Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Blocking the immune response in ischemic acute kidney injury: the role of adenosine 2A agonists

Abstract

Acute kidney injury (AKI) is associated with a high degree of morbidity and mortality and its incidence is increasing. These factors, together with a lack of successful clinical trials, necessitate a comprehensive evaluation of the pathogenesis of AKI and trial design. The progress that has been made in elucidating the pathogenesis of AKI has defined inflammation as an early event and therefore a potential target for therapeutic intervention. This Review summarizes recent advances in our understanding of the role of inflammation in AKI as well as our approach to limiting inflammation using compounds that stimulate adenosine 2A receptors (A2ARs). A2ARs are members of a family of guanine nucleotide-binding proteins that have become a focus of interest primarily because of their ability to broadly inactivate the inflammatory cascade. An A2A agonist—ATL146 ester (ATL146e)—is currently being tested in a phase III clinical trial as a pharmacological stress agent in cardiac perfusion imaging studies. This study, together with extensively published preclinical data, will facilitate testing of ATL146e in human trials of AKI.

Key Points

  • Components of the immune system—including neutrophils, lymphocytes, macrophages and dendritic cells—participate in ischemia–reperfusion-related kidney damage

  • During ischemia, concentrations of endogenous adenosine (which regulates renal circulation) increase, probably contributing to termination of the damaging immune response

  • Adenosine receptors of the A2A subtype are expressed in renal and nonrenal tissues, including hematopoietic precursors of immune cells

  • Activation of A2A receptors by administration of agonists abrogates ischemia–reperfusion-related inflammation

  • The A2A receptor agonist ATL146 ester is currently being tested in a phase III trial of cardiac perfusion imaging

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical stages of acute renal failure.
Figure 2: Immune response in renal ischemia–reperfusion injury.
Figure 3: Macrophage activation.
Figure 4: Adenosine 2A agonist structure and binding affinities.
Figure 5: Adenosine 2A receptor agonists attenuate renal ischemia–reperfusion injury.

Similar content being viewed by others

References

  1. Bonventre JV and Weinberg JM (2003) Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14: 2199–2210

    Article  PubMed  Google Scholar 

  2. Nash K et al. (1998) Hospital-acquired renal insufficiency. Am J Kidney Dis 39: 930–936

    Article  Google Scholar 

  3. Star RA (1998) Treatment of acute renal failure. Kidney Int 54: 1817–1831

    Article  CAS  PubMed  Google Scholar 

  4. Chertow GM et al. (1998) Independent association between acute renal failure and mortality following cardiac surgery. Am J Med 104: 343–348

    Article  CAS  PubMed  Google Scholar 

  5. Merten GJ et al. (2004) Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA 291: 2328–2334

    Article  CAS  PubMed  Google Scholar 

  6. Marenzi G et al. (2006) Comparison of two hemofiltration protocols for prevention of contrast-induced nephropathy in high-risk patients. Am J Med 119: 155–162

    Article  PubMed  Google Scholar 

  7. Thadhani R et al. (1996) Acute renal failure. N Engl J Med 334: 1448–1460

    Article  CAS  PubMed  Google Scholar 

  8. Nallamothu BK et al. (2004) Is acetylcysteine effective in preventing contrast-related nephropathy? A meta-analysis. Am J Med 117: 938–947

    Article  CAS  PubMed  Google Scholar 

  9. Schrier RW et al. (2004) Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 114: 5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sutton TA et al. (2002) Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 62: 1539–1549

    Article  CAS  PubMed  Google Scholar 

  11. Okusa MD (2002) The inflammatory cascade in acute ischemic renal failure. Nephron 90: 133–138

    Article  CAS  PubMed  Google Scholar 

  12. Brezis M et al. (1989) The pathophysiological implications of medullary hypoxia. Am J Kidney Dis 13: 253–258

    Article  CAS  PubMed  Google Scholar 

  13. Vukicevic S et al. (1998) Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J Clin Invest 102: 202–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gong H et al. (2004) EPO and alpha-MSH prevent ischemia/reperfusion-induced down-regulation of AQPs and sodium transporters in rat kidney. Kidney Int 66: 683–695

    Article  CAS  PubMed  Google Scholar 

  15. Gordon S and Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5: 953–964

    Article  CAS  PubMed  Google Scholar 

  16. Rabb H (2002) The T cell as a bridge between innate and adaptive immune systems: implications for the kidney. Kidney Int 61: 1935–1946

    Article  CAS  PubMed  Google Scholar 

  17. Anders HJ et al. (2004) Signaling danger: toll-like receptors and their potential roles in kidney disease. J Am Soc Nephrol 15: 854–867

    Article  CAS  PubMed  Google Scholar 

  18. Janeway CA Jr and Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20: 197–216

    Article  CAS  PubMed  Google Scholar 

  19. Lappas CM et al. (2005) A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. J Immunol 174: 1073–1080

    Article  CAS  PubMed  Google Scholar 

  20. Mattner J et al. (2005) Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434: 525–529

    Article  CAS  PubMed  Google Scholar 

  21. Geissmann F et al. (2003) Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19: 71–82

    Article  CAS  PubMed  Google Scholar 

  22. Qu C et al. (2004) Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J Exp Med 200: 1231–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Banchereau J et al. (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18: 767–811

    Article  CAS  PubMed  Google Scholar 

  24. Mellman I and Steinman RM (2001) Dendritic cells: specialized and regulated antigen processing machines. Cell 106: 255–258

    Article  CAS  PubMed  Google Scholar 

  25. Chiao H et al. (1997) α-Melanocyte-stimulating hormone protects against renal injury after ischemia in mice and rats. J Clin Invest 99: 1165–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Okusa MD et al. (2000) A2A adenosine receptor mediated inhibition of renal injury and neutrophil adhesion. Am J Physiol 279: F809–F818

    CAS  Google Scholar 

  27. Friedewald JJ and Rabb H (2004) Inflammatory cells in ischemic acute renal failure. Kidney Int 66: 486–491

    Article  PubMed  Google Scholar 

  28. Chiao H et al. (1998) α-melanocyte-stimulating hormone inhibits renal injury in the absence of neutrophils. Kidney Int 54: 765–774

    Article  CAS  PubMed  Google Scholar 

  29. Kelly KJ et al. (1996) Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97: 1056–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Singbartl K et al. (2000) Blocking P-selectin protects from ischemia/reperfusion-induced acute renal failure. FASEB J 14: 48–54

    Article  CAS  PubMed  Google Scholar 

  31. Takada M et al. (1997) The cytokine-adhesion molecule cascade in ischemia/reperfusion injury of the rat kidney. J Clin Invest 99: 2682–2690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park P et al. (2002) Injury in renal ischemia-reperfusion is independent from immunoglobulins and T lymphocytes. Am J Physiol Renal Physiol 282: F352–F357

    Article  PubMed  Google Scholar 

  33. Burne-Taney MJ et al. (2005) Effects of combined T- and B-cell deficiency on murine ischemia reperfusion injury. Am J Transplant 5: 1186–1193

    Article  PubMed  Google Scholar 

  34. Faubel S et al. (2005) Peripheral CD4 T-cell depletion is not sufficient to prevent ischemic acute renal failure. Transplantation 80: 643–649

    Article  PubMed  Google Scholar 

  35. Le Moine O et al. (2000) Cold liver ischemia-reperfusion injury critically depends on liver T cells and is improved by donor pretreatment with interleukin 10 in mice. Hepatology 31: 1266–1274

    Article  CAS  PubMed  Google Scholar 

  36. Varda-Bloom N et al. (2000) Cytotoxic T lymphocytes are activated following myocardial infarction and can recognize and kill healthy myocytes in vitro. J Mol Cell Cardiol 32: 2141–2149

    Article  CAS  PubMed  Google Scholar 

  37. Zwacka RM et al. (1997) CD4+ T-lymphocytes mediate ischemia/reperfusion-induced inflammatory responses in mouse liver. J Clin Invest 100: 279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burne MJ et al. (2001) Identification of the CD4+ T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest 108: 1283–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Day Y-J et al. (2006) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma. J Immunol 176: 3108–3114

    Article  CAS  PubMed  Google Scholar 

  40. Chandraker A et al. (1997) CD28-b7 blockade in organ dysfunction secondary to cold ischemia/reperfusion injury. Kidney Int 52: 1678–1684

    Article  CAS  PubMed  Google Scholar 

  41. Henning G et al. (2001) CC chemokine receptor 7-dependent and -independent pathways for lymphocyte homing: modulation by FTY720. J Exp Med 194: 1875–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Awad AS et al. (2006) Selective sphingosine 1-phosphate 1 (S1P1) receptor activation reduces ischemia-reperfusion injury in mouse kidney. Am J Physiol Renal Physiol 290: F1516–F1524

    Article  CAS  PubMed  Google Scholar 

  43. Taniguchi M et al. (2003) The NKT cell system: bridging innate and acquired immunity. Nat Immunol 4: 1164–1165

    Article  CAS  PubMed  Google Scholar 

  44. Burne-Taney MJ et al. (2003) B cell deficiency confers protection from renal ischemia reperfusion injury. J Immunol 171: 3210–3215

    Article  CAS  PubMed  Google Scholar 

  45. Wilson HM et al. (2004) Macrophages and the kidney. Curr Opin Nephrol Hypertens 13: 285–290

    Article  CAS  PubMed  Google Scholar 

  46. Fogg DK et al. (2006) A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311: 83–87

    Article  CAS  PubMed  Google Scholar 

  47. Sunderkotter C et al. (2004) Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J Immunol 172: 4410–4417

    Article  PubMed  Google Scholar 

  48. Dauer M et al. (2003) Mature dendritic cells derived from human monocytes within 48 hours: a novel strategy for dendritic cell differentiation from blood precursors. J Immunol 170: 4069–4076

    Article  CAS  PubMed  Google Scholar 

  49. Mohamadzadeh M et al. (2001) Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells. J Exp Med 194: 1013–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chomarat P et al. (2003) TNF skews monocyte differentiation from macrophages to dendritic cells. J Immunol 171: 2262–2269

    Article  CAS  PubMed  Google Scholar 

  51. Delneste Y et al. (2003) Interferon-gamma switches monocyte differentiation from dendritic cells to macrophages. Blood 101: 143–150

    Article  CAS  PubMed  Google Scholar 

  52. Chomarat P et al. (2000) IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nat Immunol 1: 510–514

    Article  CAS  PubMed  Google Scholar 

  53. Kluth DC et al. (2004) Multiple facets of macrophages in renal injury. Kidney Int 66: 542–557

    Article  CAS  PubMed  Google Scholar 

  54. Drevets DA et al. (2004) The Ly-6Chigh monocyte subpopulation transports Listeria monocytogenes into the brain during systemic infection of mice. J Immunol 172: 4418–4424

    Article  CAS  PubMed  Google Scholar 

  55. Furuichi K et al. (2003) CCR2 signaling contributes to ischemia-reperfusion injury in kidney. J Am Soc Nephrol 14: 2503–2515

    Article  PubMed  Google Scholar 

  56. Day YJ et al. (2005) Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages. Am J Physiol Renal Physiol 288: F722–F731

    Article  CAS  PubMed  Google Scholar 

  57. Jo SK et al. (2006) Macrophages contribute to the initiation of ischaemic acute renal failure in rats. Nephrol Dial Transplant 21: 1231–1239

    Article  CAS  PubMed  Google Scholar 

  58. Munz C et al. (2005) Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. J Exp Med 202: 203–207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Anderson CF and Mosser DM (2002) A novel phenotype for an activated macrophage: the type 2 activated macrophage. J Leukoc Biol 72: 101–106

    CAS  PubMed  Google Scholar 

  60. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3: 23–35

    Article  CAS  PubMed  Google Scholar 

  61. Kerjaschki D (2005) The crucial role of macrophages in lymphangiogenesis. J Clin Invest 115: 2316–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Day YJ et al. (2003) Renal protection from ischemia mediated by A2A adenosine receptors on bone marrow-derived cells. J Clin Invest 112: 883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lemay S et al. (2000) Prominent and sustained up-regulation of gp130-signaling cytokines and the chemokine MIP-2 in murine renal ischemia-reperfusion injury. Transplantation 69: 959–963

    Article  CAS  PubMed  Google Scholar 

  64. Duffield JS et al. (2005) Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J Clin Invest 115: 56–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jang MH et al. (2006) CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes. J Immunol 176: 803–810

    Article  CAS  PubMed  Google Scholar 

  66. Dong X et al. (2005) Antigen presentation by dendritic cells in renal lymph nodes is linked to systemic and local injury to the kidney. Kidney Int 68: 1096–1108

    Article  CAS  PubMed  Google Scholar 

  67. Savransky V et al. (2006) Role of T-cell receptor in kidney ischemia-reperfusion injury. Kidney Int 69: 233–238

    Article  CAS  PubMed  Google Scholar 

  68. Togel F et al. (2005) Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol 289: F31–F42

    Article  PubMed  CAS  Google Scholar 

  69. Sotiropoulou PA et al. (2005) Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 24: 74–85

    Article  PubMed  Google Scholar 

  70. Jiang XX et al. (2005) Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105: 4120–4126

    Article  CAS  PubMed  Google Scholar 

  71. Hansen PB and Schnermann J (2003) Vasoconstrictor and vasodilator effects of adenosine in the kidney. Am J Physiol Renal Physiol 285: F590–F599

    Article  CAS  PubMed  Google Scholar 

  72. Fredholm BB et al. (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53: 527–552

    CAS  PubMed  Google Scholar 

  73. Linden J and Jacobson KA (1998) Molecular biology and pharmacology of adenosine receptors. In Cardiovascular Biology of Purines, 1–20 (Eds Burnstock G et al.) Dordrecht: Kluwer Academic Publishers

    Google Scholar 

  74. Rosin DL et al. (1998) Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 401: 163–186

    Article  CAS  PubMed  Google Scholar 

  75. Chen JF et al. (1999) A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 19: 9192–9200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jarvis MF et al. (1989) [3H]CGS 21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J Pharmacol Exp Ther 251: 888–893

    CAS  PubMed  Google Scholar 

  77. Rieger JM et al. (2001) Design, synthesis, and evaluation of novel adenosine A2A receptor agonists. J Med Chem 44: 531–539

    Article  CAS  PubMed  Google Scholar 

  78. Okusa MD et al. (1999) Selective A2A-adenosine receptor activation during reperfusion reduces ischemia-reperfusion injury in rat kidney. Am J Physiol 277: F404–F412

    CAS  PubMed  Google Scholar 

  79. Vitzthum H et al. (2004) Gene expression of adenosine receptors along the nephron. Kidney Int 65: 1180–1190

    Article  CAS  PubMed  Google Scholar 

  80. Kreisberg MS et al. (1997) Localization of adenosine-receptor subtype mRNA in rat outer medullary descending vasa recta by RT-PCR. Am J Physiol 272: H1231–H1238

    CAS  PubMed  Google Scholar 

  81. Pawelczyk T et al. (2005) Region-specific alterations of adenosine receptors expression level in kidney of diabetic rat. Am J Pathol 167: 315–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Navar LG et al. (1996) Paracrine regulation of the renal microcirculation. Physiol Rev 76: 425–536

    Article  CAS  PubMed  Google Scholar 

  83. Silldorff EP and Pallone TL (2001) Adenosine signaling in outer medullary descending vasa recta. Am J Physiol Regul Integr Comp Physiol 280: R854–R861

    Article  CAS  PubMed  Google Scholar 

  84. Nishiyama A et al. (2001) Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity. Am J Physiol 280: F406–F414

    CAS  Google Scholar 

  85. Gessi S et al. (2000) A2A-adenosine receptors in human peripheral blood cells. Br J Pharmacol 129: 2–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Koshiba M et al. (1999) Patterns of A2A-extracelluar adenosine receptor expression in different functional subsets of human peripheral T cells: flow cytometric studies with anti-A2A-receptor monoclonal antibodies. Mol Pharmacol 55: 614–624

    CAS  PubMed  Google Scholar 

  87. Linden J (2001) Molecular approach to adenosine receptors: receptor mediated mechanisms of tissue protection. Ann Rev Pharmacol Toxicol 41: 775–787

    Article  CAS  Google Scholar 

  88. Lee HT et al. (2004) A1 adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol 15: 102–111

    Article  CAS  PubMed  Google Scholar 

  89. Sitkovsky MV and Ohta A (2005) The 'danger' sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol 26: 299–304

    Article  CAS  PubMed  Google Scholar 

  90. Ohta A and Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414: 916–920

    Article  CAS  PubMed  Google Scholar 

  91. Sullivan GW et al. (2001) Cyclic AMP-dependent inhibition of human neutrophil oxidative activity by substituted 2-propynylcyclohexyl adenosine A2A receptor agonists. Br J Pharmacol 132: 1017–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sitkovsky M and Lukashev D (2005) Regulation of immune cells by local-tissue oxygen tension: HIF1α and adenosine receptors. Nat Rev Immunol 5: 712–721

    Article  CAS  PubMed  Google Scholar 

  93. Okusa MD et al. (2001) Enhanced protection from renal ischemia-reperfusion injury with A2A-adenosine receptor activation and PDE 4 inhibition. Kidney Int 59: 2114–2125

    Article  CAS  PubMed  Google Scholar 

  94. Lappas CM et al. (2005) Adenosine A2A agonists in development for the treatment of inflammation. Expert Opin Investig Drugs 14: 797–806

    Article  CAS  PubMed  Google Scholar 

  95. Cronstein BN et al. (1985) Adenosine; a physiological modulator of superoxide anion generation by human neutrophils: adenosine acts via an A2 receptor on human neutrophils. J Immunol 135: 1366–1371

    CAS  PubMed  Google Scholar 

  96. Schrier DJ and Imre KM (1986) The effects of adenosine agonists on human neutrophil function. J Immunol 137: 3284

    CAS  PubMed  Google Scholar 

  97. Sullivan GW et al. (1999) Neutrophil A2A adenosine receptor inhibits inflammation in a rat model of meningitis: synergy with type IV phosphodiesterase. J Infect Dis 180: 1550–1560

    Article  CAS  PubMed  Google Scholar 

  98. Sullivan GW et al. (2004) Activation of A2A adenosine receptors inhibits expression of alpha 4/beta 1 integrin (very late antigen-4) on stimulated human neutrophils. J Leukoc Biol 75: 127–134

    Article  CAS  PubMed  Google Scholar 

  99. Sullivan GW and Linden J (1998) Role of A2A adenosine receptors in inflammation. Drug Dev Res 45: 103–112

    Article  CAS  Google Scholar 

  100. Hasko G et al. (2000) Adenosine inhibits IL-12 and TNF-α production via adenosine A2a receptor-dependent and independent mechanisms. FASEB J 14: 2065–2074

    Article  CAS  PubMed  Google Scholar 

  101. Link AA et al. (2000) Ligand-activation of the adenosine A2a receptors inhibits IL-12 production by human monocytes. J Immunol 164: 436–442

    Article  CAS  PubMed  Google Scholar 

  102. Rothstein DM and Sayegh MH (2003) T-cell costimulatory pathways in allograft rejection and tolerance. Immunol Rev 196: 85–108

    Article  CAS  PubMed  Google Scholar 

  103. Borger P et al. (1996) Interleukin-4 gene expression in activated human T lymphocytes is regulated by the cyclic adenosine monophosphate-dependent signaling pathway. Blood 87: 691–698

    CAS  PubMed  Google Scholar 

  104. Novak TJ and Rothenberg EV (1990) cAMP inhibits induction of interleukin 2 but not of interleukin 4 in T cells. Proc Natl Acad Sci USA 87: 9353–9357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Osswald H et al. (1975) Adenosine response of the rat kidney after saline loading, sodium restriction and hemorrhagia. Pflugers Arch 357: 323–333

    Article  CAS  PubMed  Google Scholar 

  106. Lee HT and Emala CW (2001) Systemic adenosine given after ischemia protects renal function via A2a adenosine receptor activation. Am J Kidney Dis 38: 610–618

    Article  CAS  PubMed  Google Scholar 

  107. Glover DK et al. (2005) Reduction of infarct size and postischemic inflammation from ATL-146e, a highly selective adenosine A2A receptor agonist, in reperfused canine myocardium. Am J Physiol Heart Circ Physiol 288: H1851–H1858

    Article  CAS  PubMed  Google Scholar 

  108. Ross SD et al. (1999) Selective adenosine-A2A activation reduces lung reperfusion injury following transplantation. J Heart Lung Transplant 18: 994–1002

    Article  CAS  PubMed  Google Scholar 

  109. Reece TB et al. (2004) Adenosine A2A analogue reduces long-term neurologic injury after blunt spinal trauma. J Surg Res 121: 130–134

    Article  CAS  PubMed  Google Scholar 

  110. Odashima M et al. (2005) Activation of A2A adenosine receptor attenuates intestinal inflammation in animal models of inflammatory bowel disease. Gastroenterology 129: 26–33

    Article  CAS  PubMed  Google Scholar 

  111. Lee HT and Emala CW (2002) Adenosine attenuates oxidant injury in human proximal tubular cells via A1 and A2a adenosine receptors. Am J Physiol Renal Physiol 282: F844–F852

    Article  CAS  PubMed  Google Scholar 

  112. Charo IF et al. (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354: 610–621

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Drs Diane Rosin (Department of Pharmacology, University of Virginia), Alaa S Awad and Sang-Kyung Jo (Korea University) for careful reading of the manuscript and helpful discussions, and to Ms Liping Huang and Hong Ye (Department of Medicine) for expert technical assistance. Much of the data on A2A agonists has resulted from fruitful collaborative research projects with Drs Joel Linden (Department of Medicine, University of Virginia), Yuan Ji Day (Department of Anesthesiology, Chang Gung Memorial Hospital, Taipei, Taiwan) and Timothy Macdonald (Department of Chemistry, University of Virginia). This work was supported in part by funds from NIH RO1DK56223, RO1DK62324 and RO1DK065957.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D Okusa.

Ethics declarations

Competing interests

Mark D Okusa is a scientific advisor for Adenosine Therapeutics, LLC, Charlottesville, VA. Adenosine Therapeutics, LLC, provided ATL146 ester for studies reported in this manuscript. L Li declared no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Okusa, M. Blocking the immune response in ischemic acute kidney injury: the role of adenosine 2A agonists. Nat Rev Nephrol 2, 432–444 (2006). https://doi.org/10.1038/ncpneph0238

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing