Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug Insight: maintenance immunosuppression in kidney transplant recipients

Abstract

Kidney transplantation is the treatment of choice for patients with end-stage renal disease, in part because of ongoing efforts towards improving immunosuppressive strategies. Although calcineurin inhibitors remain the mainstay of immunosuppression in kidney transplant recipients, within this class of drug there has been a shift from use of ciclosporin to use of tacrolimus. Mycophenolate mofetil and mycophenolate sodium are now the antimetabolites of choice. A new class of drugs (inhibitors of mammalian target of rapamycin) that includes sirolimus is being increasingly used in stable kidney transplant recipients. New data, however, indicate that a more cautious approach to the use of this drug is warranted. Many transplant centers are now using steroid avoidance, minimization and withdrawal protocols. The impact of these different drugs and therapeutic strategies on outcomes has to be weighed against their immunosuppressive benefit. As more and more community-based nephrologists and primary care physicians are becoming involved in the care of stable kidney transplant recipients, it is important for these clinicians to familiarize themselves with novel immunosuppressive drugs and their pharmacokinetic properties.

Key Points

  • It is increasingly common for community-based nephrologists and primary care physicians to be involved in the care of stable kidney allograft recipients during the maintenance phase of immunosuppressive therapy

  • It is important that community-based nephrologists and primary care physicians are familiar with immunosuppressive drugs that have been introduced in recent years

  • Common immunosuppressants are the calcineurin inhibitors ciclosporin and tacrolimus, the antimetabolites mycophenolate mofetil, mycophenolate sodium and azathioprine, and inhibitors of the mammalian target of rapamycin such as sirolimus

  • Protocols for avoidance, minimization and withdrawal of corticosteroids from immunosuppressive regimens are being used with increasing frequency

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photographs of common immunosuppressant drugs from PDR online (http://www.pdr.net).
Figure 2: Mechanisms of action of maintenance immunosuppressive agents.
Figure 3: Trends in maintenance immunosuppression drugs used between discharge and 1 year after transplantation (1994–2003).

Similar content being viewed by others

References

  1. Wolfe RA et al. (1999) Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med 341: 1725–1730

    Article  CAS  PubMed  Google Scholar 

  2. Sayegh MH and Carpenter CB (2004) Transplantation 50 years later—progress, challenges, and promises. N Engl J Med 351: 2761–2766

    Article  CAS  PubMed  Google Scholar 

  3. Kaplan B and Meier-Kriesche HU (2004) Renal transplantation: a half century of success and the long road ahead. J Am Soc Nephrol 15: 3270–3271

    Article  PubMed  Google Scholar 

  4. Halloran PF (2004) Immunosuppressive drugs for kidney transplantation. N Engl J Med 351: 2715–2729

    Article  CAS  PubMed  Google Scholar 

  5. Meier-Kriesche HU et al. (2004) Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant 4: 378–383

    Article  PubMed  Google Scholar 

  6. Meier-Kriesche HU et al. (2004) Long-term renal allograft survival: have we made significant progress or is it time to rethink our analytic and therapeutic strategies? Am J Transplant 4: 1289–1295

    Article  PubMed  Google Scholar 

  7. Keith DS et al. (2005) Factors associated with improvement in deceased donor renal allograft function in the 1990s. J Am Soc Nephrol 16: 1512–1521

    Article  PubMed  Google Scholar 

  8. Meyers CM and Kirk AD (2005) Workshop on late renal allograft dysfunction. Am J Transplant 5: 1600–1605

    Article  PubMed  Google Scholar 

  9. Halloran PF et al. (1999) Rethinking chronic allograft nephropathy: the concept of accelerated senescence. J Am Soc Nephrol 10: 167–181

    CAS  PubMed  Google Scholar 

  10. Meier-Kriesche HU et al. (2003) Decreased renal function is a strong risk factor for cardiovascular death after renal transplantation. Transplantation 75: 1291–1295

    Article  PubMed  Google Scholar 

  11. Kaplan B and Meier-Kriesche HU (2002) Death after graft loss: an important late study endpoint in kidney transplantation. Am J Transplant 2: 970–974

    Article  PubMed  Google Scholar 

  12. [No authors listed] (2005) USRDS 2004 annual data report. Am J Kidney Dis 45 (Suppl 1): 8–280

  13. Djamali A et al. (2006) Medical care of kidney transplant recipients after the first posttransplant year. Clin J Am Soc Nephrol 1: 623–640

    Article  PubMed  Google Scholar 

  14. Djamali A et al. (2003) Disease progression and outcomes in chronic kidney disease and renal transplantation. Kidney Int 64: 1800–1807

    Article  PubMed  Google Scholar 

  15. Srinivas TR et al. (2005) Pharmacokinetic principles of immunosuppressive drugs. Am J Transplant 5: 207–217

    Article  CAS  PubMed  Google Scholar 

  16. Hirsch HH et al. (2005) Polyomavirus-associated nephropathy in renal transplantation: interdisciplinary analyses and recommendations. Transplantation 79: 1277–1286

    Article  PubMed  Google Scholar 

  17. Meier-Kriesche HU et al. (2006) Immunosuppression: evolution in practice and trends, 1994–2004. Am J Transplant 6: 1111–1131

    Article  CAS  PubMed  Google Scholar 

  18. Shapiro R et al. (2005) Immunosuppression: evolution in practice and trends, 1993–2003. Am J Transplant 5: 874–886

    Article  PubMed  Google Scholar 

  19. Denton MD et al. (1999) Immunosuppressive strategies in transplantation. Lancet 353: 1083–1091

    Article  CAS  PubMed  Google Scholar 

  20. Lemahieu WP et al. (2004) CYP3A4 and P-glycoprotein activity in healthy controls and transplant patients on cyclosporin vs. tacrolimus vs. sirolimus. Am J Transplant 4: 1514–1522

    Article  CAS  PubMed  Google Scholar 

  21. Kasiske BL et al. (2000) Recommendations for the outpatient surveillance of renal transplant recipients. American Society of Transplantation. J Am Soc Nephrol 11 (Suppl 15): S1–S86

    PubMed  Google Scholar 

  22. Neylan JF (1998) Racial differences in renal transplantation after immunosuppression with tacrolimus versus cyclosporine. FK506 Kidney Transplant Study Group. Transplantation 65: 515–523

    Article  CAS  PubMed  Google Scholar 

  23. Hardinger KL et al. (2004) Current and future immunosuppressive strategies in renal transplantation. Pharmacotherapy 24: 1159–1176

    Article  CAS  PubMed  Google Scholar 

  24. Kapturczak MH et al. (2004) Pharmacology of calcineurin antagonists. Transplant Proc 36: 25S–32S

    Article  CAS  PubMed  Google Scholar 

  25. Pirsch JD et al. (1997) A comparison of tacrolimus (FK506) and cyclosporine for immunosuppression after cadaveric renal transplantation. FK506 Kidney Transplant Study Group. Transplantation 63: 977–983

    Article  CAS  PubMed  Google Scholar 

  26. Mayer AD et al. (1997) Multicenter randomized trial comparing tacrolimus (FK506) and cyclosporine in the prevention of renal allograft rejection: a report of the European Tacrolimus Multicenter Renal Study Group. Transplantation 64: 436–443

    Article  CAS  PubMed  Google Scholar 

  27. Burdmann EA et al. (2003) Cyclosporine nephrotoxicity. Semin Nephrol 23: 465–476

    Article  CAS  PubMed  Google Scholar 

  28. Pham PT et al. (2000) Cyclosporine and tacrolimus-associated thrombotic microangiopathy. Am J Kidney Dis 36: 844–850

    Article  CAS  PubMed  Google Scholar 

  29. Bennett WM et al. (1996) Chronic cyclosporine nephropathy: the Achilles' heel of immunosuppressive therapy. Kidney Int 50: 1089–1100

    Article  CAS  PubMed  Google Scholar 

  30. Gonwa T et al. (2003) Randomized trial of tacrolimus + mycophenolate mofetil or azathioprine versus cyclosporine + mycophenolate mofetil after cadaveric kidney transplantation: results at three years. Transplantation 75: 2048–2053

    Article  CAS  PubMed  Google Scholar 

  31. Meier-Kriesche HU and Kaplan B (2002) Cyclosporine microemulsion and tacrolimus are associated with decreased chronic allograft failure and improved long-term graft survival as compared with sandimmune. Am J Transplant 2: 100–104

    Article  CAS  PubMed  Google Scholar 

  32. Holzmacher R et al. (2005) Low serum magnesium is associated with decreased graft survival in patients with chronic cyclosporin nephrotoxicity. Nephrol Dial Transplant 20: 1456–1462

    Article  CAS  PubMed  Google Scholar 

  33. Tran HT et al. (2000) Avoidance of cyclosporine in renal transplantation: effects of daclizumab, mycophenolate mofetil, and steroids. J Am Soc Nephrol 11: 1903–1909

    CAS  PubMed  Google Scholar 

  34. Flechner SM et al. (2004) De novo kidney transplantation without use of calcineurin inhibitors preserves renal structure and function at two years. Am J Transplant 4: 1776–1785

    Article  CAS  PubMed  Google Scholar 

  35. Knechtle SJ et al. (2003) Campath-1H induction plus rapamycin monotherapy for renal transplantation: results of a pilot study. Am J Transplant 3: 722–730

    Article  CAS  PubMed  Google Scholar 

  36. Kreis H et al. (2004) Long-term benefits with sirolimus-based therapy after early cyclosporine withdrawal. J Am Soc Nephrol 15: 809–817

    Article  CAS  PubMed  Google Scholar 

  37. Mota A et al. (2004) Sirolimus-based therapy following early cyclosporine withdrawal provides significantly improved renal histology and function at 3 years. Am J Transplant 4: 953–961

    Article  CAS  PubMed  Google Scholar 

  38. Diekmann F et al. (2004) Predictors of success in conversion from calcineurin inhibitor to sirolimus in chronic allograft dysfunction. Am J Transplant 4: 1869–1875

    Article  CAS  PubMed  Google Scholar 

  39. Weir MR et al. (2001) Long-term impact of discontinued or reduced calcineurin inhibitor in patients with chronic allograft nephropathy. Kidney Int 59: 1567–1573

    Article  CAS  PubMed  Google Scholar 

  40. Kasiske BL et al. (2000) A meta-analysis of immunosuppression withdrawal trials in renal transplantation. J Am Soc Nephrol 11: 1910–1917

    CAS  PubMed  Google Scholar 

  41. Mulay AV et al. (2005) Calcineurin inhibitor withdrawal from sirolimus-based therapy in kidney transplantation: a systematic review of randomized trials. Am J Transplant 5: 1748–1756

    Article  CAS  PubMed  Google Scholar 

  42. Johnson RW et al. (2001) Sirolimus allows early cyclosporine withdrawal in renal transplantation resulting in improved renal function and lower blood pressure. Transplantation 72: 777–786

    Article  CAS  PubMed  Google Scholar 

  43. Weir MR et al. (1997) A novel approach to the treatment of chronic allograft nephropathy. Transplantation 64: 1706–1710

    Article  CAS  PubMed  Google Scholar 

  44. Pilmore HL and Dittmer ID (2002) Calcineurin inhibitor nephrotoxicity: reduction in dose results in marked improvement in renal function in patients with coexisting chronic allograft nephropathy. Clin Transplant 16: 191–195

    Article  PubMed  Google Scholar 

  45. Weir MR et al. (2004) Late calcineurin inhibitor withdrawal as a strategy to prevent graft loss in patients with suboptimal kidney transplant function. Am J Nephrol 24: 379–386

    Article  CAS  PubMed  Google Scholar 

  46. Parrish JA (2005) Immunosuppression, skin cancer, and ultraviolet A radiation. N Engl J Med 353: 2712–2713

    Article  CAS  PubMed  Google Scholar 

  47. Buell JF et al. (2005) Malignancy after transplantation. Transplantation 80: S254–S264

    Article  PubMed  Google Scholar 

  48. O'Donovan P et al. (2005) Azathioprine and UVA light generate mutagenic oxidative DNA damage. Science 309: 1871–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Halloran P et al. (1997) Mycophenolate mofetil in renal allograft recipients: a pooled efficacy analysis of three randomized, double-blind, clinical studies in prevention of rejection. The International Mycophenolate Mofetil Renal Transplant Study Groups. Transplantation 63: 39–47

    Article  CAS  PubMed  Google Scholar 

  50. Remuzzi G et al. (2004) Mycophenolate mofetil versus azathioprine for prevention of acute rejection in renal transplantation (MYSS): a randomised trial. Lancet 364: 503–512

    Article  CAS  PubMed  Google Scholar 

  51. Budde K et al. (2004) Enteric-coated mycophenolate sodium can be safely administered in maintenance renal transplant patients: results of a 1-year study. Am J Transplant 4: 237–243

    Article  CAS  PubMed  Google Scholar 

  52. Salvadori M et al. (2004) Enteric-coated mycophenolate sodium is therapeutically equivalent to mycophenolate mofetil in de novo renal transplant patients. Am J Transplant 4: 231–236

    Article  CAS  PubMed  Google Scholar 

  53. Meier-Kriesche HU et al. (2005) Mycophenolate sodium does not reduce the incidence of GI adverse events compared with mycophenolate mofetil. Am J Transplant 5: 1164–1166

    Article  PubMed  Google Scholar 

  54. Sollinger HW (1995) Mycophenolate mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. U.S. Renal Transplant Mycophenolate Mofetil Study Group. Transplantation 60: 225–232

    Article  CAS  PubMed  Google Scholar 

  55. [No authors listed] (1995) Placebo-controlled study of mycophenolate mofetil combined with cyclosporin and corticosteroids for prevention of acute rejection. European Mycophenolate Mofetil Cooperative Study Group. Lancet 345: 1321–1325

  56. Srinivas TR et al. (2003) Mycophenolate mofetil in solid-organ transplantation. Expert Opin Pharmacother 4: 2325–2345

    Article  CAS  PubMed  Google Scholar 

  57. Meier-Kriesche HU et al. (2003) Long-term use of mycophenolate mofetil is associated with a reduction in the incidence and risk of late rejection. Am J Transplant 3: 68–73

    Article  CAS  PubMed  Google Scholar 

  58. Shaw LM et al. (2003) Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am J Transplant 3: 534–542

    Article  CAS  PubMed  Google Scholar 

  59. Borrows R et al. (2006) Mycophenolic acid 12-h trough level monitoring in renal transplantation: association with acute rejection and toxicity. Am J Transplant 6: 121–128

    Article  CAS  PubMed  Google Scholar 

  60. van Gelder T and Shaw LM (2005) The rationale for and limitations of therapeutic drug monitoring for mycophenolate mofetil in transplantation. Transplantation 80: S244–S253

    Article  CAS  PubMed  Google Scholar 

  61. Mladenovic V et al. (1995) Safety and effectiveness of leflunomide in the treatment of patients with active rheumatoid arthritis. Results of a randomized, placebo-controlled, phase II study. Arthritis Rheum 38: 1595–1603

    Article  CAS  PubMed  Google Scholar 

  62. van Roon EN et al. (2004) Leflunomide for the treatment of rheumatoid arthritis in clinical practice: incidence and severity of hepatotoxicity. Drug Saf 27: 345–352

    Article  CAS  PubMed  Google Scholar 

  63. Hardinger KL et al. (2002) Prospective, pilot, open-label, short-term study of conversion to leflunomide reverses chronic renal allograft dysfunction. Am J Transplant 2: 867–871

    Article  CAS  PubMed  Google Scholar 

  64. Williams JW et al. (2005) Leflunomide for polyomavirus type BK nephropathy. N Engl J Med 352: 1157–1158

    Article  CAS  PubMed  Google Scholar 

  65. Josephson MA et al. (2006) Treatment of renal allograft polyoma BK virus infection with leflunomide. Transplantation 81: 704–710

    Article  CAS  PubMed  Google Scholar 

  66. John GT et al. (2004) Leflunomide therapy for cytomegalovirus disease in renal allograft recepients. Transplantation 77: 1460–1461

    Article  CAS  PubMed  Google Scholar 

  67. Saunders RN et al. (2001) Rapamycin in transplantation: a review of the evidence. Kidney Int 59: 3–16

    Article  CAS  PubMed  Google Scholar 

  68. Cattaneo D et al. (2004) Therapeutic drug monitoring of sirolimus: effect of concomitant immunosuppressive therapy and optimization of drug dosing. Am J Transplant 4: 1345–1351

    Article  CAS  PubMed  Google Scholar 

  69. Pascual J et al. (2005) Clinical experience with everolimus (Certican): optimizing dose and tolerability. Transplantation 79: S80–S84

    Article  CAS  PubMed  Google Scholar 

  70. Kirchner GI et al. (2004) Clinical pharmacokinetics of everolimus. Clin Pharmacokinet 43: 83–95

    Article  CAS  PubMed  Google Scholar 

  71. Kahan BD (2000) Efficacy of sirolimus compared with azathioprine for reduction of acute renal allograft rejection: a randomised multicentre study. The Rapamune US Study Group. Lancet 356: 194–202

    Article  CAS  PubMed  Google Scholar 

  72. MacDonald AS (2001) A worldwide, phase III, randomized, controlled, safety and efficacy study of a sirolimus/cyclosporine regimen for prevention of acute rejection in recipients of primary mismatched renal allografts. Transplantation 71: 271–280

    Article  CAS  PubMed  Google Scholar 

  73. Groth CG et al. (1999) Sirolimus (rapamycin)-based therapy in human renal transplantation: similar efficacy and different toxicity compared with cyclosporine. Sirolimus European Renal Transplant Study Group. Transplantation 67: 1036–1042

    Article  CAS  PubMed  Google Scholar 

  74. Kreis H et al. (2000) Sirolimus in association with mycophenolate mofetil induction for the prevention of acute graft rejection in renal allograft recipients. Transplantation 69: 1252–1260

    Article  CAS  PubMed  Google Scholar 

  75. Oberbauer R et al. (2003) Long-term improvement in renal function with sirolimus after early cyclosporine withdrawal in renal transplant recipients: 2-year results of the Rapamune Maintenance Regimen Study. Transplantation 76: 364–370

    Article  CAS  PubMed  Google Scholar 

  76. Lo A et al. (2004) Comparison of sirolimus-based calcineurin inhibitor-sparing and calcineurin inhibitor-free regimens in cadaveric renal transplantation. Transplantation 77: 1228–1235

    Article  CAS  PubMed  Google Scholar 

  77. Webster AC et al. (2006) Target of rapamycin inhibitors (sirolimus and everolimus) for primary immunosuppression of kidney transplant recipients: a systematic review and meta-analysis of randomized trials. Transplantation 81: 1234–1248

    Article  CAS  PubMed  Google Scholar 

  78. Meier-Kriesche HU et al. (2005) Sirolimus in combination with tacrolimus is associated with worse renal allograft survival compared to mycophenolate mofetil combined with tacrolimus. Am J Transplant 5: 2273–2280

    Article  CAS  PubMed  Google Scholar 

  79. Meier-Kriesche HU et al. (2004) Sirolimus with neoral versus mycophenolate mofetil with neoral is associated with decreased renal allograft survival. Am J Transplant 4: 2058–2066

    Article  CAS  PubMed  Google Scholar 

  80. Senior PA et al. (2005) Proteinuria developing after clinical islet transplantation resolves with sirolimus withdrawal and increased tacrolimus dosing. Am J Transplant 5: 2318–2323

    Article  PubMed  Google Scholar 

  81. van den Akker JM et al. (2006) Proteinuria following conversion from azathioprine to sirolimus in renal transplant recipients. Kidney Int 70: 1355–1357

    Article  CAS  PubMed  Google Scholar 

  82. Stephany BR et al. (2006) Differences in proteinuria and graft function in de novo sirolimus-based vs. calcineurin inhibitor-based immunosuppression in live donor kidney transplantation. Transplantation 82: 368–374

    Article  CAS  PubMed  Google Scholar 

  83. Knight RJ and Kahan BD (2006) The place of sirolimus in kidney transplantation: can we reduce calcineurin inhibitor renal toxicity? Kidney Int 70: 994–999

    Article  CAS  PubMed  Google Scholar 

  84. Brattstrom C et al. (1998) Hyperlipidemia in renal transplant recipients treated with sirolimus (rapamycin). Transplantation 65: 1272–1274

    Article  CAS  PubMed  Google Scholar 

  85. Augustine JJ et al. (2004) Comparative effects of sirolimus and mycophenolate mofetil on erythropoiesis in kidney transplant patients. Am J Transplant 4: 2001–2006

    Article  CAS  PubMed  Google Scholar 

  86. McTaggart RA et al. (2004) Comparison of outcomes after delayed graft function: sirolimus-based versus other calcineurin-inhibitor sparing induction immunosuppression regimens. Transplantation 78: 475–480

    Article  CAS  PubMed  Google Scholar 

  87. Fritsche L et al. (2004) Testosterone concentrations and sirolimus in male renal transplant patients. Am J Transplant 4: 130–131

    Article  CAS  PubMed  Google Scholar 

  88. Franchimont D (2004) Overview of the actions of glucocorticoids on the immune response: a good model to characterize new pathways of immunosuppression for new treatment strategies. Ann NY Acad Sci 1024: 124–137

    Article  CAS  PubMed  Google Scholar 

  89. Czock D et al. (2005) Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet 44: 61–98

    Article  CAS  PubMed  Google Scholar 

  90. Opelz G et al. (2005) Long-term prospective study of steroid withdrawal in kidney and heart transplant recipients. Am J Transplant 5: 720–728

    Article  CAS  PubMed  Google Scholar 

  91. Hricik DE (2005) Steroid withdrawal for the (selected) masses. Am J Transplant 5: 639–640

    Article  PubMed  Google Scholar 

  92. Woodle ES et al. (2005) A multicenter pilot study of early (4-day) steroid cessation in renal transplant recipients under simulect, tacrolimus and sirolimus. Am J Transplant 5: 157–166

    Article  CAS  PubMed  Google Scholar 

  93. Vanrenterghem Y et al. (2005) Minimization of immunosuppressive therapy after renal transplantation: results of a randomized controlled trial. Am J Transplant 5: 87–95

    Article  CAS  PubMed  Google Scholar 

  94. Pascual J et al. (2004) Steroid withdrawal in renal transplant patients on triple therapy with a calcineurin inhibitor and mycophenolate mofetil: a meta-analysis of randomized, controlled trials. Transplantation 78: 1548–1556

    Article  CAS  PubMed  Google Scholar 

  95. Khwaja K et al. (2004) Outcome at 3 years with a prednisone-free maintenance regimen: a single-center experience with 349 kidney transplant recipients. Am J Transplant 4: 980–987

    Article  PubMed  Google Scholar 

  96. Hricik DE et al. (2003) Withdrawal of steroid therapy in African American kidney transplant recipients receiving sirolimus and tacrolimus. Transplantation 76: 938–942

    Article  CAS  PubMed  Google Scholar 

  97. Armenti VT et al. (2004) Report from the National Transplantation Pregnancy Registry (NTPR): outcomes of pregnancy after transplantation. Clin Transpl [no issue listed] 103–114

  98. Rahamimov R et al. (2006) Pregnancy in renal transplant recipients: long-term effect on patient and graft survival. A single-center experience. Transplantation 81: 660–664

    Article  PubMed  Google Scholar 

  99. Ostensen M et al. (2006) Anti-inflammatory and immunosuppressive drugs and reproduction. Arthritis Res Ther 8: 209

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Some of the work presented here was supported by grants AHA SDG 0235290N (MS), NIH KO8-DK067981 (AD); RO1-AI49285 (BNB) and K24-DK616962 (BNB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjang Djamali.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samaniego, M., Becker, B. & Djamali, A. Drug Insight: maintenance immunosuppression in kidney transplant recipients. Nat Rev Nephrol 2, 688–699 (2006). https://doi.org/10.1038/ncpneph0343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncpneph0343

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing