regulation. Ann N Y Acad Sci 370: 536–544

    CAS  PubMed  Google Scholar 

  13. Cohen I et al. (1981) Ca2+-dependent cross-linking processes in human platelets. Biochem Biophys Acta 676: 137–147

    CAS  PubMed  Google Scholar 

  14. Kahn DR and Cohen I (1981) Factor XIIIa-catalyzed coupling of structural proteins. Biochem Biophys Acta 668: 490–494

    CAS  PubMed  Google Scholar 

  15. Sixma JJ et al. (1984) Immunocytochemical localization of albumin and factor XIII in thin cryo sections of human blood platelets. Thromb Haemost 51: 388–391

    CAS  PubMed  Google Scholar 

  16. Harker LA et al. (1997) Antithrombotic strategies targeting thrombin activites, thrombin receptors and thrombin generation. Thromb Haemost 78: 736–741

    CAS  PubMed  Google Scholar 

  17. Ishihara H et al. (1997) Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386: 502–506

    CAS  PubMed  Google Scholar 

  18. Coughlin SR (2001) Protease-activated receptors in vascular biology. Thromb Haemost 86: 298–307

    CAS  PubMed  Google Scholar 

  19. Mannucci PM et al. (1983) Deamino-8-D-arginine vasopressin shortens the bleeding time in uremia. N Engl J Med 308: 8–12

    CAS  PubMed  Google Scholar 

  20. Mohri H et al. (1988) Structure of the von Willebrand factor domain interacting with glycoprotein Ib. J Biol Chem 263: 17901–17904

    CAS  PubMed  Google Scholar 

  21. Weigert AL and Schafer AI (1998) Uremic bleeding: pathogenesis and therapy. Am J Med Sci 316: 94–104

    CAS  PubMed  Google Scholar 

  22. Boccardo P et al. (2004) Platelet dysfunction in renal failure. Semin Thromb Hemost 30: 579–589

    CAS  PubMed  Google Scholar 

  23. Sohal AS et al. (2006) Uremic bleeding: pathophysiology and clinical risk factors. Thromb Res 118: 417–422

    CAS  PubMed  Google Scholar 

  24. Goldsmith HL (1971) Red cell motions and wall interactions in tube flow. Fed Proc 30: 1578–1590

    CAS  PubMed  Google Scholar 

  25. Turitto VT and Baumgartner HR (1975) Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells. Microvasc Res 9: 335–344

    CAS  PubMed  Google Scholar 

  26. Peterson DM et al. (1987) Shear-induced platelet aggregation requires von Willebrand factor and platelet membrane glycoproteins Ib and IIb-IIIa. Blood 69: 625–628

    CAS  PubMed  Google Scholar 

  27. Savage B et al. (1992) Modulation of platelet function through adhesion receptors: a dual role for glycoprotein IIb-IIIa (integrin αIIbβ3) mediated by fibrinogen and glycoprotein Ib-von Willebrand factor. J Biol Chem 267: 11300–11306

    CAS  PubMed  Google Scholar 

  28. Warrell RP et al. (1979) Increased factor VIII/von Willebrand factor antigen and von Willebrand factor activity in renal failure. Am J Med 66: 226–228

    PubMed  Google Scholar 

  29. Remuzzi G et al. (1977) Bleeding in renal failure: is von Willebrand factor implicated? Br Med J 2: 359–361

    PubMed  PubMed Central  Google Scholar 

  30. Remuzzi G et al. (1977) Prostacyclin-like activity and bleeding in renal failure. Lancet 310: 1195–1197

    Google Scholar 

  31. Noris M et al. (1993) Enhanced nitric oxide synthesis in uremia: implications for platelet dysfunction and dialysis hypotension. Kidney Int 44: 445–450

    CAS  PubMed  Google Scholar 

  32. Descamps-Latscha B et al. (1995) Balance between IL-1β, TNF-α, and their specific inhibitors in chronic renal failure and maintenance dialysis: relationships with activation markers of T cells, B cells, and monocytes. J Immunol 154: 882–892

    CAS  PubMed  Google Scholar 

  33. Thuraisingham RC et al. (1997) Increased superoxide and nitric oxide production results in peroxynitrite formation in uremic vasculature. J Am Soc Nephrol 21: 163–167

    Google Scholar 

  34. Vanholder R et al. (2003) Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 63: 1934–1943

    CAS  PubMed  Google Scholar 

  35. Vanholder R and De Smet R (1999) Pathophysiologic effects of uremic retention solutes. J Am Soc Nephrol 10: 1815–1823

    CAS  PubMed  Google Scholar 

  36. Lindsay RM et al. (1976) Platelet function in patients on long term peritoneal dialysis. Clin Nephrol 6: 335–339

    CAS  PubMed  Google Scholar 

  37. Stewart JH and Castaldi PA (1967) Uraemic bleeding: a reversible platelet defect corrected by dialysis. Q J Med 36: 409–423

    CAS  PubMed  Google Scholar 

  38. Perez G et al. (1976) The biosynthesis of guanidinosuccinic acid by perfused rat liver. J Clin Invest 57: 807

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cohen BD et al. (1968) Guanidinosuccinic aciduria in uremia. Am J Med 45: 63–68

    CAS  PubMed  Google Scholar 

  40. Horowitz HI et al. (1970) Further studies on the platelet inhibitory effect of guanidinosuccinic acid and its role in uremic bleeding. Am J Med 49: 336–345

    CAS  PubMed  Google Scholar 

  41. Rabiner SF and Molinas F (1970) The role of phenol and phenolic acids on the thrombocytopathy and defective platelet aggregation of patients with renal failure. Am J Med 49: 346–351

    CAS  PubMed  Google Scholar 

  42. Jocobson LO et al. (1957) Role of the kidney in erythropoiesis. Nature 179: 633–634

    Google Scholar 

  43. Eschbach JW et al. (1977) 14C cyanate as a tag for red cell survival in normal and uremic man. J Lab Clin Med 89: 823–828

    CAS  PubMed  Google Scholar 

  44. Valles J et al. (1991) Erythrocytes metabolically enhance collagen-induced platelet responsiveness via increased thromboxane production, adenosine diphosphate release, and recruitment. Blood 78: 154–162

    CAS  PubMed  Google Scholar 

  45. Martin W et al. (1985) Blockade of endothelium-dependent and glyceryl trinitrate-induced relaxation of rabbit aorta by certain ferrous hemoproteins. J Pharmacol Exp Ther 233: 679–685

    CAS  PubMed  Google Scholar 

  46. Remuzzi G (1998) Bleeding disorders in uremia: pathophysiology and treatment. Adv Nephrol Necker Hosp 18: 171–186

    Google Scholar 

  47. Steiner RW et al. (1979) Bleeding time in uremia: a useful test to assess clinical bleeding. Am J Hematol 7: 107–117

    CAS  PubMed  Google Scholar 

  48. Vanholder R et al. (2005) New insights in uremic toxicity. Contrib Nephrol 149: 315–324

    CAS  PubMed  Google Scholar 

  49. Weissinger EM et al. (2004) Proteomics: a novel tool to unravel the patho-physiology of uraemia. Nephrol Dial Transplant 19: 3068–3077

    CAS  PubMed  Google Scholar 

  50. Eloot S et al. (2005) Kinetic behavior of urea is different from that of other water soluble compounds: the case of the guanidino compounds. Kidney Int 67: 1566–1575

    CAS  PubMed  Google Scholar 

  51. Sreedhara R et al. (1995) Defective platelet aggregration in uremia is transiently worsened by hemodialysis. Am J Kidney Dis 25: 555–563

    CAS  PubMed  Google Scholar 

  52. Remuzzi G et al. (1982) Platelet function in patients on maintenance hemodialysis: depressed or enhanced? Clin Nephrol 17: 60–63

    CAS  PubMed  Google Scholar 

  53. Benigni A et al. (1993) Reversible activation defect of the platelet glycoprotein IIb-IIIa complex in patients with uremia. Am J Kidney Dis 22: 668–676

    CAS  PubMed  Google Scholar 

  54. Di Minno G et al. (1985) Platelet dysfunction in uremia: multifaceted defect partially corrected by dialysis. Am J Med 79: 552–559

    CAS  PubMed  Google Scholar 

  55. Rabiner SF (1972) The effect of dialysis on platelet function of patients with renal failure. Ann N Y Acad Sci 201: 234–242

    CAS  PubMed  Google Scholar 

  56. Lindsay RM et al. (1978) Improvement of platelet function by increased frequency of hemodialysis. Clin Nephrol 10: 67–70

    CAS  PubMed  Google Scholar 

  57. Nenci GG et al. (1979) Effect of peritoneal dialysis, hemodialysis and kidney transplantation on blood platelet function. I: platelet aggregation by ADP and epinephrine. Nephron 23: 287–292

    CAS  PubMed  Google Scholar 

  58. Docci D et al. (1984) Hemodialysis-associated platelet loss: study of the relative contribution of dialyzer membrane composition and geometry. Int J Artif Organs 7: 337–340

    CAS  PubMed  Google Scholar 

  59. Diaz-Ricart M et al. (2000) Abnormal platelet cytoskeletal assembly in hemodialyzed patients results in deficient tyrosine phosphorylation signaling. Kidney Int 57: 1905–1914

    CAS  PubMed  Google Scholar 

  60. Tassies D et al. (1995) Reticulated platelets in uremic patients: effect of hemodialysis and continuous ambulatory peritoneal dialsysis. Am J Hematol 50: 161–166

    CAS  PubMed  Google Scholar 

  61. Vigano G et al. (1991) Recombinant human erythropoietin to correct uremic bleeding. Am J Kidney Dis 18: 44–49

    CAS  PubMed  Google Scholar 

  62. Zwaginga JJ et al. (1991) Treatment of uremic anemia with recombinant erythropoietin also reduces the defects in platelet adhesion and aggregation caused by uremic plasma. Thromb Haemost 66: 638–647

    CAS  PubMed  Google Scholar 

  63. Cases A et al. (1992) Recombinant human erythropoietin treatment improves platelet function in uremic patients. Kidney Int 42: 668–672

    CAS  PubMed  Google Scholar 

  64. Peng J et al. (1994) Aged platelets have an impaired response to thrombin as quantitated by P-selectin expression. Blood 83: 161–163

    CAS  PubMed  Google Scholar 

  65. Tassies D et al. (1998) Effect of recombinant human erythropoietin treatment on circulating reticulated platelets in uremic patients: association with early improvement in platelet function. Am J Hematol 59: 105–109

    CAS  PubMed  Google Scholar 

  66. Diaz-Ricart M et al. (1999) Erythropoietin improves signaling through tyrosine phosphorylation in platelets from uremic platelets. Thromb Haemost 82: 1312–1317

    CAS  PubMed  Google Scholar 

  67. Eschbach JW et al. (1992) A comparison of the responses to recombinant human erythropoietin in normal and uremic subjects. Kidney Int 42: 407–416

    CAS  PubMed  Google Scholar 

  68. Movilli E et al. (2001) Adequacy of dialysis reduces the doses of recombinant erythropoietin independently from the use of biocompatible membranes in haemodialysis patients. Nephrol Dial Transplant 16: 111–114

    CAS  PubMed  Google Scholar 

  69. Movilli E et al. (2003) Epoetin requirement does not depend on dialysis dose when Kt/N >1.33 in patients on regular dialysis treatment with cellulosic membranes and adequate iron stores. J Nephrol 16: 546–551

    CAS  PubMed  Google Scholar 

  70. Janson PA et al. (1980) Treatment of the bleeding tendency in uremia with cryoprecipitate. N Engl J Med 303: 1318–1322

    CAS  PubMed  Google Scholar 

  71. Triulzi DJ and Blumberg N (1990) Variability in response to cryoprecipitate treatment for hemostatic defects in uremia. Yale J Biol Med 63: 1–7

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Prowse CV et al. (1979) Specificity in the factor VIII response to vasopressin infusion in man. Br J Haematol 41: 437–447

    CAS  PubMed  Google Scholar 

  73. Kohler M et al. (1989) Subcutaneous injection of desmopressin (DDAVP): evaluation of a new, more concentrated preparation. Hemostasis 1: 38–44

    Google Scholar 

  74. Watson AJ and Keogh JA (1982) Effect of 1-deamino-8-D-arginine vasopressin on the prolonged bleeding time in chronic renal failure. Nephron 32: 49–52

    CAS  PubMed  Google Scholar 

  75. Zoja C et al. (1991) L-Arginine, the precursor of nitric oxide, abolishes the effect of estrogen on bleeding time in experimental uremia. Lab Invest 65: 479–483

    CAS  PubMed  Google Scholar 

  76. Gottsater A et al. (2001) Hormone replacement therapy in healthy postmenopausal women: a randomized, placebo-controlled study of effects on coagulation and fibrinolytic factors. J Intern Med 249: 237–246

    CAS  PubMed  Google Scholar 

  77. Liu YK et al. (1984) Treatment of uraemic bleeding with conjugated oestrogen. Lancet 324: 887–890

    Google Scholar 

  78. Livio M et al. (1986) Conjugated estrogens for the management of bleeding associated with renal failure. N Engl J Med 315: 731–735

    CAS  PubMed  Google Scholar 

  79. Vigano G et al. (1988) Dose-effect and pharmacokinetics of estrogens given to correct bleeding time in uremia. Kidney Int 34: 853–858

    CAS  PubMed  Google Scholar 

  80. Heistinger M et al. (1990) Effect of conjugated estrogens on platelet function and prostacyclin generation in CRF. Kidney Int 38: 1181–1186

    CAS  PubMed  Google Scholar 

  81. Shemin D et al. (1990) Oral estrogens decrease bleeding time and improve clinical bleeding in patients with renal failure. Am J Med 89: 436–440

    CAS  PubMed  Google Scholar 

  82. Bronner MH et al. (1986) Estrogen–progesterone therapy for bleeding gastrointestinal telangiectasias in chronic renal failure. Ann Int Med 105: 371–374

    CAS  PubMed  Google Scholar 

  83. Sloand JA and Schiff MJ (1995) Beneficial effect of low-dose transdermal estrogen on bleeding time and clinical bleeding in uremia. Am J Kidney Dis 26: 22–26

    CAS  PubMed  Google Scholar 

  84. Heunisch C et al. (1998) Conjugated estrogens for the management of gastrointestinal bleeding secondary to uremia of acute renal failure. Pharmacotherapy 18: 210–217

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J Busti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedges, S., Dehoney, S., Hooper, J. et al. Evidence-based treatment recommendations for uremic bleeding. Nat Rev Nephrol 3, 138–153 (2007). https://doi.org/10.1038/ncpneph0421

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0421

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing