Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms and consequences of carbamoylation

Key Points

  • Carbamoylation is a non-enzymatic reaction during which a carbamoyl moiety is added to proteins, peptides or amino acids; this post-translational molecular modification contributes to the molecular ageing of proteins

  • Carbamoylation-derived products are formed by the reaction of proteins, peptides or amino acids with isocyanic acid, which originates from urea or by oxidation of thiocyanate by myeloperoxidase in inflammatory conditions and in atherosclerotic plaques

  • Carbamoylation has important effects on the immune system, atherosclerosis, lipid metabolism, and the progression of chronic kidney disease

  • Carbamoylation-derived products are emerging as important markers of survival in the general population as well as in patients on dialysis

Abstract

Protein carbamoylation is a non-enzymatic post-translational modification that binds isocyanic acid, which can be derived from the dissociation of urea or from the myeloperoxidase-mediated catabolism of thiocyanate, to the free amino groups of a multitude of proteins. Although the term 'carbamoylation' is usually replaced by the term “carbamylation” in the literature, carbamylation refers to a different chemical reaction (the reversible interaction of CO2 with α and ε-amino groups of proteins). Depending on the altered molecule (for example, collagen, erythropoietin, haemoglobin, low-density lipoprotein or high-density lipoprotein), carbamoylation can have different pathophysiological effects. Carbamoylated proteins have been linked to atherosclerosis, lipid metabolism, immune system dysfunction (such as inhibition of the classical complement pathway, inhibition of complement-dependent rituximab cytotoxicity, reduced oxidative neutrophil burst, and the formation of anti-carbamoylated protein antibodies) and renal fibrosis. In this Review, we discuss the carbamoylation process and evaluate the available biomarkers of carbamoylation (for example, homocitrulline, the percentage of carbamoylated albumin, carbamoylated haemoglobin, and carbamoylated low-density lipoprotein). We also discuss the relationship between carbamoylation and the occurrence of cardiovascular events and mortality in patients with chronic kidney disease and assess the effects of strategies to lower the carbamoylation load.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Carbamoylation.
Figure 2: Effects of carbamoylation on endothelial function.

Similar content being viewed by others

References

  1. Brück, K. et al. CKD prevalence varies across the European general population. J. Am. Soc. Nephrol. 27, 2135–2147 (2016).

    Article  PubMed  Google Scholar 

  2. Kelly, T., Yang, W., Chen, C.-S., Reynolds, K. & He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. (Lond.) 32, 1431–1437 (2008).

    Article  CAS  Google Scholar 

  3. Huang, E. S., Basu, A., O'Grady, M. & Capretta, J. C. Projecting the future diabetes population size and related costs for the U.S. Diabetes Care 32, 2225–2229 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Foley, R. N., Parfrey, P. S. & Sarnak, M. J. Clinical epidemiology of cardiovascular disease in chronic renal disease. Am. J. Kidney Dis. 32, S112–S119 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Collins, A. J. Cardiovascular mortality in end-stage renal disease. Am. J. Med. Sci. 325, 163–167 (2003).

    Article  PubMed  Google Scholar 

  6. Berg, A. H. et al. Carbamylation of serum albumin as a risk factor for mortality in patients with kidney failure. Sci. Transl Med. 5, 175ra29 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Koeth, R. A. et al. Protein carbamylation predicts mortality in ESRD. J. Am. Soc. Nephrol. 24, 853–861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, Z. et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med. 13, 1176–1184 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Gillery, P. & Jaisson, S. Post-translational modification derived products (PTMDPs): toxins in chronic diseases? Clin. Chem. Lab. Med. 52, 33–38 (2014).

    CAS  PubMed  Google Scholar 

  10. Sun, J. T. et al. Increased carbamylation level of HDL in end-stage renal disease: carbamylated-HDL attenuated endothelial cell function. Am. J. Physiol. Renal Physiol. 310, F511–F517 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Jaisson, S. et al. Increased serum homocitrulline concentrations are associated with the severity of coronary artery disease. Clin. Chem. Lab. Med. 53, 103–110 (2015).

    CAS  PubMed  Google Scholar 

  12. Speer, T. et al. Carbamylated low-density lipoprotein induces endothelial dysfunction. Eur. Heart J. 35, 3021–3032 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Holy, E. W. et al. Carbamylated low-density lipoproteins induce a prothrombotic state via LOX-1: impact on arterial thrombus formation in vivo. J. Am. Coll. Cardiol. 68, 1664–1676 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Koro, C. et al. Carbamylation of immunoglobulin abrogates activation of the classical complement pathway. Eur. J. Immunol. 44, 3403–3412 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pruijn, G. J. M. Citrullination and carbamylation in the pathophysiology of rheumatoid arthritis. Front. Immunol. 6, 192 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gross, M.-L. et al. Glycated and carbamylated albumin are more 'nephrotoxic' than unmodified albumin in the amphibian kidney. Am. J. Physiol. Renal Physiol. 301, F476–F485 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Lapko, V. N., Smith, D. L. & Smith, J. B. In vivo carbamylation and acetylation of water-soluble human lens alphaB-crystallin lysine 92. Protein Sci. 10, 1130–1136 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gorisse, L. et al. Protein carbamylation is a hallmark of aging. Proc. Natl Acad. Sci. USA 113, 1191–1196 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Dirnhuber, P. & Schütz, F. The isomeric transformation of urea into ammonium cyanate in aqueous solutions. Biochem. J. 42, 628–632 (1948).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stark, G. R. On the reversibel reaction of cyanate with sulfhydryl groups and the determination of NH2-terminal cysteine and cystine in proteins. J. Biol. Chem. 239, 1411–1414 (1964).

    CAS  PubMed  Google Scholar 

  21. Stark, G. R. Reactions of cyanate with functional groups of proteins. 3. Reactions with amino and carboxyl groups. Biochemistry 4, 1030–1036 (1965).

    Article  CAS  PubMed  Google Scholar 

  22. Isom, D. G., Castañeda, C. A., Cannon, B. R. & García-Moreno, B. Large shifts in pKa values of lysine residues buried inside a protein. Proc. Natl Acad. Sci. USA 108, 5260–5265 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Jelkmann, W. 'O', erythropoietin carbamoylation versus carbamylation. Nephrol. Dial. Transplant. 23, 3033; author reply 3033–3034 (2008).

    Article  PubMed  Google Scholar 

  24. Roberts, J. M. et al. Isocyanic acid in the atmosphere and its possible link to smoke-related health effects. Proc. Natl Acad. Sci. USA 108, 8966–8971 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Kassa, R. M. et al. On the biomarkers and mechanisms of konzo, a distinct upper motor neuron disease associated with food (cassava) cyanogenic exposure. Food Chem. Toxicol. 49, 571–578 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Zil-a-Rubab & Rahman, M. A. Serum thiocyanate levels in smokers, passive smokers and never smokers. J. Pak. Med. Assoc. 56, 323–326 (2006).

    PubMed  Google Scholar 

  27. Stark, G. R., Stein, W. H. & Moore, S. Reactions of the cyanate present in aqueous urea with amino acids and proteins. J. Biol. Chem. 235, 3177–3181 (1960).

    CAS  Google Scholar 

  28. Nilsson, L., Lundquist, P., Kågedal, B. & Larsson, R. Plasma cyanate concentrations in chronic renal failure. Clin. Chem. 42, 482–483 (1996).

    CAS  PubMed  Google Scholar 

  29. Koshiishi, I. & Imanari, T. State analysis of endogenous cyanate ion in human plasma. J. Pharmacobiodyn. 13, 254–258 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Odobasic, D., Kitching, A. R. & Holdsworth, S. R. Neutrophil-mediated regulation of innate and adaptive immunity: the role of myeloperoxidase. J. Immunol. Res. 2016, 2349817 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meuwese, M. C. et al. Serum myeloperoxidase levels are associated with the future risk of coronary artery disease in apparently healthy individuals: the EPIC-Norfolk Prospective Population Study. J. Am. Coll. Cardiol. 50, 159–165 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Teng, N. et al. The roles of myeloperoxidase in coronary artery disease and its potential implication in plaque rupture. Redox Rep. 22, 51–73 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Nicholls, S. J. & Hazen, S. L. Myeloperoxidase and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 25, 1102–1111 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Vita, J. A. et al. Serum myeloperoxidase levels independently predict endothelial dysfunction in humans. Circulation 110, 1134–1139 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hilhorst, M., van Paassen, P. & Tervaert, J. W. C. Proteinase 3–ANCA vasculitis versus myeloperoxidase–ANCA vasculitis. J. Am. Soc. Nephrol. 26, 2314–2327 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Dalen, C. J., Whitehouse, M. W., Winterbourn, C. C. & Kettle, A. J. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem. J. 327, 487–492 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hasuike, Y. et al. Accumulation of cyanide and thiocyanate in haemodialysis patients. Nephrol. Dial. Transplant. 19, 1474–1479 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Koyama, K. et al. Abnormal cyanide metabolism in uraemic patients. Nephrol. Dial. Transplant. 12, 1622–1628 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Cailleux, A. et al. Cyanide and thiocyanate blood levels in patients with renal failure or respiratory disease. J. Med. 19, 345–351 (1988).

    CAS  PubMed  Google Scholar 

  40. Rovira-Llopis, S. et al. Is myeloperoxidase a key component in the ROS-induced vascular damage related to nephropathy in type 2 diabetes? Antioxid. Redox Signal. 19, 1452–1458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shiu, S. W. M. et al. Carbamylation of LDL and its relationship with myeloperoxidase in type 2 diabetes mellitus. Clin. Sci. Lond. 126, 175–181 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Wiersma, J. J. et al. Diabetes mellitus type 2 is associated with higher levels of myeloperoxidase. Med. Sci. Monit. 14, CR406–410 (2008).

    CAS  PubMed  Google Scholar 

  43. Tang, W. H. W. et al. Protein carbamylation in chronic systolic heart failure: relationship with renal impairment and adverse long-term outcomes. J. Card. Fail. 19, 219–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Trepanier, D. J., Thibert, R. J., Draisey, T. F. & Caines, P. S. Carbamylation of erythrocyte membrane proteins: an in vitro and in vivo study. Clin. Biochem. 29, 347–355 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Jaisson, S., Pietrement, C. & Gillery, P. Carbamylation-derived products: bioactive compounds and potential biomarkers in chronic renal failure and atherosclerosis. Clin. Chem. 57, 1499–1505 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Jaisson, S. et al. Homocitrulline as marker of protein carbamylation in hemodialyzed patients. Clin. Chim. Acta 460, 5–10 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Jaisson, S., Gorisse, L., Pietrement, C. & Gillery, P. Quantification of plasma homocitrulline using hydrophilic interaction liquid chromatography (HILIC) coupled to tandem mass spectrometry. Anal. Bioanal. Chem. 402, 1635–1641 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Pietrement, C., Gorisse, L., Jaisson, S. & Gillery, P. Chronic increase of urea leads to carbamylated proteins accumulation in tissues in a mouse model of CKD. PLoS ONE 8, e82506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Flückiger, R., Harmon, W., Meier, W., Loo, S. & Gabbay, K. H. Hemoglobin carbamylation in uremia. N. Engl. J. Med. 304, 823–827 (1981).

    Article  PubMed  Google Scholar 

  50. Jensen, M., Nathan, D. G. & Bunn, H. F. The reaction of cyanate with the alpha and beta subunits in hemoglobin. Effects of oxygenation, phosphates, and carbon dioxide. J. Biol. Chem. 248, 8057–8063 (1973).

    CAS  PubMed  Google Scholar 

  51. Stim, J. et al. Factors determining hemoglobin carbamylation in renal failure. Kidney Int. 48, 1605–1610 (1995).

    Article  CAS  PubMed  Google Scholar 

  52. Davenport, A., Jones, S. R., Goel, S., Astley, J. P. & Hartog, M. Differentiation of acute from chronic renal impairment by detection of carbamylated haemoglobin. Lancet 341, 1614–1617 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Singh, A. K. et al. Determination of carbamylated hemoglobin by an enzyme immunoassay (ELISA) based on a novel antibody. Clin. Chim. Acta 391, 112–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Kwan, J. T., Carr, E. C., Bending, M. R. & Barron, J. L. Determination of carbamylated hemoglobin by high-performance liquid chromatography. Clin. Chem. 36, 607–610 (1990).

    CAS  PubMed  Google Scholar 

  55. Heiene, R., Vulliet, P. R., Williams, R. L. & Cowgill, L. D. Use of capillary electrophoresis to quantitate carbamylated hemoglobin concentrations in dogs with renal failure. Am. J. Vet. Res. 62, 1302–1306 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Balion, C. M., Draisey, T. F. & Thibert, R. J. Carbamylated hemoglobin and carbamylated plasma protein in hemodialyzed patients. Kidney Int. 53, 488–495 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Hasuike, Y. et al. Carbamylated hemoglobin as a therapeutic marker in hemodialysis. Nephron 91, 228–234 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Davenport, A., Jones, S., Goel, S., Astley, J. P. & Feest, T. G. Carbamylated hemoglobin: a potential marker for the adequacy of hemodialysis therapy in end-stage renal failure. Kidney Int. 50, 1344–1351 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Kwan, J. T. et al. Carbamylated haemoglobin, urea kinetic modelling and adequacy of dialysis in haemodialysis patients. Nephrol. Dial. Transplant. 6, 38–43 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Tarif, N., Shaykh, M., Stim, J., Arruda, J. A. & Dunea, G. Carbamylated hemoglobin in hemodialysis patients. Am. J. Kidney Dis. 30, 361–365 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Wynckel, A. et al. Kinetics of carbamylated haemoglobin in acute renal failure. Nephrol. Dial. Transplant. 15, 1183–1188 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. De Furia, F. G., Miller, D. R., Cerami, A. & Manning, J. M. The effects of cyanate in vitro on redxblood cell metabolism and function in sickle cell anemia. J. Clin. Invest. 51, 566–574 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chang, H., Ewert, S. M., Bookchin, R. M. & Nagel, R. L. Comparative evaluation of fifteen anti-sickling agents. Blood 61, 693–704 (1983).

    CAS  PubMed  Google Scholar 

  64. Monti, J. P. et al. Opposite effects of urea on hemoglobin–oxygen affinity in anemia of chronic renal failure. Kidney Int. 48, 827–831 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Apostolov, E. O., Shah, S. V., Ok, E. & Basnakian, A. G. Quantification of carbamylated LDL in human sera by a new sandwich ELISA. Clin. Chem. 51, 719–728 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Holvoet, P. et al. Malondialdehyde-modified low density lipoproteins in patients with atherosclerotic disease. J. Clin. Invest. 95, 2611–2619 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kotani, K. et al. Distribution of immunoreactive malondialdehyde-modified low-density lipoprotein in human serum. Biochim. Biophys. Acta 1215, 121–125 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Kohno, H. et al. Simple and practical sandwich-type enzyme immunoassay for human oxidatively modified low density lipoprotein using antioxidized phosphatidylcholine monoclonal antibody and antihuman apolipoprotein-B antibody. Clin. Biochem. 33, 243–253 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Itabe, H. et al. Sensitive detection of oxidatively modified low density lipoprotein using a monoclonal antibody. J. Lipid Res. 37, 45–53 (1996).

    CAS  PubMed  Google Scholar 

  70. Van Tits, L. et al. Increased levels of low-density lipoprotein oxidation in patients with familial hypercholesterolemia and in end-stage renal disease patients on hemodialysis. Lab. Invest. 83, 13–21 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Bosmans, J. L. et al. Oxidative modification of low-density lipoproteins and the outcome of renal allografts at 1 1/2 years. Kidney Int. 59, 2346–2356 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Bose, C., Shah, S. V., Karaduta, O. K. & Kaushal, G. P. Carbamylated low-density lipoprotein (cLDL)-mediated induction of autophagy and its role in endothelial cell injury. PLoS ONE 11, e0165576 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Apostolov, E. O., Basnakian, A. G., Ok, E. & Shah, S. V. Carbamylated low-density lipoprotein: nontraditional risk factor for cardiovascular events in patients with chronic kidney disease. J. Ren. Nutr. 22, 134–138 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Apostolov, E. O., Ray, D., Savenka, A. V., Shah, S. V. & Basnakian, A. G. Chronic uremia stimulates LDL carbamylation and atherosclerosis. J. Am. Soc. Nephrol. 21, 1852–1857 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Trécherel, E. et al. Upregulation of BAD, a pro-apoptotic protein of the BCL2 family, in vascular smooth muscle cells exposed to uremic conditions. Biochem. Biophys. Res. Commun. 417, 479–483 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Lau, W. L. & Vaziri, N. D. Urea, a true uremic toxin: the empire strikes back. Clin. Sci. Lond. 131, 3–12 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Shroff, R. C. et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation 118, 1748–1757 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Davignon, J. & Ganz, P. Role of endothelial dysfunction in atherosclerosis. Circulation 109, III27–III32 (2004).

    PubMed  Google Scholar 

  79. D'Apolito, M. et al. Urea-induced ROS cause endothelial dysfunction in chronic renal failure. Atherosclerosis 239, 393–400 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Carracedo, J. et al. Carbamylated low-density lipoprotein induces oxidative stress and accelerated senescence in human endothelial progenitor cells. FASEB J. 25, 1314–1322 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Schreier, S. M. et al. S-Carbamoylation impairs the oxidant scavenging activity of cysteine: its possible impact on increased LDL modification in uraemia. Biochimie 93, 772–777 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Praschberger, M. et al. Carbamoylation abrogates the antioxidant potential of hydrogen sulfide. Biochimie 95, 2069–2075 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Drexler, H. Factors involved in the maintenance of endothelial function. Am. J. Cardiol. 82, 3S–4S (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Ok, E., Basnakian, A. G., Apostolov, E. O., Barri, Y. M. & Shah, S. V. Carbamylated low-density lipoprotein induces death of endothelial cells: a link to atherosclerosis in patients with kidney disease. Kidney Int. 68, 173–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. Apostolov, E. O., Shah, S. V., Ok, E. & Basnakian, A. G. Carbamylated low-density lipoprotein induces monocyte adhesion to endothelial cells through intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Arterioscler. Thromb. Vasc. Biol. 27, 826–832 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Urbanski, K. et al. CD14+CD16++ 'nonclassical' monocytes are associated with endothelial dysfunction in patients with coronary artery disease. Thromb. Haemost. 117, 971–980 (2017).

    Article  PubMed  Google Scholar 

  87. Hörkkö, S., Savolainen, M. J., Kervinen, K. & Kesäniemi, Y. A. Carbamylation-induced alterations in low-density lipoprotein metabolism. Kidney Int. 41, 1175–1181 (1992).

    Article  PubMed  Google Scholar 

  88. Gonen, B., Cole, T. & Hahm, K. S. The interaction of carbamylated low-density lipoprotein with cultured cells. Studies with human fibroblasts, rat peritoneal macrophages and human monocyte-derived macrophages. Biochim. Biophys. Acta 754, 201–207 (1983).

    Article  CAS  PubMed  Google Scholar 

  89. Hörkkö, S., Huttunen, K., Kervinen, K. & Kesäniemi, Y. A. Decreased clearance of uraemic and mildly carbamylated low-density lipoprotein. Eur. J. Clin. Invest. 24, 105–113 (1994).

    Article  PubMed  Google Scholar 

  90. Apostolov, E. O., Shah, S. V., Ray, D. & Basnakian, A. G. Scavenger receptors of endothelial cells mediate the uptake and cellular proatherogenic effects of carbamylated LDL. Arterioscler. Thromb. Vasc. Biol. 29, 1622–1630 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Podrez, E. A., Schmitt, D., Hoff, H. F. & Hazen, S. L. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J. Clin. Invest. 103, 1547–1560 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Carr, A. C., McCall, M. R. & Frei, B. Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arterioscler. Thromb. Vasc. Biol. 20, 1716–1723 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Brown, M. S., Goldstein, J. L., Krieger, M., Ho, Y. K. & Anderson, R. G. Reversible accumulation of cholesteryl esters in macrophages incubated with acetylated lipoproteins. J. Cell Biol. 82, 597–613 (1979).

    Article  CAS  PubMed  Google Scholar 

  94. Nicholls, S. J. & Hazen, S. L. Myeloperoxidase, modified lipoproteins, and atherogenesis. J. Lipid Res. 50 (Suppl.), S346–S351 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. McMillen, T. S., Heinecke, J. W. & LeBoeuf, R. C. Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice. Circulation 111, 2798–2804 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Castellani, L. W., Chang, J. J., Wang, X., Lusis, A. J. & Reynolds, W. F. Transgenic mice express human MPO -463G/A alleles at atherosclerotic lesions, developing hyperlipidemia and obesity in -463G males. J. Lipid Res. 47, 1366–1377 (2006).

    Article  CAS  PubMed  Google Scholar 

  97. Holzer, M. et al. Myeloperoxidase-derived chlorinating species induce protein carbamylation through decomposition of thiocyanate and urea: novel pathways generating dysfunctional high-density lipoprotein. Antioxid. Redox Signal. 17, 1043–1052 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Holzer, M. et al. Protein carbamylation renders high-density lipoprotein dysfunctional. Antioxid. Redox Signal. 14, 2337–2346 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Newby, A. C. et al. Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thromb. Haemost. 101, 1006–1011 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Garnotel, R. et al. Human blood monocytes interact with type I collagen through alpha x beta 2 integrin (CD11c-CD18, gp150-95). J. Immunol. 164, 5928–5934 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Zhang, D. et al. Severe hyperhomocysteinemia promotes bone marrow-derived and resident inflammatory monocyte differentiation and atherosclerosis in LDLr/CBS-deficient mice. Circ. Res. 111, 37–49 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Garnotel, R., Sabbah, N., Jaisson, S. & Gillery, P. Enhanced activation of and increased production of matrix metalloproteinase-9 by human blood monocytes upon adhering to carbamylated collagen. FEBS Lett. 563, 13–16 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Jaisson, S. et al. Carbamylation differentially alters type I collagen sensitivity to various collagenases. Matrix Biol. 26, 190–196 (2007).

    Article  CAS  PubMed  Google Scholar 

  104. Jaisson, S. et al. Impact of carbamylation on type I collagen conformational structure and its ability to activate human polymorphonuclear neutrophils. Chem. Biol. 13, 149–159 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Said, G. et al. Impact of carbamylation and glycation of collagen type I on migration of HT1080 human fibrosarcoma cells. Int. J. Oncol. 40, 1797–1804 (2012).

    CAS  PubMed  Google Scholar 

  106. Satoh, S. et al. Renal cell and transitional cell carcinoma in a Japanese population undergoing maintenance dialysis. J. Urol. 174, 1749–1753 (2005).

    Article  PubMed  Google Scholar 

  107. Kojima, Y. et al. Renal cell carcinoma in dialysis patients: a single center experience. Int. J. Urol. 13, 1045–1048 (2006).

    Article  PubMed  Google Scholar 

  108. Jaisson, S. et al. Carbamylated albumin is a potent inhibitor of polymorphonuclear neutrophil respiratory burst. FEBS Lett. 581, 1509–1513 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Chonchol, M. Neutrophil dysfunction and infection risk in end-stage renal disease. Semin. Dial. 19, 291–296 (2006).

    Article  PubMed  Google Scholar 

  110. Trouw, L. A., Huizinga, T. W. J. & Toes, R. E. M. Autoimmunity in rheumatoid arthritis: different antigens—common principles. Ann. Rheum. Dis. 72(Suppl. 2), ii132–ii136 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Jones, J. D., Hamilton, B. J. & Rigby, W. F. C. Anti-carbamylated protein antibodies in rheumatoid arthritis patients are reactive with specific epitopes of the human fibrinogen β-chain. Arthritis Rheumatol. 69, 1381–1386 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Scinocca, M. et al. Antihomocitrullinated fibrinogen antibodies are specific to rheumatoid arthritis and frequently bind citrullinated proteins/peptides. J. Rheumatol. 41, 270–279 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Nakabo, S. et al. Carbamylated albumin is one of the target antigens of anti-carbamylated protein antibodies. Rheumatology (Oxford) http://dx.doi.org/10.1093/rheumatology/kex088 (2017).

  114. Juarez, M. et al. Identification of novel antiacetylated vimentin antibodies in patients with early inflammatory arthritis. Ann. Rheum. Dis. 75, 1099–1107 (2016).

    Article  CAS  PubMed  Google Scholar 

  115. Reed, E. et al. Antibodies to carbamylated α-enolase epitopes in rheumatoid arthritis also bind citrullinated epitopes and are largely indistinct from anti-citrullinated protein antibodies. Arthritis Res. Ther. 18, 96 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Jiang, X. et al. Anti-CarP antibodies in two large cohorts of patients with rheumatoid arthritis and their relationship to genetic risk factors, cigarette smoking and other autoantibodies. Ann. Rheum. Dis. 73, 1761–1768 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Shi, J. et al. Anti-carbamylated protein (anti-CarP) antibodies precede the onset of rheumatoid arthritis. Ann. Rheum. Dis. 73, 780–783 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. Spinelli, F. R. et al. Association between antibodies to carbamylated proteins and subclinical atherosclerosis in rheumatoid arthritis patients. BMC Musculoskelet. Disord. 18, 214 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Massaro, L. et al. Anti-carbamylated protein antibodies in systemic lupus erythematosus patients with articular involvement. Lupus http://dx.doi.org/10.1177/0961203317713141 (2017).

  120. Vega, G., Alarcón, S. & San Martín, R. The cellular and signalling alterations conducted by TGF-β contributing to renal fibrosis. Cytokine 88, 115–125 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Wahab, N. A. & Mason, R. M. A critical look at growth factors and epithelial-to-mesenchymal transition in the adult kidney. Interrelationships between growth factors that regulate EMT in the adult kidney. Nephron Exp. Nephrol. 104, e129–e134 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Shaykh, M. et al. Carbamylated proteins activate glomerular mesangial cells and stimulate collagen deposition. J. Lab. Clin. Med. 133, 302–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Vaziri, N. D. et al. High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS ONE 9, e114881 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Jalal, D. I., Chonchol, M. & Targher, G. Disorders of hemostasis associated with chronic kidney disease. Semin. Thromb. Hemost. 36, 34–40 (2010).

    Article  CAS  PubMed  Google Scholar 

  125. Binder, V. et al. Impact of fibrinogen carbamylation on fibrin clot formation and stability. Thromb. Haemost. 117, 899–910 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Jensen, T. et al. Fibrinogen and fibrin induce synthesis of proinflammatory cytokines from isolated peripheral blood mononuclear cells. Thromb. Haemost. 97, 822–829 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Martinez, M., Weisel, J. W. & Ischiropoulos, H. Functional impact of oxidative posttranslational modifications on fibrinogen and fibrin clots. Free Radic. Biol. Med. 65, 411–418 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Mun, K. C. & Golper, T. A. Impaired biological activity of erythropoietin by cyanate carbamylation. Blood Purif. 18, 13–17 (2000).

    Article  CAS  PubMed  Google Scholar 

  129. Park, K.-D., Mun, K.-C., Chang, E.-J., Park, S.-B. & Kim, H.-C. Inhibition of erythropoietin activity by cyanate. Scand. J. Urol. Nephrol. 38, 69–72 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Brines, M. & Cerami, A. Discovering erythropoietin's extra-hematopoietic functions: biology and clinical promise. Kidney Int. 70, 246–250 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Kalim, S. et al. Carbamylation of serum albumin and erythropoietin resistance in end stage kidney disease. Clin. J. Am. Soc. Nephrol. 8, 1927–1934 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tögel, F. E. et al. Carbamylated erythropoietin outperforms erythropoietin in the treatment of AKI-on-CKD and other AKI models. J. Am. Soc. Nephrol. 27, 3394–3404 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. He, H., Qiao, X. & Wu, S. Carbamylated erythropoietin attenuates cardiomyopathy via PI3K/Akt activation in rats with diabetic cardiomyopathy. Exp. Ther. Med. 6, 567–573 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Imamura, R. et al. A nonerythropoietic derivative of erythropoietin inhibits tubulointerstitial fibrosis in remnant kidney. Clin. Exp. Nephrol. 16, 852–862 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Imamura, R. et al. Carbamylated erythropoietin improves angiogenesis and protects the kidneys from ischemia-reperfusion injury. Cell Transplant. 17, 135–141 (2008).

    Article  PubMed  Google Scholar 

  136. Leist, M. et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305, 239–242 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Maltaneri, R. E., Chamorro, M. E., Schiappacasse, A., Nesse, A. B. & Vittori, D. C. Differential effect of erythropoietin and carbamylated erythropoietin on endothelial cell migration. Int. J. Biochem. Cell Biol. 85, 25–34 (2017).

    Article  CAS  PubMed  Google Scholar 

  138. Gobert, S., Duprez, V., Lacombe, C., Gisselbrecht, S. & Mayeux, P. The signal transduction pathway of erythropoietin involves three forms of mitogen-activated protein (MAP) kinase in UT7 erythroleukemia cells. Eur. J. Biochem. 234, 75–83 (1995).

    Article  CAS  PubMed  Google Scholar 

  139. Abe, T. et al. Carbamylated erythropoietin ameliorates cyclosporine nephropathy without stimulating erythropoiesis. Cell Transplant. 21, 571–580 (2012).

    Article  PubMed  Google Scholar 

  140. Cassis, P. et al. Both darbepoetin alfa and carbamylated erythropoietin prevent kidney graft dysfunction due to ischemia/reperfusion in rats. Transplantation 92, 271–279 (2011).

    Article  CAS  PubMed  Google Scholar 

  141. Sun, J. T. et al. Cyanate-impaired angiogenesis: association with poor coronary collateral growth in patients with stable angina and chronic total occlusion. J. Am. Heart Assoc. 5, e04700 (2016).

    Google Scholar 

  142. Drechsler, C. et al. Protein carbamylation is associated with heart failure and mortality in diabetic patients with end-stage renal disease. Kidney Int. 87, 1201–1208 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Alhaj, E. et al. Uremic cardiomyopathy: an underdiagnosed disease. Congest. Heart Fail. 19, E40–E45 (2013).

    Article  PubMed  Google Scholar 

  144. Kalim, S. et al. Longitudinal changes in protein carbamylation and mortality risk after initiation of hemodialysis. Clin. J. Am. Soc. Nephrol. 11, 1809–1816 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wanner, C. et al. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 353, 238–248 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Fellström, B. C. et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 360, 1395–1407 (2009).

    Article  CAS  PubMed  Google Scholar 

  147. Prospective Studies Collaboration et al. Blood cholesterol and vascular mortality by age, sex, and blood pressure: a meta-analysis of individual data from 61 prospective studies with 55,000 vascular deaths. Lancet 370, 1829–1839 (2007).

  148. Palmer, S. C. et al. Benefits and harms of statin therapy for persons with chronic kidney disease: a systematic review and meta-analysis. Ann. Intern. Med. 157, 263–275 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Sun, L., Zou, L., Chen, M. & Liu, B. Meta-analysis of statin therapy in maintenance dialysis patients. Ren. Fail. 37, 1149–1156 (2015).

    Article  CAS  PubMed  Google Scholar 

  150. Barylski, M. et al. Statins decrease all-cause mortality only in CKD patients not requiring dialysis therapy — a meta-analysis of 11 randomized controlled trials involving 21,295 participants. Pharmacol. Res. 72, 35–44 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Palmer, S. C. et al. HMG CoA reductase inhibitors (statins) for dialysis patients. Cochrane Database Syst. Rev. 9, CD004289 (2013).

    Google Scholar 

  152. Upadhyay, A. et al. Lipid-lowering therapy in persons with chronic kidney disease: a systematic review and meta-analysis. Ann. Intern. Med. 157, 251–262 (2012).

    Article  PubMed  Google Scholar 

  153. Green, D., Ritchie, J. P. & Kalra, P. A. Meta-analysis of lipid-lowering therapy in maintenance dialysis patients. Nephron Clin. Pract. 124, 209–217 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Yan, Y.-L. et al. High-intensity statin therapy in patients with chronic kidney disease: a systematic review and meta-analysis. BMJ Open 5, e006886 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Major, R. W., Cheung, C. K., Gray, L. J. & Brunskill, N. J. Statins and cardiovascular primary prevention in CKD: a meta-analysis. Clin. J. Am. Soc. Nephrol. 10, 732–739 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hou, W. et al. Effect of statin therapy on cardiovascular and renal outcomes in patients with chronic kidney disease: a systematic review and meta-analysis. Eur. Heart J. 34, 1807–1817 (2013).

    Article  CAS  PubMed  Google Scholar 

  157. Palmer, S. C. et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst. Rev. 5, CD007784 (2014).

    Google Scholar 

  158. Cholesterol Treatment Trialists' (CTT) Collaboration et al. Impact of renal function on the effects of LDL cholesterol lowering with statin-based regimens: a meta-analysis of individual participant data from 28 randomised trials. Lancet Diabetes Endocrinol. 4, 829–839 (2016).

  159. Kalim, S. et al. The effects of parenteral amino acid therapy on protein carbamylation in maintenance hemodialysis patients. J. Ren. Nutr. 25, 388–392 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kraus, L. M. & Kraus, A. P. Carbamoylation of amino acids and proteins in uremia. Kidney Int. Suppl. 78, S102–S107 (2001).

    Article  CAS  PubMed  Google Scholar 

  161. Perl, J. et al. Reduction of carbamylated albumin by extended hemodialysis. Hemodial. Int. 20, 510–521 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Kraus, L. M., Jones, M. R. & Kraus, A. P. Essential carbamoyl-amino acids formed in vivo in patients with end-stage renal disease managed by continuous ambulatory peritoneal dialysis: isolation, identification, and quantitation. J. Lab. Clin. Med. 131, 425–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  163. Duranton, F. et al. Plasma and urinary amino acid metabolomic profiling in patients with different levels of kidney function. Clin. J. Am. Soc. Nephrol. 9, 37–45 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Lacson, E., Wang, W., Zebrowski, B., Wingard, R. & Hakim, R. M. Outcomes associated with intradialytic oral nutritional supplements in patients undergoing maintenance hemodialysis: a quality improvement report. Am. J. Kidney Dis. 60, 591–600 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Weiner, D. E. et al. Oral intradialytic nutritional supplement use and mortality in hemodialysis patients. Am. J. Kidney Dis. 63, 276–285 (2014).

    Article  CAS  PubMed  Google Scholar 

  166. Ghaffari, M. A. & Shanaki, M. In vitro inhibition of low density lipoprotein carbamylation by vitamins, as an ameliorating atherosclerotic risk in uremic patients. Scand. J. Clin. Lab. Invest. 70, 122–127 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Eknoyan, G. et al. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N. Engl. J. Med. 347, 2010–2019 (2002).

    Article  PubMed  Google Scholar 

  168. Paniagua, R. et al. Effects of increased peritoneal clearances on mortality rates in peritoneal dialysis: ADEMEX, a prospective, randomized, controlled trial. J. Am. Soc. Nephrol. 13, 1307–1320 (2002).

    CAS  PubMed  Google Scholar 

  169. Delanghe, S. et al. Quantification of carbamylated albumin in serum based on capillary electrophoresis. Electrophoresis http://dx.doi.org/10.1002/elps.201700068 (2017).

  170. Yancey, P. H., Clark, M. E., Hand, S. C., Bowlus, R. D. & Somero, G. N. Living with water stress: evolution of osmolyte systems. Science 217, 1214–1222 (1982).

    Article  CAS  PubMed  Google Scholar 

  171. Trischitta, F., Faggio, C. & Torre, A. Living with high concentrations of urea: they can! Open J. Anim. Sci. 2, 32–40 (2012).

    Article  CAS  Google Scholar 

  172. Ballantyne, J. S. Some of the most interesting things we know, and don't know, about the biochemistry and physiology of elasmobranch fishes (sharks, skates and rays). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 199, 21–28 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed substantially to researching data for the article, discussing of the article's content, writing, and reviewing or editing the manuscript before submission.

Corresponding author

Correspondence to Wim Van Biesen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Tautomer

Constitutional isomer of organic compounds that readily interconvert into another tautomer, usually by the realocation of a proton.

pKa values

Negative logarithm of the ionization constant of an acid, which is a measure of the strength of an acid.

Halides

Binary compounds consisting of a halogen atom and an element or radical that is less electronegative (or more electropositive) than the halogen.

Stable-isotope-dilution

Method to determine the quantity of chemical substances in a sample, involving the addition of known amounts of an isotopically-enriched substance to the sample to be analysed.

High-performance liquid chromatography

(HPLC). Analytical method to separate, identify and quantify each component present in a mixture.

Tandem mass spectrometry

(MS/MS). Multiple step mass spectrometry, with some form of fragmentation occurring between the stages, to determine the mass of a sample.

Linearity

The linearity of an analytical procedure is its ability (within a given range) to obtain test results that are directly proportional to the concentration (amount) of analyte in the sample.

Coefficient of variation

(CV). Widely used term in analytical chemistry to express the precision and repeatability of an assay.

Kt/V

Baseline parameter of dialysis adequacy that represents the blood volume cleared of urea relative to the distribution volume of urea.

Uraemic toxins

Chemical solutes that accumulate in patients with chronic kidney disease and have negative effects on the body.

Intravasation

Invasion of cancer cells through the basal membrane into a blood or lymphatic vessel.

Immunodominant

Epitope that elicits the stronger immune response.

Bleeding diathesis

Increased tendency to bleed mostly due to hypocoagulability, which in turn is caused by a coagulopathy.

Elasmobranchs

Subclass of Chondrichthyes or cartilaginous fish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delanghe, S., Delanghe, J., Speeckaert, R. et al. Mechanisms and consequences of carbamoylation. Nat Rev Nephrol 13, 580–593 (2017). https://doi.org/10.1038/nrneph.2017.103

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.103

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing