Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeted therapies for renal cell carcinoma

Key Points

  • Emerging treatments for renal cell carcinoma (RCC), including kinase inhibitors, checkpoint inhibitors, and combinations of these new agents, are improving outcomes for patients

  • A need for biomarkers of response to treatment and tools to personalize RCC care has emerged owing to the expanding number of available therapeutic options

  • Alternatives to needle biopsy, such as cell free DNA and circulating tumour cells might be needed to address the dynamic and heterogeneous nature of cancer to optimize treatment personalization

  • Perioperative systemic therapy is being actively studied as an adjunct to nephrectomy in the management of locally advanced RCC but remains investigational at this time

  • The rising cost of effective agents and the growing interest in combinatorial approaches require that, in addition to efficacy and toxicity, value is taken into account in formal frameworks

Abstract

The management of patients with metastatic renal cell carcinoma (RCC) has changed dramatically over the past few years. Nephrectomy remains an important intervention for localized RCC but systemic therapy is the mainstay of treatment for patients who relapse after surgery or who have metastatic RCC. Before 2005, medical therapies for RCC were limited to cytokine therapies, which are very toxic and benefit only a small percentage of patients. In 2017, therapeutic agents now include kinase and immune checkpoint inhibitors. Contemporary research with these agents is now focusing on combinatorial and perioperative therapy. The field is now faced with the evolving challenge of how to select the best therapy for each patient during their natural history of disease, which has created a strong interest in modern sequencing and molecular approaches to identify biomarkers to personalize treatments. New therapeutic agents and approaches are associated with different toxicities and financial burdens, which require consideration of value by measuring clinical benefit, toxicity, and the cost of each drug with an organized framework. In this Review, we discuss the mechanisms underlying RCC and how improved molecular understanding helped the development of therapies, as well as biomarkers of response to treatment. We also discuss the value of these agents and their impact on personalization of therapy and drug development for RCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targetable factors in the tumour-microenvironment interface in kidney cancer.
Figure 2: Factors that affect value-based cancer care.

Similar content being viewed by others

References

  1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin. 67, 7–30 (2017).

    PubMed  Google Scholar 

  2. Miller, K. D. et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin. 66, 271–289 (2016).

    Article  PubMed  Google Scholar 

  3. Campbell, S. C. et al. Guideline for management of the clinical T1 renal mass. J. Urol. 182, 1271–1279 (2009).

    Article  PubMed  Google Scholar 

  4. Yang, J. C. et al. Randomized comparison of high-dose and low-dose intravenous interleukin-2 for the therapy of metastatic renal cell carcinoma: an interim report. J. Clin. Oncol. 12, 1572–1576 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Dutcher, J. P. et al. Outpatient subcutaneous interleukin-2 and interferon-alpha for metastatic renal cell cancer: five-year follow-up of the Cytokine Working Group Study. Cancer J. Sci. Am. 3, 157–162 (1997).

    CAS  PubMed  Google Scholar 

  6. Negrier, S. et al. Recombinant human interleukin-2, recombinant human interferon alfa-2a, or both in metastatic renal-cell carcinoma. Groupe Francais d'Immunotherapie. N. Engl. J. Med. 338, 1272–1278 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Fyfe, G. et al. Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J. Clin. Oncol. 13, 688–696 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. McDermott, D. F. et al. Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 23, 133–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Chow, L. Q. & Eckhardt, S. G. Sunitinib: from rational design to clinical efficacy. J. Clin. Oncol. 25, 884–896 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Faivre, S. et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol. 24, 25–35 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Gore, M. E. et al. Final results from the large sunitinib global expanded-access trial in metastatic renal cell carcinoma. Br. J. Cancer 113, 12–19 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clark, J. W., Eder, J. P., Ryan, D., Lathia, C. & Lenz, H. J. Safety and pharmacokinetics of the dual action Raf kinase and vascular endothelial growth factor receptor inhibitor, BAY 43–9006, in patients with advanced, refractory solid tumors. Clin. Cancer Res. 11, 5472–5480 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Topalian, S. L. et al. Immunotherapy: the path to win the war on cancer? Cell 161, 185–186 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Topalian, S. L., Weiner, G. J. & Pardoll, D. M. Cancer immunotherapy comes of age. J. Clin. Oncol. 29, 4828–4836 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pardoll, D. & Allison, J. Cancer immunotherapy: breaking the barriers to harvest the crop. Nat. Med. 10, 887–892 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Drake, C. G., Jaffee, E. & Pardoll, D. M. Mechanisms of immune evasion by tumors. Adv. Immunol. 90, 51–81 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. U.S. Food & Drug Administration. FDA Approval letter for use of sorafenib in advanced renal cancer https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2005/021923ltr.pdf (2005).

  19. U.S. Food & Drug Administration. Approval letter for Sutent (sunitinib) https://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021938_S000_Sutent_Approv.pdf (2006).

  20. U.S. Food & Drug Administration. Approval letter for Inlyta (axitinib) https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2012/202324s000ltr.pdf (2012).

  21. U.S. Food & Drug Administration. Approval letter for Votrient (pazopanib) https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2015/022465Orig1s020ltr.pdf (2009).

  22. U.S. Food & Drug Administration. Approval letter for Lenvima (levantinib) https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2015/206947Orig1s000ltr.pdf (2015).

  23. U.S. Food & Drug Administration. Approval letter for Cabometyx (cabozantinib) https://www.fda.gov/drugs/informationondrugs/approveddrugs/ucm497483.htm (2016).

  24. U.S. Food & Drug Administration. Approval letter for Afinitor (everolimus) https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/022334Orig1s016.pdf (2009).

  25. U.S. Food & Drug Administration. Approval letter for Avastin (bevacizumab) with interferon https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/125085s301lbl.pdf (2014).

  26. Motzer, R. J. et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1803–1813 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Choueiri, T. K. et al. Cabozantinib versus everolimus in advanced renal-cell carcinoma. N. Engl. J. Med. 373, 1814–1823 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Choueiri, T. K. et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol. 17, 917–927 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Motzer, R. J. et al. Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol. 16, 1473–1482 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Posadas, E. M., Limvorasak, S. & Figlin, R. A. Third-line treatment options for kidney cancer. Oncology (Williston Park) 30, 813–815 (2016).

    Google Scholar 

  31. Kumbla, R. A., Figlin, R. A. & Posadas, E. M. Recent advances in the medical treatment of recurrent or metastatic renal cell cancer. Drugs 77, 17–28 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Tannenbaum, M. Ultrastructural pathology of human renal cell tumors. Pathol. Annu. 6, 249–277 (1971).

    CAS  PubMed  Google Scholar 

  33. Storkel, S. & van den Berg, E. Morphological classification of renal cancer. World J. Urol. 13, 153–158 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Thoenes, W., Storkel, S. & Rumpelt, H. J. Histopathology and classification of renal cell tumors (adenomas, oncocytomas and carcinomas). The basic cytological and histopathological elements and their use for diagnostics. Pathol. Res. Pract. 181, 125–143 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Patard, J. J. et al. Prognostic value of histologic subtypes in renal cell carcinoma: a multicenter experience. J. Clin. Oncol. 23, 2763–2771 (2005).

    Article  PubMed  Google Scholar 

  36. Skinner, D. G., Colvin, R. B., Vermillion, C. D., Pfister, R. C. & Leadbetter, W. F. Diagnosis and management of renal cell carcinoma. A clinical and pathologic study of 309 cases. Cancer 28, 1165–1177 (1971).

    Article  CAS  PubMed  Google Scholar 

  37. Pena-Llopis, S., Christie, A., Xie, X. J. & Brugarolas, J. Cooperation and antagonism among cancer genes: the renal cancer paradigm. Cancer Res. 73, 4173–4179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260, 1317–1320 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Riazalhosseini, Y. & Lathrop, M. Precision medicine from the renal cancer genome. Nat. Rev. Nephrol. 12, 655–666 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Gnarra, J. R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet. 7, 85–90 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Kaelin, W. G. Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat. Rev. Cancer 8, 865–873 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Nickerson, M. L. et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin. Cancer Res. 14, 4726–4734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Posadas, E. M., Limvorasak, S., Sharma, S. & Figlin, R. A. Targeting angiogenesis in renal cell carcinoma. Expert Opin. Pharmacother. 14, 2221–2236 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Joseph, R. W. et al. Clear cell renal cell carcinoma subtypes identified by BAP1 and PBRM1 expression. J. Urol. 195, 180–187 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Brugarolas, J. PBRM1 and BAP1 as novel targets for renal cell carcinoma. Cancer J. 19, 324–332 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kapur, P. et al. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol. 14, 159–167 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rini, B. I. et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378, 1931–1939 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Nargund, A. M. et al. The SWI/SNF protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma. Cell Rep. 18, 2893–2906 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Voss, M. H. et al. Tumor genetic analyses of patients with metastatic renal cell carcinoma and extended benefit from mTOR inhibitor therapy. Clin. Cancer Res. 20, 1955–1964 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hudes, G. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Motzer, R. J. et al. Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372, 449–456 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. National Comprehensive Cancer Network. Kidney cancer version 2.2017. NCCN https://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf (2016).

  53. Inai, T. et al. Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am. J. Pathol. 165, 35–52 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rini, B. I. Vascular endothelial growth factor-targeted therapy in metastatic renal cell carcinoma. Cancer 115, 2306–2312 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Motzer, R. J. et al. Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol. 14, 552–562 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Choueiri, T. K. et al. A phase I study of cabozantinib (XL184) in patients with renal cell cancer. Ann. Oncol. 25, 1603–1608 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Choueiri, T. K. et al. Cabozantinib versus sunitinib as initial targeted therapy for patients with metastatic renal cell carcinoma of poor or intermediate risk: the Alliance A031203 CABOSUN Trial. J. Clin. Oncol. 35, 591–597 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Seon, B. K. et al. Endoglin-targeted cancer therapy. Curr. Drug Deliv. 8, 135–143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rosen, L. S. et al. A phase I first-in-human study of TRC105 (anti-endoglin antibody) in patients with advanced cancer. Clin. Cancer Res. 18, 4820–4829 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Choueiri, T. et al. A phase 1b dose-escalation study of TRC105 (anti-endoglin antibody) in combination with axitinib in patients with metastatic renal cell carcinoma (mRCC) [abstract]. J. Clin. Oncol. 32 (Suppl.), e15562 (2014).

    Article  Google Scholar 

  61. Gordon, M. S. et al. An open-label phase Ib dose-escalation study of TRC105 (anti-endoglin antibody) with bevacizumab in patients with advanced cancer. Clin. Cancer Res. 20, 5918–5926 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01806064 (2016).

  63. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01727089 (2017).

  64. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01727336 (2016).

  65. Bullock, K. E. et al. A phase I study of bevacizumab (B) in combination with everolimus (E) and erlotinib (E) in advanced cancer (BEE). Cancer Chemother. Pharmacol. 67, 465–474 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Harshman, L. C., Barbeau, S., McMillian, A. & Srinivas, S. A phase II study of bevacizumab and everolimus as treatment for refractory metastatic renal cell carcinoma. Clin. Genitourin. Cancer 11, 100–106 (2013).

    Article  PubMed  Google Scholar 

  67. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00331409 (2017).

  68. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02089334 (2016).

  69. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02599324 (2017).

  70. Kwiatkowski, D. J. et al. Mutations in TSC1, TSC2, and MTOR are associated with response to rapalogs in patients with metastatic renal cell carcinoma. Clin. Cancer Res. 22, 2445–2452 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Hsieh, J. J. et al. Genomic biomarkers of a randomized trial comparing first-line everolimus and sunitinib in patients with metastatic renal cell carcinoma. Eur. Urol. 71, 405–414 (2017).

    Article  CAS  PubMed  Google Scholar 

  73. Escudier, B. et al. Genotype correlations with blood pressure and efficacy from a randomized phase III trial of second-line axitinib versus sorafenib in metastatic renal cell carcinoma. Clin. Genitourin. Cancer 13, 328–337.e3 (2015).

    Article  PubMed  Google Scholar 

  74. Gerlinger, M. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46, 225–233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gerlinger, M. et al. Cancer: evolution within a lifetime. Annu. Rev. Genet. 48, 215–236 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Hiley, C., de Bruin, E. C., McGranahan, N. & Swanton, C. Deciphering intratumor heterogeneity and temporal acquisition of driver events to refine precision medicine. Genome Biol. 15, 453 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Alizadeh, A. A. et al. Toward understanding and exploiting tumor heterogeneity. Nat. Med. 21, 846–853 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hsieh, J. J. et al. Renal cell carcinoma. Nat. Rev. Dis. Primers 3, 17009 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wei, E. Y. & Hsieh, J. J. A river model to map convergent cancer evolution and guide therapy in RCC. Nat. Rev. Urol. 12, 706–712 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Gerlinger, M. et al. Intratumour heterogeneity in urologic cancers: from molecular evidence to clinical implications. Eur. Urol. 67, 729–737 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Grossman, R. L. et al. Collaborating to compete: Blood Profiling Atlas in Cancer (BloodPAC) Consortium. Clin. Pharmacol. Ther. 101, 589–592 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Di Vizio, D. et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am. J. Pathol. 181, 1573–1584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Scher, H. I. et al. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J. Clin. Oncol. 33, 1348–1355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen, J. F. et al. Clinical applications of nanovelcro rare-cell assays for detection and characterization of circulating tumor cells. Theranostics 6, 1425–1439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jiang, R. et al. A comparison of isolated circulating tumor cells and tissue biopsies using whole-genome sequencing in prostate cancer. Oncotarget 6, 44781–44793 (2015).

    PubMed  PubMed Central  Google Scholar 

  87. Chen, J. F. et al. Subclassification of prostate cancer circulating tumor cells by nuclear size reveals very small nuclear circulating tumor cells in patients with visceral metastases. Cancer 121, 3240–3251 (2015).

    Article  PubMed  Google Scholar 

  88. Lu, Y. T. et al. NanoVelcro Chip for CTC enumeration in prostate cancer patients. Methods 64, 144–152 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Zhao, L. et al. High-purity prostate circulating tumor cell isolation by a polymer nanofiber-embedded microchip for whole exome sequencing. Adv. Mater. 25, 2897–2902 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. He, W. et al. Detecting ALK-rearrangement of CTC enriched by nanovelcro chip in advanced NSCLC patients. Oncotarget http://dx.doi.org/10.18632/oncotarget.8305 (2016).

  91. Zhao, L. et al. Enhanced and differential capture of circulating tumor cells from lung cancer patients by microfluidic assays using aptamer cocktail. Small 12, 1072–1081 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Punnoose, E. A. et al. Evaluation of circulating tumor cells and circulating tumor DNA in non-small cell lung cancer: association with clinical endpoints in a phase II clinical trial of pertuzumab and erlotinib. Clin. Cancer Res. 18, 2391–2401 (2012).

    Article  CAS  PubMed  Google Scholar 

  93. Hanssen, A. et al. Characterization of different CTC subpopulations in non-small cell lung cancer. Sci. Rep. 6, 28010 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Gorges, T. M. et al. Enumeration and molecular characterization of tumor cells in lung cancer patients using a novel in vivo device for capturing circulating tumor cells. Clin. Cancer Res. 22, 2197–2206 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Tie, J. et al. Circulating tumor DNA analysis detects minimal residual disease and predicts recurrence in patients with stage II colon cancer. Sci. Transl Med. 8, 346ra92 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Shaw, J. A. et al. Mutation analysis of cell-free DNA and single circulating tumor cells in metastatic breast cancer patients with high CTC counts. Clin. Cancer Res. 23, 88–96 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Jordan, N. V. et al. HER2 expression identifies dynamic functional states within circulating breast cancer cells. Nature 537, 102–106 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lohr, J. G. et al. Genetic interrogation of circulating multiple myeloma cells at single-cell resolution. Sci. Transl Med. 8, 363ra147 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Rini, B. I. et al. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J. Clin. Oncol. 26, 5422–5428 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Klapper, J. A. et al. High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma: a retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer 113, 293–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  101. Hutson, T. E., Thoreson, G. R., Figlin, R. A. & Rini, B. I. The evolution of systemic therapy in metastatic renal cell carcinoma. Am. Soc. Clin. Oncol. Educ. Book 35, 113–117 (2016).

    Article  PubMed  Google Scholar 

  102. McDermott, D. F. Immunotherapy of metastatic renal cell carcinoma. Cancer 115, 2298–2305 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Leach, D. R., Krummel, M. F. & Allison, J. P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Small, E. J. et al. A pilot trial of CTLA-4 blockade with human anti-CTLA-4 in patients with hormone-refractory prostate cancer. Clin. Cancer Res. 13, 1810–1815 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Brahmer, J. R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Robert, C. et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet 384, 1109–1117 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Boyerinas, B. et al. Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunol. Res. 3, 1148–1157 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Antonia, S. et al. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: a multicentre, phase 1b study. Lancet Oncol. 17, 299–308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ribas, A. et al. Association of pembrolizumab with tumor response and survival among patients with advanced melanoma. JAMA 315, 1600–1609 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Robert, C. et al. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med. 372, 2521–2532 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Larkin, J., Hodi, F. S. & Wolchok, J. D. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 1270–1271 (2015).

    Article  PubMed  CAS  Google Scholar 

  114. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Balar, A. V. et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 389, 67–76 (2017).

    Article  CAS  PubMed  Google Scholar 

  116. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Drake, C. G., Lipson, E. J. & Brahmer, J. R. Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat. Rev. Clin. Oncol. 11, 24–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  118. U.S. Food & Drug Administration. Approval letter for Opdivo (nivolumab) https://www.accessdata.fda.gov/drugsatfda_docs/nda/2014/125554Orig1s000Approv.pdf (2015).]

  119. Escudier, B. et al. Treatment beyond progression in patients with advanced renal cell carcinoma treated with nivolumab in CheckMate 025. Eur. Urol. http://dx.doi.org/10.1016/j.eururo.2017.03.037 (2017).

  120. Dempke, W. C. M., Fenchel, K., Uciechowski, P. & Dale, S. P. Second- and third-generation drugs for immuno-oncology treatment — the more the better? Eur. J. Cancer 74, 55–72 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Hammers, H. J. et al. Phase I study of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma (mRCC) [abstract]. J. Clin. Oncol. 43 (Suppl.), 4504 (2014).

    Article  Google Scholar 

  122. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02231749 (2017).

  123. Callea, M. et al. Differential expression of PD-L1 between primary and metastatic sites in clear-cell renal cell carcinoma. Cancer Immunol. Res. 3, 1158–1164 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Motzer, R. J. et al. Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N. Engl. J. Med. 369, 722–731 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Amin, A. et al. Survival with AGS-003, an autologous dendritic cell-based immunotherapy, in combination with sunitinib in unfavorable risk patients with advanced renal cell carcinoma (RCC): phase 2 study results. J. Immunother. Cancer 3, 14 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Pal, S. K., Hu, A., Chang, M. & Figlin, R. A. Programmed death-1 inhibition in renal cell carcinoma: clinical insights and future directions. Clin. Adv. Hematol. Oncol. 12, 90–99 (2014).

    PubMed  Google Scholar 

  127. Zhao, Q., Guo, J., Wang, G., Chu, Y. & Hu, X. Suppression of immune regulatory cells with combined therapy of celecoxib and sunitinib in renal cell carcinoma. Oncotarget 8, 1668–1677 (2017).

    PubMed  Google Scholar 

  128. Alfaro, C. et al. Influence of bevacizumab, sunitinib and sorafenib as single agents or in combination on the inhibitory effects of VEGF on human dendritic cell differentiation from monocytes. Br. J. Cancer 100, 1111–1119 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. International Agency for Research on Cancer. GLOBOCAN 2012: estimated cancer incidence, mortality and prevalence worldwide in 2012. GLOBOCAN.IARC http://globocan.iarc.fr/Pages/fact_sheets_population.aspx (2012).

  130. Eggener, S. E. et al. Renal cell carcinoma recurrence after nephrectomy for localized disease: predicting survival from time of recurrence. J. Clin. Oncol. 24, 3101–3106 (2006).

    Article  PubMed  Google Scholar 

  131. Grossman, H. B. et al. Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N. Engl. J. Med. 349, 859–866 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Haas, N. B. et al. Adjuvant sunitinib or sorafenib for high-risk, non-metastatic renal-cell carcinoma (ECOG-ACRIN E2805): a double-blind, placebo-controlled, randomised, phase 3 trial. Lancet 387, 2008–2016 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ravaud, A. et al. Adjuvant sunitinib in high-risk renal-cell carcinoma after nephrectomy. N. Engl. J. Med. 375, 2246–2254 (2016).

    Article  CAS  PubMed  Google Scholar 

  134. Motzer, R. J. et al. Randomized phase III trial of adjuvant pazopanib versus placebo after nephrectomy in patients with locally advanced renal cell carcinoma (RCC) (PROTECT) [abstract 4507]. J. Clin Oncol. 35, 4507 (2017).

    Article  Google Scholar 

  135. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01120249 (2016).

  136. Dutcher, J. P. et al. Effect of temsirolimus versus interferon-alpha on outcome of patients with advanced renal cell carcinoma of different tumor histologies. Med. Oncol. 26, 202–209 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Clark, J. I. et al. Adjuvant high-dose bolus interleukin-2 for patients with high-risk renal cell carcinoma: a cytokine working group randomized trial. J. Clin. Oncol. 21, 3133–3140 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03024996 (2017).

  139. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT03055013 (2017).

  140. Meropol, N. J. & Schulman, K. A. Cost of cancer care: issues and implications. J. Clin. Oncol. 25, 180–186 (2007).

    Article  PubMed  Google Scholar 

  141. Schnipper, L. E. et al. Updating the American Society of Clinical Oncology value framework: revisions and reflections in response to comments received. J. Clin. Oncol. 34, 2925–2934 (2016).

    Article  PubMed  Google Scholar 

  142. Jim, H. S. & McLeod, H. L. American Society of Clinical Oncology value framework: importance of accurate toxicity data. J. Clin. Oncol. 35, 1133–1134 (2017).

    Article  PubMed  Google Scholar 

  143. Jansen, J. P. Relevance of American Society of Clinical Oncology value framework will be improved if it is based on network meta-analyses. J. Clin. Oncol. 35, 1131–1132 (2017).

    Article  PubMed  Google Scholar 

  144. Angelis, A. & Kanavos, P. Critique of the American Society of Clinical Oncology value assessment framework for cancer treatments: putting methodologic robustness first. J. Clin. Oncol. 34, 2935–2936 (2016).

    Article  PubMed  Google Scholar 

  145. Malone, D. C. et al. International Society for Pharmacoeconomics and Outcomes research comments on the American Society of Clinical Oncology value framework. J. Clin. Oncol. 34, 2936–2937 (2016).

    Article  PubMed  Google Scholar 

  146. Schnipper, L. E. et al. American Society of Clinical Oncology statement: a conceptual framework to assess the value of cancer treatment options. J. Clin. Oncol. 33, 2563–2577 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  147. [No authors listed.] New NCCN guidelines include evidence blocks to illustrate value in breast, colon, kidney, and rectal cancers. J. Natl Compr. Canc. Netw. 14, xxxiv–xxxv (2016).

  148. Giuliani, J., Remo, A. & Bonetti, A. The European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS) applied to pivotal phase III randomized-controlled trials of tyrosine kinase inhibitors in first-line for advanced non-small cell lung cancer with activating epidermal growth factor receptor mutations. Expert Rev. Pharmacoecon. Outcomes Res. 17, 5–8 (2017).

    Article  Google Scholar 

  149. Cherny, N. I. et al. A standardised, generic, validated approach to stratify the magnitude of clinical benefit that can be anticipated from anti-cancer therapies: the European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS). Ann. Oncol. http://dx.doi.org/10.1093/annonc/mdw258 (2016).

  150. Cherny, N. I. et al. A standardised, generic, validated approach to stratify the magnitude of clinical benefit that can be anticipated from anti-cancer therapies: the European Society for Medical Oncology Magnitude of Clinical Benefit Scale (ESMO-MCBS). Ann. Oncol. 26, 1547–1573 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Escudier, B. et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J. Clin. Oncol. 27, 3312–3318 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Motzer, R. J. et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 3584–3590 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rini, B. I. et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J. Clin. Oncol. 28, 2137–2143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Motzer, R. J. et al. Phase 3 trial of everolimus for metastatic renal cell carcinoma: final results and analysis of prognostic factors. Cancer 116, 4256–4265 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Sternberg, C. N. et al. Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J. Clin. Oncol. 28, 1061–1068 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Sternberg, C. N. et al. A randomised, double-blind phase III study of pazopanib in patients with advanced and/or metastatic renal cell carcinoma: final overall survival results and safety update. Eur. J. Cancer 49, 1287–1296 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00326898 (2016).

  160. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01265901 (2015).

  161. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01613846 (2017).

  162. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01198158 (2017).

  163. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01099423 (2017).

  164. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02684006 (2017).

  165. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02853331 (2017).

  166. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT00930033 (2016).

  167. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02535351 (2017).

  168. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02420821 (2017).

  169. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT02811861 (2017).

  170. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/show/NCT01582672 (2017).

  171. Hutson, T. E. et al. Axitinib versus sorafenib as first-line therapy in patients with metastatic renal-cell carcinoma: a randomised open-label phase 3 trial. Lancet Oncol. 14, 1287–1294 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Escudier, B. et al. Randomized phase II trial of first-line treatment with sorafenib versus interferon alfa-2a in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 27, 1280–1289 (2009).

    Article  CAS  PubMed  Google Scholar 

  173. Hainsworth, J. D. et al. Pazopanib as second-line treatment after sunitinib or bevacizumab in patients with advanced renal cell carcinoma: a Sarah Cannon Oncology Research Consortium phase II trial. Clin. Genitourin. Cancer 11, 270–275 (2013).

    Article  PubMed  Google Scholar 

  174. Hutson, T. E. et al. Randomized phase III trial of temsirolimus versus sorafenib as second-line therapy after sunitinib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 32, 760–767 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.M.P. and S.L. researched data for the article and all authors discussed the article's content, wrote the text and reviewed or edited the article before submission.

Corresponding author

Correspondence to Edwin M. Posadas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Posadas, E., Limvorasak, S. & Figlin, R. Targeted therapies for renal cell carcinoma. Nat Rev Nephrol 13, 496–511 (2017). https://doi.org/10.1038/nrneph.2017.82

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.82

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing