Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD

Key Points

  • Circulating alkaline phosphatase (ALP) is a robust and independent predictor of all-cause mortality in the general population and in patients with chronic kidney disease (CKD)

  • Tissue-nonspecific ALP (TNALP) is the most abundant ALP isozyme in the body, comprising >90% of circulating ALP; functional differences between bone ALP (BALP) and liver TNALP are the result of post-translational glycosylation

  • BALP promotes tissue mineralization by inactivating calcification inhibitors and by supplying phosphate

  • Liver ALP and intestinal ALP (IALP) contribute to the immune response through dephosphorylation of circulating endotoxins

  • Modulation of ALP is a potential novel treatment strategy that might reduce vascular calcification and improve cardiovascular outcomes in patients with CKD or diabetes mellitus type 2

Abstract

Cardiovascular disease is the main cause of early death in the settings of chronic kidney disease (CKD), type 2 diabetes mellitus (T2DM), and ageing. Cardiovascular events can be caused by an imbalance between promoters and inhibitors of mineralization, which leads to vascular calcification. This process is akin to skeletal mineralization, which is carefully regulated and in which isozymes of alkaline phosphatase (ALP) have a crucial role. Four genes encode ALP isozymes in humans. Intestinal, placental and germ cell ALPs are tissue-specific, whereas the tissue-nonspecific isozyme of ALP (TNALP) is present in several tissues, including bone, liver and kidney. TNALP has a pivotal role in bone calcification. Experimental overexpression of TNALP in the vasculature is sufficient to induce vascular calcification, cardiac hypertrophy and premature death, mimicking the cardiovascular phenotype often found in CKD and T2DM. Intestinal ALP contributes to the gut mucosal defence and intestinal and liver ALPs might contribute to the acute inflammatory response to endogenous or pathogenic stimuli. Here we review novel mechanisms that link ALP to vascular calcification, inflammation, and endothelial dysfunction in kidney and cardiovascular diseases. We also discuss new drugs that target ALP, which have the potential to improve cardiovascular outcomes without inhibiting skeletal mineralization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of bone-specific alkaline phosphatase (BALP) in tissue mineralization.
Figure 2: Pathological consequences of high alkaline phosphatase (ALP) levels.

Similar content being viewed by others

References

  1. Levey, A. S. et al. Chronic kidney disease as a global public health problem: approaches and initiatives — a position statement from kidney disease improving global outcomes. Kidney Int. 72, 247–259 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Stenvinkel, P. Chronic kidney disease: a public health priority and harbinger of premature cardiovascular disease. J. Intern. Med. 268, 456–467 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Go, A., Chertow, G., Fan, D., McCulloch, C. & Hsu, C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med. 351, 1296–1305 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Xie, X. et al. Renin-angiotensin system inhibitors and kidney and cardiovascular outcomes in patients with CKD: a Bayesian network meta-analysis of randomized clinical trials. Am. J. Kidney Dis. 67, 728–741 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Palmer, S. C. et al. HMG CoA reductase inhibitors (statins) for people with chronic kidney disease not requiring dialysis. Cochrane Database Syst. Rev. 5, CD007784 (2014).

    Google Scholar 

  6. Stenvinkel, P. & Larsson, T. E. Chronic kidney disease: a clinical model of premature aging. Am. J. Kidney Dis. 62, 339–351 (2013).

    Article  PubMed  Google Scholar 

  7. Kooman, J. P., Kotanko, P., Schols, A. M., Shiels, P. G. & Stenvinkel, P. Chronic kidney disease and premature ageing. Nat. Rev. Nephrol. 10, 732–742 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Di Lullo, L. et al. Chronic kidney disease and cardiovascular complications. Heart Fail. Rev. 20, 259–272 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Li, J. W., Xu, C., Fan, Y., Wang, Y. & Xiao, Y. B. Can serum levels of alkaline phosphatase and phosphate predict cardiovascular diseases and total mortality in individuals with preserved renal function? A systemic review and meta-analysis. PLoS ONE 9, e102276 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Reid, I. R., Gamble, G. D. & Bolland, M. J. Circulating calcium concentrations, vascular disease and mortality: a systematic review. J. Intern. Med. 279, 524–540 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. Drechsler, C. et al. Bone alkaline phosphatase and mortality in dialysis patients. Clin. J. Am. Soc. Nephrol. 6, 1752–1759 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Millan, J. L. Mammalian Alkaline Phosphatase: From Biology to Applications in Medicine and Biotechnology (Wiley, 2006).

    Book  Google Scholar 

  13. Magnusson, P., Degerblad, M., Sääf, M., Larsson, L. & Thorén, M. Different responses of bone alkaline phosphatase isoforms during recombinant insulin-like growth factor-i (IGF-I) and during growth hormone therapy in adults with growth hormone deficiency. J. Bone Miner. Res. 12, 210–220 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Magnusson, P., Löfman, O. & Larsson, L. Determination of alkaline phosphatase isoenzymes in serum by high-performance liquid chromatography with post-column reaction detection. J. Chromatogr. 576, 79–86 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Magnusson, P. & Farley, J. Differences in sialic acid residues among bone alkaline phosphatase isoforms: a physical, biochemical, and immunological characterization. Calcif. Tissue Int. 71, 508–518 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Halling Linder, C., Narisawa, S., Millán, J. & Magnusson, P. Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms. Bone 45, 987–993 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Weiss, M. J. et al. Structure of the human liver/bone/kidney alkaline phosphatase gene. J. Biol. Chem. 263, 12002–12010 (1988).

    CAS  PubMed  Google Scholar 

  18. Millán, J. L. & Fishman, W. H. Biology of human alkaline phosphatases with special reference to cancer. Crit. Rev. Clin. Lab. Sci. 32, 1–39 (1995).

    Article  PubMed  Google Scholar 

  19. Magnusson, P. et al. Monoclonal antibodies against tissue-nonspecific alkaline phosphatase. Report of the ISOBM TD9 workshop. Tumour Biol. 23, 228–248 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Mornet, E. et al. Structural evidence for a functional role of human tissue nonspecific alkaline phosphatase in bone mineralization. J. Biol. Chem. 276, 31171–31178 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Alcantara, E. H. et al. Zinc deprivation inhibits extracellular matrix calcification through decreased synthesis of matrix proteins in osteoblasts. Mol. Nutr. Food Res. 55, 1552–1560 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Heaton, F. W. Effect of magnesium deficiency on plasma alkaline phosphatase activity. Nature 207, 1292–1293 (1965).

    Article  CAS  PubMed  Google Scholar 

  23. Hoylaerts, M. F. et al. Functional significance of calcium binding to tissue-nonspecific alkaline phosphatase. PLoS ONE 10, e0119874 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Fedde, K. N., Lane, C. C. & Whyte, M. P. Alkaline phosphatase is an ectoenzyme that acts on micromolar concentrations of natural substrates at physiologic pH in human osteosarcoma (SAOS-2) cells. Arch. Biochem. Biophys. 264, 400–409 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Udenfriend, S. & Kodukula, K. How glycosylphosphatidylinositol-anchored membrane proteins are made. Annu. Rev. Biochem. 64, 563–591 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Low, M. G. The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim. Biophys. Acta 988, 427–454 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. Hooper, N. M. Glycosyl-phosphatidylinositol anchored membrane enzymes. Clin. Chim. Acta 266, 3–12 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Magnusson, P., Sharp, C. A. & Farley, J. R. Different distributions of human bone alkaline phosphatase isoforms in serum and bone tissue extracts. Clin. Chim. Acta 325, 59–70 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Anh, D. J., Eden, A. & Farley, J. R. Quantitation of soluble and skeletal alkaline phosphatase, and insoluble alkaline phosphatase anchor-hydrolase activities in human serum. Clin. Chim. Acta 311, 137–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Magnusson, P., Löfman, O. & Larsson, L. Methodological aspects on separation and reaction conditions of bone and liver alkaline phosphatase isoform analysis by high-performance liquid chromatography. Anal. Biochem. 211, 156–163 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Magnusson, P. et al. Effect of chronic renal failure on bone turnover and bone alkaline phosphatase isoforms. Kidney Int. 60, 257–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Magnusson, P., Häger, A. & Larsson, L. Serum osteocalcin and bone and liver alkaline phosphatase isoforms in healthy children and adolescents. Pediatr. Res. 38, 955–961 (1995).

    Article  CAS  PubMed  Google Scholar 

  33. Magnusson, P. et al. Differences of bone alkaline phosphatase isoforms in metastatic bone disease and discrepant effects of clodronate on different skeletal sites indicated by the location of pain. Clin. Chem. 44, 1621–1628 (1998).

    CAS  PubMed  Google Scholar 

  34. Magnusson, P., Davie, M. & Sharp, C. Circulating and tissue-derived isoforms of bone alkaline phosphatase in Paget's disease of bone. Scand. J. Clin. Lab. Invest. 70, 128–135 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Magnusson, P., Larsson, L., Magnusson, M., Davie, M. & Sharp, C. Isoforms of bone alkaline phosphatase: characterization and origin in human trabecular and cortical bone. J. Bone Miner. Res. 14, 1926–1933 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Swolin-Eide, D., Hansson, S., Larsson, L. & Magnusson, P. The novel bone alkaline phosphatase b1x isoform in children with kidney disease. Pediatr. Nephrol. 21, 1723–1729 (2006).

    Article  PubMed  Google Scholar 

  37. Haarhaus, M., Fernström, A., Magnusson, M. & Magnusson, P. Clinical significance of bone alkaline phosphatase isoforms, including the novel b1x isoform, in mild to moderate chronic kidney disease. Nephrol. Dial. Transplant. 24, 3382–3389 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Haarhaus, M., Monier-Faugere, M. C., Magnusson, P. & Malluche, H. H. Bone alkaline phosphatase isoforms in hemodialysis patients with low versus non-low bone turnover: a diagnostic test study. Am. J. Kidney Dis. 66, 99–105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shioi, A. et al. Induction of bone-type alkaline phosphatase in human vascular smooth muscle cells: roles of tumor necrosis factor-alpha and oncostatin M derived from macrophages. Circ. Res. 91, 9–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Haarhaus, M., Arnqvist, H. J. & Magnusson, P. Calcifying human aortic smooth muscle cells express different bone alkaline phosphatase isoforms, including the novel b1x isoform. J. Vasc. Res. 50, 167–174 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Grabowski, P. Physiology of bone. Endocr. Dev. 28, 33–55 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Bleicher, F. Odontoblast physiology. Exp. Cell Res. 325, 65–71 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Golub, E. E. Biomineralization and matrix vesicles in biology and pathology. Semin. Immunopathol. 33, 409–417 (2011).

    Article  PubMed  Google Scholar 

  44. New, S. E. et al. Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ. Res. 113, 72–77 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Allahverdian, S., Chehroudi, A. C., McManus, B. M., Abraham, T. & Francis, G. A. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation 129, 1551–1559 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Kramann, R. et al. Adventitial msc-like cells are progenitors of vascular smooth muscle cells and drive vascular calcification in chronic kidney disease. Cell Stem Cell 19, 628–642 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, N., O'Neill, K., Chen, X. & Moe, S. Annexin-mediated matrix vesicle calcification in vascular smooth muscle cells. J. Bone Miner. Res. 23, 1798–1805 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Millan, J. L. The role of phosphatases in the initiation of skeletal mineralization. Calcif. Tissue Int. 93, 299–306 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Ali, S. Y., Sajdera, S. W. & Anderson, H. C. Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc. Natl Acad. Sci. USA 67, 1513–1520 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dai, X. Y. et al. Phosphate-induced autophagy counteracts vascular calcification by reducing matrix vesicle release. Kidney Int. 83, 1042–1051 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Goettsch, C. et al. Sortilin mediates vascular calcification via its recruitment into extracellular vesicles. J. Clin. Invest. 126, 1323–1336 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fleish, H. & Neuman, W. F. Mechanisms of calcification: role of collagen, polyphosphates, and phosphatase. Am. J. Physiol. 200, 1296–1300 (1961).

    Article  CAS  PubMed  Google Scholar 

  53. Fleisch, H. & Bisaz, S. Mechanism of calcification: inhibitory role of pyrophosphate. Nature 195, 911 (1962).

    Article  CAS  PubMed  Google Scholar 

  54. Hessle, L. et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl Acad. Sci. USA 99, 9445–9449 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jono, S., Peinado, C. & Giachelli, C. Phosphorylation of osteopontin is required for inhibition of vascular smooth muscle cell calcification. J. Biol. Chem. 275, 20197–20203 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Halling Linder, C. et al. Bone alkaline phosphatase and tartrate-resistant acid phosphatase: potential co-regulators of bone mineralization. Calcif. Tissue Int. http://dx.doi.org/10.1007/s00223-017-0259-2 (2017).

  57. Robison, R. The possible significance of hexosephosphoric esters in ossification. Biochem. J. 17, 286–293 (1923).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Villa-Bellosta, R. & Egido, J. Phosphate, pyrophosphate, and vascular calcification: a question of balance. Eur. Heart J. http://dx.doi.org/10.1093/eurheartj/ehv605 (2015).

  59. Lomashvili, K. A., Narisawa, S., Millan, J. L. & O'Neill, W. C. Vascular calcification is dependent on plasma levels of pyrophosphate. Kidney Int. 85, 1351–1356 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. de Oliveira, R. A. et al. Peritoneal dialysis per se is a risk factor for sclerostin-associated adynamic bone disease. Kidney Int. 87, 1039–1045 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Murali, S. K. et al. Fgf23 regulates bone mineralization in a 1,25(OH)2D3 and Klotho-independent manner. J. Bone Miner. Res. 31, 129–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Lieben, L. et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J. Clin. Invest. 122, 1803–1815 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Villa-Bellosta, R., Wang, X., Millan, J. L., Dubyak, G. R. & O'Neill, W. C. Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 301, H61–H68 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moe, S. et al. Medial artery calcification in ESRD patients is associated with deposition of bone matrix proteins. Kidney Int. 61, 638–647 (2002).

    Article  PubMed  Google Scholar 

  65. Shroff, R. et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation 118, 1748–1757 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Shanahan, C. et al. Medial localization of mineralization-regulating proteins in association with mönckeberg's sclerosis: evidence for smooth muscle cell-mediated vascular calcification. Circulation 100, 2168–2176 (1999).

    Article  CAS  PubMed  Google Scholar 

  67. Chen, N. & Moe, S. Arterial calcification in diabetes. Curr. Diab. Rep. 3, 28–32 (2003).

    Article  PubMed  Google Scholar 

  68. St Hilaire, C. et al. Nt5e mutations and arterial calcifications. N. Engl. J. Med. 364, 432–442 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Villa-Bellosta, R. et al. Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson–Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 127, 2442–2451 (2013).

    Article  CAS  PubMed  Google Scholar 

  70. Sheen, C. R. et al. Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J. Bone Miner. Res. 30, 824–836 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Savinov, A. Y. et al. Transgenic overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in vascular endothelium results in generalized arterial calcification. J. Am. Heart Assoc. 4, e002499 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chen, N. X. & Moe, S. M. Pathophysiology of vascular calcification. Curr. Osteoporos. Rep. 13, 372–380 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Graciolli, F. et al. Phosphorus overload and PTH induce aortic expression of Runx2 in experimental uraemia. Nephrol. Dial. Transplant. 24, 1416–1421 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Tangri, N. et al. Effect of bone mineral guideline target achievement on mortality in incident dialysis patients: an analysis of the United Kingdom Renal Registry. Am. J. Kidney Dis. 57, 415–421 (2011).

    Article  PubMed  Google Scholar 

  75. Sardiwal, S., Magnusson, P., Goldsmith, D. J. & Lamb, E. J. Bone alkaline phosphatase in CKD-mineral bone disorder. Am. J. Kidney Dis. 62, 810–822 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Palmer, S. C. et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: a systematic review and meta-analysis. JAMA 305, 1119–1127 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Fahrleitner-Pammer, A. et al. Bone markers predict cardiovascular events in chronic kidney disease. J. Bone Miner. Res. 23, 1850–1858 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Damera, S. et al. Serum alkaline phosphatase levels associate with elevated serum c-reactive protein in chronic kidney disease. Kidney Int. 79, 228–233 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Nayeem, F., Anderson, K. E., Nagamani, M., Grady, J. J. & Lu, L. J. Alkaline phosphatase and percentage body fat predict circulating c-reactive protein in premenopausal women. Biomarkers 15, 663–670 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lee, C. T. et al. Association between c-reactive protein and biomarkers of bone and mineral metabolism in chronic hemodialysis patients: a cross-sectional study. J. Ren. Nutr. 19, 220–227 (2009).

    Article  PubMed  CAS  Google Scholar 

  81. Cheung, B. M. et al. Association between plasma alkaline phosphatase and c-reactive protein in Hong Kong Chinese. Clin. Chem. Lab. Med. 46, 523–527 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Kunutsor, S. K. et al. Serum alkaline phosphatase and risk of incident cardiovascular disease: interrelationship with high sensitivity c-reactive protein. PLoS ONE 10, e0132822 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Filipowicz, R. et al. Associations of serum skeletal alkaline phosphatase with elevated c-reactive protein and mortality. Clin. J. Am. Soc. Nephrol. 8, 26–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Wannamethee, S. G., Sattar, N., Papcosta, O., Lennon, L. & Whincup, P. H. Alkaline phosphatase, serum phosphate, and incident cardiovascular disease and total mortality in older men. Arterioscler. Thromb. Vasc. Biol. 33, 1070–1076 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Cho, I. J. et al. Effects of c-reactive protein on bone cells. Life Sci. 145, 1–8 (2016).

    Article  CAS  PubMed  Google Scholar 

  86. Lencel, P., Delplace, S., Hardouin, P. & Magne, D. TNF-α stimulates alkaline phosphatase and mineralization through PPARγ inhibition in human osteoblasts. Bone 48, 242–249 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Aghagolzadeh, P. et al. Calcification of vascular smooth muscle cells is induced by secondary calciprotein particles and enhanced by tumor necrosis factor-alpha. Atherosclerosis 251, 404–414 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Shanmugham, L. N. et al. Il-1beta induces alkaline phosphatase in human phagocytes. Arch. Med. Res. 38, 39–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Kukulski, F., Levesque, S. A. & Sevigny, J. Impact of ectoenzymes on p2 and p1 receptor signaling. Adv. Pharmacol. 61, 263–299 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Antonioli, L., Pacher, P., Vizi, E. S. & Hasko, G. Cd39 and cd73 in immunity and inflammation. Trends Mol. Med. 19, 355–367 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fawley, J. & Gourlay, D. M. Intestinal alkaline phosphatase: a summary of its role in clinical disease. J. Surg. Res. 202, 225–234 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Okada, T., Zinchuk, V. S. & Seguchi, H. Lipopolysaccharide administration increases acid and alkaline phosphatase reactivity in the cardiac muscle. Microsc. Res. Tech. 58, 421–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Pike, A. F., Kramer, N. I., Blaauboer, B. J., Seinen, W. & Brands, R. A novel hypothesis for an alkaline phosphatase 'rescue' mechanism in the hepatic acute phase immune response. Biochim. Biophys. Acta 1832, 2044–2056 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Jalkanen, J. et al. Aberrant circulating levels of purinergic signaling markers are associated with several key aspects of peripheral atherosclerosis and thrombosis. Circ. Res. 116, 1206–1215 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Qian, S. et al. The P2Y2 nucleotide receptor is an inhibitor of vascular calcification. Atherosclerosis 257, 38–46 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Lalles, J. P. Intestinal alkaline phosphatase: novel functions and protective effects. Nutr. Rev. 72, 82–94 (2014).

    Article  PubMed  Google Scholar 

  97. Alpers, D. H. et al. Intestinal alkaline phosphatase in patients with chronic renal failure. Gastroenterology 94, 62–67 (1988).

    Article  CAS  PubMed  Google Scholar 

  98. De Broe, M. E., Bosteels, V. & Wieme, R. J. Letter: increased intestinal alkaline phosphatase in serum of patients on maintenance haemodialysis. Lancet 303, 753–754 (1974).

    Article  Google Scholar 

  99. Stepan, J., Pilarova, T. & Melicharova, D. The source and clinical significance of serum alkaline phosphatases in patients treated by chronic dialysis. Acta Univ. Carol. Med. Monogr. 78, 75–79 (1977).

    Google Scholar 

  100. Tibi, L., Chhabra, S. C., Sweeting, V. M., Winney, R. J. & Smith, A. F. Multiple forms of alkaline phosphatase in plasma of hemodialysis patients. Clin. Chem. 37, 815–820 (1991).

    CAS  PubMed  Google Scholar 

  101. Zetterberg, H. Increased serum concentrations of intestinal alkaline phosphatase in peritoneal dialysis. Clin. Chem. 51, 675–676 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Raj, D. S. et al. Soluble CD14 levels, interleukin 6, and mortality among prevalent hemodialysis patients. Am. J. Kidney Dis. 54, 1072–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Andersen, K. et al. Intestinal dysbiosis, barrier dysfunction, and bacterial translocation account for CKD-related systemic inflammation. J. Am. Soc. Nephrol. 28, 76–83 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kieffer, D. A. et al. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am. J. Physiol. Renal Physiol. 310, F857–F871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Malo, M. S. et al. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut 59, 1476–1484 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Aronsson, B., Barany, P., Nord, C. E., Nystrom, B. & Stenvinkel, P. Clostridium difficile-associated diarrhoea in uremic patients. Eur. J. Clin. Microbiol. 6, 352–356 (1987).

    Article  CAS  PubMed  Google Scholar 

  107. Alam, S. N. et al. Intestinal alkaline phosphatase prevents antibiotic-induced susceptibility to enteric pathogens. Ann. Surg. 259, 715–722 (2014).

    Article  PubMed  Google Scholar 

  108. Singh, A. K. & Kari, J. A. Metabolic syndrome and chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 22, 198–203 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Kaliannan, K. et al. Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc. Natl Acad. Sci. USA 110, 7003–7008 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Malo, M. S. A high level of intestinal alkaline phosphatase is protective against type 2 diabetes mellitus irrespective of obesity. EBioMedicine 2, 2016–2023 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Schultz-Hector, S., Balz, K., Bohm, M., Ikehara, Y. & Rieke, L. Cellular localization of endothelial alkaline phosphatase reaction product and enzyme protein in the myocardium. J. Histochem. Cytochem. 41, 1813–1821 (1993).

    Article  CAS  PubMed  Google Scholar 

  112. Deracinois, B., Lenfant, A. M., Dehouck, M. P. & Flahaut, C. Tissue non-specific alkaline phosphatase (TNAP) in vessels of the brain. Subcell. Biochem. 76, 125–151 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Liu, Y., Drozdov, I., Shroff, R., Beltran, L. E. & Shanahan, C. M. Prelamin A accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in vascular smooth muscle cells. Circ. Res. 112, e99–e109 (2013).

    Article  CAS  PubMed  Google Scholar 

  114. Yamazaki, Y. et al. Vascular cell senescence contributes to blood-brain barrier breakdown. Stroke 47, 1068–1077 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Pike, A. F., Kramer, N. I., Blaauboer, B. J., Seinen, W. & Brands, R. An alkaline phosphatase transport mechanism in the pathogenesis of Alzheimer's disease and neurodegeneration. Chem. Biol. Interact. 226, 30–39 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Perticone, F. et al. Serum alkaline phosphatase negatively affects endothelium-dependent vasodilation in naive hypertensive patients. Hypertension 66, 874–880 (2015).

    Article  CAS  PubMed  Google Scholar 

  117. Mody, N., Parhami, F., Sarafian, T. & Demer, L. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med. 31, 509–519 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Muteliefu, G., Enomoto, A., Jiang, P., Takahashi, M. & Niwa, T. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrol. Dial. Transplant. 24, 2051–2058 (2009).

    Article  CAS  PubMed  Google Scholar 

  119. Watanabe, H. et al. P-cresyl sulfate, a uremic toxin, causes vascular endothelial and smooth muscle cell damages by inducing oxidative stress. Pharmacol. Res. Perspect. 3, e00092 (2015).

    Article  PubMed  CAS  Google Scholar 

  120. Raghuraman, G. et al. Eotaxin augments calcification in vascular smooth muscle cells. J. Cell. Biochem. 118, 647–654 (2017).

    Article  CAS  PubMed  Google Scholar 

  121. Torino, C. et al. Oxidative stress as estimated by gamma-glutamyl transferase levels amplifies the alkaline phosphatase-dependent risk for mortality in ESKD patients on dialysis. Oxid. Med. Cell. Longev. 2016, 8490643 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Oh, S. W., Han, K. H. & Han, S. Y. Associations between renal hyperfiltration and serum alkaline phosphatase. PLoS ONE 10, e0122921 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Bulum, T., Kolaric, B., Duvnjak, M. & Duvnjak, L. Alkaline phosphatase is independently associated with renal function in normoalbuminuric type 1 diabetic patients. Ren. Fail. 36, 372–377 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Pfleiderer, G. et al. Change in alkaline phosphatase isoenzyme pattern in urine as possible marker for renal disease. Kidney Int. 17, 242–249 (1980).

    Article  CAS  PubMed  Google Scholar 

  125. Tobar, A. et al. Proximal tubular hypertrophy and enlarged glomerular and proximal tubular urinary space in obese subjects with proteinuria. PLoS ONE 8, e75547 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Canales, B. K. et al. Renal glomerular and tubular injury after gastric bypass in obese rats. Nutrition 28, 76–80 (2012).

    Article  PubMed  Google Scholar 

  127. Kapojos, J. J. et al. Induction of glomerular alkaline phosphatase after challenge with lipopolysaccharide. Int. J. Exp. Pathol. 84, 135–144 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Briere, N., Petitclerc, C. & Plante, G. Presence of alkaline phosphatase and gamma-glutamyl transpeptidase on the parietal layer of Bowman's capsule. Acta Histochem. 73, 237–241 (1983).

    Article  CAS  PubMed  Google Scholar 

  129. Briere, N., Plante, G. E. & Petitclerc, C. Electron-microscopic demonstration of alkaline-phosphatase activity in the juxtaglomerular apparatus. Cell. Tissue Res. 234, 147–151 (1983).

    Article  CAS  PubMed  Google Scholar 

  130. Whyte, M. P. Hypophosphatasia — aetiology, nosology, pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 12, 233–246 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Kunutsor, S. K., Apekey, T. A. & Khan, H. Liver enzymes and risk of cardiovascular disease in the general population: a meta-analysis of prospective cohort studies. Atherosclerosis 236, 7–17 (2014).

    Article  CAS  PubMed  Google Scholar 

  132. Iqbal, M. P., Mehboobali, N., Azam, I. & Tareen, A. K. Association of alkaline phosphatase with acute myocardial infarction in a population with high prevalence of hypovitaminosis D. Clin. Chim. Acta 425, 192–195 (2013).

    Article  CAS  PubMed  Google Scholar 

  133. Park, J. B. et al. Serum alkaline phosphatase is a predictor of mortality, myocardial infarction, or stent thrombosis after implantation of coronary drug-eluting stent. Eur. Heart J. 34, 920–931 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Shantouf, R. et al. Association of serum alkaline phosphatase with coronary artery calcification in maintenance hemodialysis patients. Clin. J. Am. Soc. Nephrol. 4, 1106–1114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. London, G. et al. Arterial calcifications and bone histomorphometry in end-stage renal disease. J. Am. Soc. Nephrol. 15, 1943–1951 (2004).

    Article  PubMed  Google Scholar 

  136. Barreto, D. V. et al. Association of changes in bone remodeling and coronary calcification in hemodialysis patients: a prospective study. Am. J. Kidney Dis. 52, 1139–1150 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Kurz, P. et al. Evidence for abnormal calcium homeostasis in patients with adynamic bone disease. Kidney Int. 46, 855–861 (1994).

    Article  CAS  PubMed  Google Scholar 

  138. Bover, J. et al. Adynamic bone disease: from bone to vessels in chronic kidney disease. Semin. Nephrol. 34, 626–640 (2014).

    Article  PubMed  Google Scholar 

  139. Briet, M. et al. Age-independent association between arterial and bone remodeling in mild-to-moderate chronic kidney disease. Nephrol. Dial. Transplant. 25, 191–197 (2010).

    Article  PubMed  Google Scholar 

  140. Lomashvili, K., Garg, P., Narisawa, S., Millan, J. & O'Neill, W. Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: potential mechanism for uremic vascular calcification. Kidney Int. 73, 1024–1030 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lomashvili, K., Khawandi, W. & O'Neill, W. Reduced plasma pyrophosphate levels in hemodialysis patients. J. Am. Soc. Nephrol. 16, 2495–2500 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. O'Neill, W. C., Lomashvili, K. A., Malluche, H. H., Faugere, M. C. & Riser, B. L. Treatment with pyrophosphate inhibits uremic vascular calcification. Kidney Int. 79, 512–517 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Tonelli, M. et al. Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation 120, 1784–1792 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Kalantar-Zadeh, K. et al. Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int. 70, 771–780 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Regidor, D. et al. Serum alkaline phosphatase predicts mortality among maintenance hemodialysis patients. J. Am. Soc. Nephrol. 19, 2193–2203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Blayney, M. J. et al. High alkaline phosphatase levels in hemodialysis patients are associated with higher risk of hospitalization and death. Kidney Int. 74, 655–663 (2008).

    Article  CAS  PubMed  Google Scholar 

  147. Beddhu, S., Ma, X., Baird, B., Cheung, A. & Greene, T. Serum alkaline phosphatase and mortality in African Americans with chronic kidney disease. Clin. J. Am. Soc. Nephrol. 4, 1805–1810 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Kovesdy, C. P., Ureche, V., Lu, J. L. & Kalantar-Zadeh, K. Outcome predictability of serum alkaline phosphatase in men with pre-dialysis CKD. Nephrol. Dial. Transplant. 25, 3003–3011 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Beddhu, S., Baird, B., Ma, X., Cheung, A. K. & Greene, T. Serum alkaline phosphatase and mortality in hemodialysis patients. Clin. Nephrol. 74, 91–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  150. Lukowsky, L. R. et al. Mineral and bone disorders and survival in hemodialysis patients with and without polycystic kidney disease. Nephrol. Dial. Transplant. 27, 2899–2907 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Rhee, C. M. et al. Comparative mortality-predictability using alkaline phosphatase and parathyroid hormone in patients on peritoneal dialysis and hemodialysis. Perit. Dial. Int. 34, 732–748 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Liu, X. et al. Alkaline phosphatase and mortality in patients on peritoneal dialysis. Clin. J. Am. Soc. Nephrol. 9, 771–778 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Maruyama, Y. et al. A higher serum alkaline phosphatase is associated with the incidence of hip fracture and mortality among patients receiving hemodialysis in Japan. Nephrol. Dial. Transplant. 29, 1532–1538 (2014).

    Article  CAS  PubMed  Google Scholar 

  154. Fein, P. A. et al. Relationship between alkaline phosphatase and all-cause mortality in peritoneal dialysis patients. Adv. Perit. Dial. 29, 61–63 (2013).

    PubMed  Google Scholar 

  155. Lertdumrongluk, P. et al. Impact of age on survival predictability of bone turnover markers in hemodialysis patients. Nephrol. Dial. Transplant. 28, 2535–2545 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Taliercio, J. J. et al. Prognostic importance of serum alkaline phosphatase in CKD stages 3–4 in a clinical population. Am. J. Kidney Dis. 62, 703–710 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Beige, J. et al. Association of serum alkaline phosphatase with mortality in non-selected European patients with CKD5D: an observational, three-centre survival analysis. BMJ Open 4, e004275 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Soohoo, M. et al. Changes in markers of mineral and bone disorders and mortality in incident hemodialysis patients. Am. J. Nephrol. 43, 85–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  159. Molnar, M. Z., Kovesdy, C. P., Mucsi, I., Salusky, I. B. & Kalantar-Zadeh, K. Association of pre-kidney transplant markers of mineral and bone disorder with post-transplant outcomes. Clin. J. Am. Soc. Nephrol. 7, 1859–1871 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zelle, D. M. et al. Markers of the hepatic component of the metabolic syndrome as predictors of mortality in renal transplant recipients. Am. J. Transplant. 10, 106–114 (2010).

    Article  CAS  PubMed  Google Scholar 

  161. Foley, R. N. et al. Hypocalcemia, morbidity, and mortality in end-stage renal disease. Am. J. Nephrol. 16, 386–393 (1996).

    Article  CAS  PubMed  Google Scholar 

  162. Chang, J. F. et al. Combined alkaline phosphatase and phosphorus levels as a predictor of mortality in maintenance hemodialysis patients. Medicine (Baltimore) 93, e106 (2014).

    Article  CAS  Google Scholar 

  163. Chua, H. R. et al. Predicting first-year mortality in incident dialysis patients with end-stage renal disease — the UREA5 study. Blood Purif. 37, 85–92 (2014).

    Article  PubMed  Google Scholar 

  164. Lin, Y. C. et al. Effect modifying role of serum calcium on mortality-predictability of PTH and alkaline phosphatase in hemodialysis patients: an investigation using data from the Taiwan Renal Registry Data System from 2005 to 2012. PLoS ONE 10, e0129737 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Zhu, J. G. et al. Serum alkaline phosphatase levels are not associated with increased death risk in prevalent hemodialysis patients: 5-year experience in a single hemodialysis center. Kidney Blood Press. Res. 41, 498–506 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Scialla, J. J. et al. Race, mineral homeostasis and mortality in patients with end-stage renal disease on dialysis. Am. J. Nephrol. 42, 25–34 (2015).

    Article  CAS  PubMed  Google Scholar 

  167. Sumida, K. et al. Prognostic significance of pre-end-stage renal disease serum alkaline phosphatase for post-end-stage renal disease mortality in late-stage chronic kidney disease patients transitioning to dialysis. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfw412 (2017).

  168. Bretaudiere, J. P. et al. Criteria for establishing a standardized method for determining alkaline phosphatase activity in human serum. Clin. Chem. 23, 2263–2274 (1977).

    CAS  PubMed  Google Scholar 

  169. Tietz, N. W. et al. Transferability studies for the AACC reference method and the IFCC method for measurement of alkaline phosphatase activity. Clin. Chem. 30, 704–706 (1984).

    CAS  PubMed  Google Scholar 

  170. Kidney Disease: Improving Global Outcomes (KDIGO) CKD–MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. Suppl. 76, S1–S130 (2009).

  171. Kobayashi, I. et al. Higher serum bone alkaline phosphatase as a predictor of mortality in male hemodialysis patients. Life Sci. 90, 212–218 (2012).

    Article  CAS  PubMed  Google Scholar 

  172. Sardiwal, S. et al. Bone-specific alkaline phosphatase concentrations are less variable than those of parathyroid hormone in stable hemodialysis patients. Kidney Int. 82, 100–105 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gardham, C. et al. Variability of parathyroid hormone and other markers of bone mineral metabolism in patients receiving hemodialysis. Clin. J. Am. Soc. Nephrol. 5, 1261–1267 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Garrett, G., Sardiwal, S., Lamb, E. J. & Goldsmith, D. J. PTH — a particularly tricky hormone: why measure it at all in kidney patients? Clin. J. Am. Soc. Nephrol. 8, 299–312 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Lamb, E. J. & Delaney, M. P. Does PTH offer additive value to ALP measurement in assessing CKD-MBD? Perit. Dial. Int. 34, 687–691 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Kozlenkov, A. et al. Residues determining the binding specificity of uncompetitive inhibitors to tissue-nonspecific alkaline phosphatase. J. Bone Miner. Res. 19, 1862–1872 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Dahl, R. et al. Discovery and validation of a series of aryl sulfonamides as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). J. Med. Chem. 52, 6919–6925 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sergienko, E. et al. Identification and characterization of novel tissue-nonspecific alkaline phosphatase inhibitors with diverse modes of action. J. Biomol. Screen. 14, 824–837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Sidique, S. et al. Design and synthesis of pyrazole derivatives as potent and selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). Bioorg. Med. Chem. Lett. 19, 222–225 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Debray, J. et al. Inhibitors of tissue-nonspecific alkaline phosphatase: design, synthesis, kinetics, biomineralization and cellular tests. Bioorg. Med. Chem. 21, 7981–7987 (2013).

    Article  CAS  PubMed  Google Scholar 

  181. Marques, S., Buchet, R., Popowycz, F., Lemaire, M. & Mebarek, S. Synthesis of benzofuran derivatives as selective inhibitors of tissue-nonspecific alkaline phosphatase: effects on cell toxicity and osteoblast-induced mineralization. Bioorg. Med. Chem. Lett. 26, 1457–1459 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Picaud, S. et al. RVX-208, an inhibitor of bet transcriptional regulators with selectivity for the second bromodomain. Proc. Natl Acad. Sci. USA 110, 19754–19759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Gilham, D. et al. RVX-208, a bet-inhibitor for treating atherosclerotic cardiovascular disease, raises Apoa-I/HDL and represses pathways that contribute to cardiovascular disease. Atherosclerosis 247, 48–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  184. Kalantar-Zadeh, K. et al. Alkaline phosphatase lowering by selective bet inhibition, a novel mechanism for mace reduction in high risk cvd, diabetes and CKD patients — a post-hoc analysis of phase 2b studies with RVX-208. J. Am. Soc. Nephrol. 26, 227A (2015).

    Google Scholar 

  185. Wong, N. C. W. et al. Apabetalone (RVX-208), a selective bromodomain and extra-terminal (bet) protein inhibitor, decreases abundance and activity of complement proteins in vitro, in mice and in clinical studies. Nephrol. Dial. Transplant. 31, i109 (2016).

    Article  Google Scholar 

  186. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02586155 (2016)

  187. Whyte, M. P. et al. Enzyme-replacement therapy in life-threatening hypophosphatasia. N. Engl. J. Med. 366, 904–913 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Whyte, M. P. et al. Asfotase alfa treatment improves survival for perinatal and infantile hypophosphatasia. J. Clin. Endocrinol. Metab. 101, 334–342 (2016).

    Article  CAS  PubMed  Google Scholar 

  189. Heemskerk, S. et al. Alkaline phosphatase treatment improves renal function in severe sepsis or septic shock patients. Crit. Care Med. 37, 417–423 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Kats, S. et al. Anti-inflammatory effects of alkaline phosphatase in coronary artery bypass surgery with cardiopulmonary bypass. Recent Pat. Inflamm. Allergy Drug Discov. 3, 214–220 (2009).

    Article  CAS  PubMed  Google Scholar 

  191. Peters, E. et al. Pharmacokinetic modeling and dose selection in a randomized, double-blind, placebo-controlled trial of a human recombinant alkaline phosphatase in healthy volunteers. Clin. Pharmacokinet. 55, 1227–1237 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ghosh, S. S., Gehr, T. W. & Ghosh, S. Curcumin and chronic kidney disease (CKD): major mode of action through stimulating endogenous intestinal alkaline phosphatase. Molecules 19, 20139–20156 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Ghosh, S. S., Bie, J., Wang, J. & Ghosh, S. Oral supplementation with non-absorbable antibiotics or curcumin attenuates Western diet-induced atherosclerosis and glucose intolerance in LDLR−/− mice — role of intestinal permeability and macrophage activation. PLoS ONE 9, e108577 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. M.H. wrote the article. M.H., K.K.-Z. and P.M. provided the figures. M.H. and P.M. made substantial contributions to discussions of the content. All authors contributed to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Mathias Haarhaus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Isozymes

Proteins encoded by separate genes with similar catalytic specificity but different primary structure.

Isoforms

Variations of a protein that arise from single nucleotide polymorphisms, differential splicing of mRNA, or post-translational modifications such as glycosylation.

Syncytiotrophoblast

Epithelial layer that covers the highly vascular embryonic placental villi, which invades the wall of the uterus to establish nutrient circulation between the embryo and the mother.

Metabolic syndrome

Array of conditions — raised blood pressure, dyslipidaemia (raised triglycerides and lowered HDL cholesterol), raised fasting glucose, and increased waist circumference — that increase the risk of cardiovascular disease and type 2 diabetes mellitus.

Hypophosphatasia

Autosomal dominant or autosomal recessive rare metabolic disease with an extraordinary range of severity caused by loss-of-function mutations within ALPL, which encodes TNALP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haarhaus, M., Brandenburg, V., Kalantar-Zadeh, K. et al. Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD. Nat Rev Nephrol 13, 429–442 (2017). https://doi.org/10.1038/nrneph.2017.60

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.60

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing