Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Crystal nephropathies: mechanisms of crystal-induced kidney injury

This article has been updated

Key Points

  • Crystals cause several types of kidney injury: renovascular damage (type 1), tubular damage (type 2), and urolithiasis (type 3)

  • Renovascular damage (type 1) due to cholesterol crystals (from plaques in cholesterol embolism, for example) leads to ischaemic renal necrosis; stenotic atherosclerosis of renal arteries causes renal atrophy owing to chronic ischaemia

  • Tubular crystallopathy type 2 involves crystals of endogenous metabolites, minerals or proteins or exogenous drugs and toxins and causes acute necroinflammation, tubule obstruction or crystal granuloma formation and chronic tissue remodelling

  • In urolithiasis (type 3 crystallopathy), crystals form at the papilla or in the ducts of Bellini and grow to form calculi and stones, which cause colic, infections, and obstruction-related nephron loss

  • The molecular mechanisms of crystal-induced tissue injury and remodeling have become an exciting area of basic and translational research

Abstract

Crystals can trigger a wide range of kidney injuries that can lead to acute kidney injury, chronic kidney disease, renal colic or nephrocalcinosis, depending on the localization and dynamics of crystal deposition. Studies of the biology of crystal handling by the kidney have shown that the formation of different crystals and other microparticles and the associated mechanisms of renal damage share molecular mechanisms, such as stimulation of the NLRP3 inflammasome or direct cytotoxicity through activation of the necroptosis signalling pathway. By contrast, crystal granuloma formation is limited to chronic crystallopathies that lead to chronic kidney disease and renal fibrosis. Here, we discuss current understanding of the pathomechanisms underlying the different types of crystal-induced kidney injury and propose a classification of crystal nephropathies based on the localization of crystal deposits in the renal vasculature (type 1), the nephron (type 2), or the draining urinary tract (type 3). Further exploration of the molecular mechanisms of crystal-induced kidney injury and renal remodelling might aid the development of innovative cures for these diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Histopathological changes in vascular crystal nephropathies (type 1).
Figure 2: Histopathological changes in nephron-associated crystal nephropathies (type 2).
Figure 3: Molecular mechanisms of crystal-induced necroinflammation.
Figure 4: Tissular changes in crystalline CKD.
Figure 5: Mechanisms of crystal granuloma formation.
Figure 6: Endoscopic and histopathologic changes in papillary biopsy samples from stone formers.
Figure 7: Overview of crystal deposition in the different compartments of the kidney and segments of the nephron.

Similar content being viewed by others

Change history

  • 01 March 2017

    In the html version of this article originally published online, Dr Helen Liapis was not acknowledged for the images that she supplied (FIG. 1a,b,c; FIG.2a–i; FIG. 4b,c) in the respective figure legends. This error has now been corrected.

References

  1. Marangella, M. et al. Crystallization inhibitors in the pathophysiology and treatment of nephrolithiasis. Urol. Int. 72 (Suppl. 1), 6–10 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. Kumar, V. & Lieske, J. C. Protein regulation of intrarenal crystallization. Curr. Opin. Nephrol. Hypertens. 15, 374–380 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278–286 (2012).

    Article  PubMed  CAS  Google Scholar 

  4. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  PubMed  CAS  Google Scholar 

  5. Mulay, S. R. et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1beta secretion. J. Clin. Invest. 123, 236–246 (2013).

    Article  PubMed  CAS  Google Scholar 

  6. Knauf, F. et al. NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int. 84, 895–901 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kurts, C. A crystal-clear mechanism of chronic kidney disease. Kidney Int. 84, 859–861 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Mulay, S. R. & Anders, H. J. Crystallopathies. N. Engl. J. Med. 374, 2465–2476 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. Mulay, S. R. et al. Cytotoxicity of crystals involves RIPK3-MLKL-mediated necroptosis. Nat. Commun. 7, 10274 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Gutierrez Solis, E. et al. Atheroembolic renal disease: analysis of clinical and therapeutic factors that influence its progression. Nefrologia 30, 317–323 (in Spanish) (2010).

    PubMed  Google Scholar 

  11. Kronzon, I. & Saric, M. Cholesterol embolization syndrome. Circulation 122, 631–641 (2010).

    Article  PubMed  Google Scholar 

  12. Meola, M. & Petrucci, I. Color Doppler sonography in the study of chronic ischemic nephropathy. J. Ultrasound 11, 55–73 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Haas, M., Spargo, B. H., Wit, E. J. & Meehan, S. M. Etiologies and outcome of acute renal insufficiency in older adults: a renal biopsy study of 259 cases. Am. J. Kidney Dis. 35, 433–447 (2000).

    Article  PubMed  CAS  Google Scholar 

  14. Abela, G. S. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J. Clin. Lipidol. 4, 156–164 (2010).

    Article  PubMed  Google Scholar 

  15. Scolari, F. et al. The challenge of diagnosing atheroembolic renal disease: clinical features and prognostic factors. Circulation 116, 298–304 (2007).

    Article  PubMed  Google Scholar 

  16. Pilely, K. et al. Cholesterol crystals activate the lectin complement pathway via ficolin-2 and mannose-binding lectin: implications for the progression of atherosclerosis. J. Immunol. 196, 5064–5074 (2016).

    Article  PubMed  CAS  Google Scholar 

  17. Dupont, P. J. et al. Lesson of the week: cholesterol emboli syndrome. BMJ 321, 1065–1067 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Samstad, E. O. et al. Cholesterol crystals induce complement-dependent inflammasome activation and cytokine release. J. Immunol. 192, 2837–2845 (2014).

    Article  PubMed  CAS  Google Scholar 

  20. Kiyotake, R. et al. Human mincle binds to cholesterol crystals and triggers innate immune responses. J. Biol. Chem. 290, 25322–25332 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gore, I., McCombs, H. L. & Lindquist, R. L. Observations on the fate of cholesterol emboli. J. Atheroscler. Res. 4, 527–535 (1964).

    Article  PubMed  CAS  Google Scholar 

  22. Warren, B. A. & Vales, O. Electron microscopy of the sequence of events in the atheroembolic occlusion of cerebral arteries in an animal model. Br. J. Exp. Pathol. 56, 205–215 (1975).

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Warren, B. A. & Vales, O. The ultrastructure of the reaction of arterial walls to cholesterol crystals in atheroembolism. Br. J. Exp. Pathol. 57, 67–77 (1976).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Scolari, F. & Ravani, P. Atheroembolic renal disease. Lancet 375, 1650–1660 (2010).

    Article  PubMed  Google Scholar 

  25. Scolari, F. et al. Predictors of renal and patient outcomes in atheroembolic renal disease: a prospective study. J. Am. Soc. Nephrol. 14, 1584–1590 (2003).

    Article  PubMed  Google Scholar 

  26. Meyrier, A. Hypertensive nephrosclerosis pathogenesis, diagnosis and management. Saudi J. Kidney Dis. Transpl. 10, 267–274 (1999).

    PubMed  CAS  Google Scholar 

  27. Quinones, A. & Saric, M. The cholesterol emboli syndrome in atherosclerosis. Curr. Atheroscler. Rep. 15, 315 (2013).

    Article  PubMed  CAS  Google Scholar 

  28. Etemadi, J. et al. Renal artery stenosis in kidney transplants: assessment of the risk factors. Vasc. Health Risk Manag. 7, 503–507 (2011).

    PubMed  PubMed Central  Google Scholar 

  29. Kwon, S. H. & Lerman, L. O. Atherosclerotic renal artery stenosis: current status. Adv. Chron. Kidney Dis. 22, 224–231 (2015).

    Article  Google Scholar 

  30. Paloian, N. J. & Giachelli, C. M. A current understanding of vascular calcification in CKD. Am. J. Physiol. Renal Physiol. 307, F891–F900 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Leopold, J. A. Vascular calcification: mechanisms of vascular smooth muscle cell calcification. Trends Cardiovasc. Med. 25, 267–274 (2015).

    Article  PubMed  CAS  Google Scholar 

  32. The ASTRAL Investigators et al. Revascularization versus medical therapy for renal-artery stenosis. N. Engl. J. Med. 361, 1953–1962 (2009).

  33. Zimmer, S. et al. Cyclodextrin promotes atherosclerosis regression via macrophage reprogramming. Sci Transl Med. 8, 333ra50 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. US National Library of Medicine. Clinicaltrials.gov https://clinicaltrials.gov/ct2/show/NCT02534844 (2017).

  35. Herlitz, L. C., D'Agati, V. D. & Markowitz, G. S. Crystalline nephropathies. Arch. Pathol. Lab. Med. 136, 713–720 (2012).

    Article  PubMed  Google Scholar 

  36. Doshi, M. et al. Paraprotein-related kidney disease: kidney injury from paraproteins — what determines the site of injury? Clin. J. Am. Soc. Nephrol. 11, 2288–2294 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Bridoux, F. et al. Diagnosis of monoclonal gammopathy of renal significance. Kidney Int. 87, 698–711 (2015).

    Article  PubMed  CAS  Google Scholar 

  38. Khalighi, M. A., Dean Wallace, W. & Palma-Diaz, M. F. Amyloid nephropathy. Clin. Kidney J. 7, 97–106 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Motwani, S. S. et al. Paraprotein-related kidney disease: glomerular diseases associated with paraproteinemias. Clin. J. Am. Soc. Nephrol. 11, 2260–2272 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Salit, R. B. & Bishop, M. R. The evolving world of tumor lysis syndrome. Oncology (Williston Park) 25, 378; 380 (2011).

    Google Scholar 

  41. Kaler, B. et al. Are bile acids involved in the renal dysfunction of obstructive jaundice? An experimental study in bile duct ligated rats. Ren. Fail. 26, 507–516 (2004).

    Article  PubMed  CAS  Google Scholar 

  42. Morgan, W. A., Dingg, Y. & Bach, P. H. The relationship between sodium chloride concentration and bile acid cytotoxicity in cultured kidney cells. Ren. Fail. 20, 441–450 (1998).

    Article  PubMed  CAS  Google Scholar 

  43. van Slambrouck, C. M., Salem, F., Meehan, S. M. & Chang, A. Bile cast nephropathy is a common pathologic finding for kidney injury associated with severe liver dysfunction. Kidney Int. 84, 192–197 (2013).

    Article  PubMed  CAS  Google Scholar 

  44. Worcester, E. M. & Coe, F. L. Clinical practice. Calcium kidney stones. N. Engl. J. Med. 363, 954–963 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Robijn, S., Hoppe, B., Vervaet, B. A., D'Haese, P. C. & Verhulst, A. Hyperoxaluria: a gut–kidney axis? Kidney Int. 80, 1146–1158 (2011).

    Article  PubMed  CAS  Google Scholar 

  46. Syed, F., Mena-Gutierrez, A. & Ghaffar, U. A case of iced-tea nephropathy. N. Engl. J. Med. 372, 1377–1378 (2015).

    Article  PubMed  Google Scholar 

  47. Albersmeyer, M. et al. Acute kidney injury after ingestion of rhubarb: secondary oxalate nephropathy in a patient with type 1 diabetes. BMC Nephrol. 13, 141 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Karaolanis, G., Lionaki, S., Moris, D., Palla, V. V. & Vernadakis, S. Secondary hyperoxaluria: a risk factor for kidney stone formation and renal failure in native kidneys and renal grafts. Transplant. Rev. (Orlando) 28, 182–187 (2014).

    Article  Google Scholar 

  49. Nankivell, B. J. & Murali, K. M. Images in clinical medicine. Renal failure from vitamin C after transplantation. N. Engl. J. Med. 358, e4 (2008).

    Article  PubMed  Google Scholar 

  50. Morfin, J. & Chin, A. Images in clinical medicine. Urinary calcium oxalate crystals in ethylene glycol intoxication. N. Engl. J. Med. 353, e21 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. Hoffmanova, I., Kraml, P. & Andel, M. Renal risk associated with sodium phosphate medication: safe in healthy individuals, potentially dangerous in others. Expert Opin. Drug Saf. 14, 1097–1110 (2015).

    Article  PubMed  CAS  Google Scholar 

  52. Gagnon, R. F., Alli, A. I., Watters, A. K. & Tsoukas, C. M. Indinavir crystalluria. Kidney Int. 70, 2047 (2006).

    Article  PubMed  CAS  Google Scholar 

  53. Hess, B. Drug-induced urolithiasis. Curr. Opin. Urol. 8, 331–334 (1998).

    Article  PubMed  CAS  Google Scholar 

  54. Roncal-Jimenez, C. et al. Heat stress nephropathy from exercise-induced uric acid crystalluria: a perspective on Mesoamerican nephropathy. Am. J. Kidney Dis. 67, 20–30 (2016).

    Article  PubMed  CAS  Google Scholar 

  55. Gois, P. H. et al. Allopurinol attenuates rhabdomyolysis-associated acute kidney injury: renal and muscular protection. Free Radic. Biol. Med. 101, 176–189 (2016).

    Article  PubMed  CAS  Google Scholar 

  56. Vanholder, R., Sever, M. S., Erek, E. & Lameire, N. Rhabdomyolysis. J. Am. Soc. Nephrol. 11, 1553–1561 (2000).

    PubMed  CAS  Google Scholar 

  57. Pasnoor, M., Barohn, R. J. & Dimachkie, M. M. Toxic myopathies. Neurol. Clin. 32, 647–670 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Oliveira, B., Kleta, R., Bockenhauer, D. & Walsh, S. B. Genetic, pathophysiological and clinical aspects of nephrocalcinosis. Am J Physiol. Renal Physiol. 311, F1243–F1252 (2016).

    Article  PubMed  CAS  Google Scholar 

  59. Devuyst, O. et al. Rare inherited kidney diseases: challenges, opportunities, and perspectives. Lancet 383, 1844–1859 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gunal, A. I. et al. Early and vigorous fluid resuscitation prevents acute renal failure in the crush victims of catastrophic earthquakes. J. Am. Soc. Nephrol. 15, 1862–1867 (2004).

    Article  PubMed  Google Scholar 

  61. Terlinsky, A. S., Grochowski, J., Geoly, K. L., Strauch, B. S. & Hefter, L. Monohydrate calcium oxalate crystalluria in ethylene glycol poisoning. N. Engl. J. Med. 302, 922 (1980).

    PubMed  CAS  Google Scholar 

  62. Linkermann, A., Stockwell, B. R., Krautwald, S. & Anders, H. J. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat. Rev. Immunol. 14, 759–767 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Tan, M. & Epstein, W. Polymer formation during the degradation of human light chain and Bence-Jones proteins by an extrct of the lysosomal fraction of normal human kidney. Immunochemistry 9, 9–16 (1972).

    Article  PubMed  CAS  Google Scholar 

  64. Liu, Z. et al. Calcium phosphate nanoparticles primarily induce cell necrosis through lysosomal rupture: the origination of material cytotoxicity. J. Mater. Chem. B. 2, 3480–3489 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Huang, D., Zhou, H. & Gao, J. Nanoparticles modulate autophagic effect in a dispersity-dependent manner. Sci. Rep. 5, 14361 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Linkermann, A. & Green, D. R. Necroptosis. N. Engl. J. Med. 370, 455–465 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Kroemer, G. et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 16, 3–11 (2009).

    Article  PubMed  CAS  Google Scholar 

  68. Fortes, G. B. et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood 119, 2368–2375 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Desai, J. et al. PMA and crystal-induced neutrophil extracellular trap formation involves RIPK1-RIPK3-MLKL signaling. Eur. J. Immunol. 46, 223–229 (2016).

    Article  PubMed  CAS  Google Scholar 

  70. Linkermann, A. et al. Synchronized renal tubular cell death involves ferroptosis. Proc. Natl Acad. Sci. USA 111, 16836–16841 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Rock, K. L., Latz, E., Ontiveros, F. & Kono, H. The sterile inflammatory response. Annu. Rev. Immunol. 28, 321–342 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Allam, R., Kumar, S. V., Darisipudi, M. N. & Anders, H. J. Extracellular histones in tissue injury and inflammation. J. Mol. Med. (Berl.) 92, 465–472 (2014).

    Article  CAS  Google Scholar 

  73. Franklin, B. S., Mangan, M. S. & Latz, E. Crystal formation in inflammation. Annu. Rev. Immunol. 34, 173–202 (2016).

    Article  PubMed  CAS  Google Scholar 

  74. Hari, A. et al. Activation of NLRP3 inflammasome by crystalline structures via cell surface contact. Sci. Rep. 4, 7281 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Schorn, C. et al. Sodium overload and water influx activate the NALP3 inflammasome. J. Biol. Chem. 286, 35–41 (2011).

    Article  PubMed  CAS  Google Scholar 

  76. Gross, O. et al. Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36, 388–400 (2012).

    Article  PubMed  CAS  Google Scholar 

  77. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857–865 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Heneka, M. T. et al. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature 493, 674–678 (2013).

    Article  PubMed  CAS  Google Scholar 

  80. Anders, H. J. Of inflammasomes and alarmins: IL-1beta and IL-1alpha in kidney disease. J. Am. Soc. Nephrol. 27, 2564–2575 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Dinarello, C. A. The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. N. Engl. J. Med. 343, 732–734 (2000).

    Article  PubMed  CAS  Google Scholar 

  82. Ng, G. et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29, 807–818 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Arai, S. et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice. Nat. Med. 22, 183–193 (2016).

    Article  PubMed  CAS  Google Scholar 

  84. Mulay, S. R., Evan, A. & Anders, H. J. Molecular mechanisms of crystal-related kidney inflammation and injury. Implications for cholesterol embolism, crystalline nephropathies and kidney stone disease. Nephrol. Dial. Transplant. 29, 507–514 (2014).

    Article  PubMed  CAS  Google Scholar 

  85. Xiao, J. et al. Soluble uric acid increases NALP3 inflammasome and interleukin-1beta expression in human primary renal proximal tubule epithelial cells through the Toll-like receptor 4-mediated pathway. Int. J. Mol. Med. 35, 1347–1354 (2015).

    Article  PubMed  CAS  Google Scholar 

  86. Noda, S. On mechanism of urate kidney stone formation. Scan. Electron Microsc. 4, 1801–1808 (1984).

    Google Scholar 

  87. Mandel, N. Crystal-membrane interaction in kidney stone disease. J. Am. Soc. Nephrol. 5, S37–S45 (1994).

    PubMed  CAS  Google Scholar 

  88. Asselman, M., Verhulst, A., De Broe, M. E. & Verkoelen, C. F. Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. J. Am. Soc. Nephrol. 14, 3155–3166 (2003).

    Article  PubMed  CAS  Google Scholar 

  89. Bigelow, M. W., Wiessner, J. H., Kleinman, J. G. & Mandel, N. S. Surface exposure of phosphatidylserine increases calcium oxalate crystal attachment to IMCD cells. Am. J. Physiol. 272, F55–F62 (1997).

    PubMed  CAS  Google Scholar 

  90. Carr, G., Simmons, N. L. & Sayer, J. A. Disruption of clc-5 leads to a redistribution of annexin A2 and promotes calcium crystal agglomeration in collecting duct epithelial cells. Cell. Mol. Life Sci. 63, 367–377 (2006).

    Article  PubMed  CAS  Google Scholar 

  91. Tischler, V., Schuurmans, M. M., Boehler, A. & Gaspert, A. Crystal precipitation and granulomatous inflammation in multiple organs after foscarnet therapy in a lung transplant recipient. J. Heart Lung Transplant. 31, 1037–1040 (2012).

    Article  PubMed  Google Scholar 

  92. Okabe, C. et al. NF-kappaB activation mediates crystal translocation and interstitial inflammation in adenine overload nephropathy. Am. J. Physiol. Renal Physiol. 305, F155–F163 (2013).

    Article  PubMed  CAS  Google Scholar 

  93. Ayoub, I. et al. Revisiting medullary tophi: a link between uric acid and progressive chronic kidney disease? Clin. Nephrol. 85, 109–113 (2016).

    Article  PubMed  CAS  Google Scholar 

  94. Vervaet, B. A., Verhulst, A., Dauwe, S. E., De Broe, M. E. & D'Haese, P. C. An active renal crystal clearance mechanism in rat and man. Kidney Int. 75, 41–51 (2009).

    Article  PubMed  CAS  Google Scholar 

  95. Vervaet, B. A., Verhulst, A., D'Haese, P. C. & De Broe, M. E. Nephrocalcinosis: new insights into mechanisms and consequences. Nephrol. Dial. Transplant. 24, 2030–2035 (2009).

    Article  PubMed  CAS  Google Scholar 

  96. de Bruijn, W. C. et al. Etiology of calcium oxalate nephrolithiasis in rats. I. Can this be a model for human stone formation? Scanning Microsc. 9, 103–114 (1995).

    PubMed  CAS  Google Scholar 

  97. Correa-Costa, M. et al. Macrophage trafficking as key mediator of adenine-induced kidney injury. Mediators Inflamm. 2014, 291024 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Taguchi, K. et al. M1/M2-macrophage phenotypes regulate renal calcium oxalate crystal development. Sci. Rep. 6, 35167 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Kim, Y. G. et al. Involvement of macrophage migration inhibitory factor (MIF) in experimental uric acid nephropathy. Mol. Med. 6, 837–848 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Kusmartsev, S. et al. Calcium oxalate stone fragment and crystal phagocytosis by human macrophages. J. Urol. 195, 1143–1151 (2016).

    Article  PubMed  CAS  Google Scholar 

  101. Okada, A. et al. Genome-wide analysis of genes related to kidney stone formation and elimination in the calcium oxalate nephrolithiasis model mouse: detection of stone-preventive factors and involvement of macrophage activity. J. Bone Miner. Res. 24, 908–924 (2009).

    Article  PubMed  CAS  Google Scholar 

  102. Okada, A. et al. Renal macrophage migration and crystal phagocytosis via inflammatory-related gene expression during kidney stone formation and elimination in mice: Detection by association analysis of stone-related gene expression and microstructural observation. J. Bone Miner. Res. 25, 2701–2711 (2010).

    Article  PubMed  CAS  Google Scholar 

  103. Taguchi, K. et al. Colony-stimulating factor-1 signaling suppresses renal crystal formation. J. Am. Soc. Nephrol. 25, 1680–1697 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Helming, L. & Gordon, S. Molecular mediators of macrophage fusion. Trends Cell Biol. 19, 514–522 (2009).

    Article  PubMed  CAS  Google Scholar 

  105. Marakalala, M. J. et al. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat. Med. 22, 531–538 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Ermer, T., Eckardt, K. U., Aronson, P. S. & Knauf, F. Oxalate, inflammasome, and progression of kidney disease. Curr. Opin. Nephrol. Hypertens. 25, 363–371 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Wang, W. et al. Inflammasome-independent NLRP3 augments TGF-beta signaling in kidney epithelium. J. Immunol. 190, 1239–1249 (2013).

    Article  CAS  PubMed  Google Scholar 

  108. Vilaysane, A. et al. The NLRP3 inflammasome promotes renal inflammation and contributes to CKD. J. Am. Soc. Nephrol. 21, 1732–1744 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Lech, M. et al. NLRP3 and ASC suppress lupus-like autoimmunity by driving the immunosuppressive effects of TGF-beta receptor signalling. Ann. Rheum. Dis. 74, 2224–2235 (2015).

    Article  PubMed  CAS  Google Scholar 

  110. Lorenz, G., Darisipudi, M. N. & Anders, H. J. Canonical and non-canonical effects of the NLRP3 inflammasome in kidney inflammation and fibrosis. Nephrol. Dial. Transplant. 29, 41–48 (2014).

    Article  PubMed  CAS  Google Scholar 

  111. Ludwig-Portugall, I. et al. An NLRP3-specific inflammasome inhibitor attenuates crystal-induced kidney fibrosis in mice. Kidney Int. 90, 525–539 (2016).

    Article  PubMed  CAS  Google Scholar 

  112. Coiffier, B., Altman, A., Pui, C. H., Younes, A. & Cairo, M. S. Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. J. Clin. Oncol. 26, 2767–2778 (2008).

    Article  PubMed  CAS  Google Scholar 

  113. Jones, G. L. et al. Guidelines for the management of tumour lysis syndrome in adults and children with haematological malignancies on behalf of the British Committee for Standards in Haematology. Br. J. Haematol. 169, 661–671 (2015).

    Article  PubMed  Google Scholar 

  114. Allen, K. C. et al. Risk of anaphylaxis with repeated courses of rasburicase: a Research on Adverse Drug Events and Reports (RADAR) project. Drug Saf. 38, 183–187 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Mulay, S. R., Linkermann, A. & Anders, H. J. Necroinflammation in kidney disease. J. Am. Soc. Nephrol. 27, 27–39 (2016).

    Article  PubMed  CAS  Google Scholar 

  116. Mulay, S. R., Holderied, A., Kumar, S. V. & Anders, H. J. Targeting inflammation in so-called acute kidney injury. Semin. Nephrol. 36, 17–30 (2016).

    Article  PubMed  CAS  Google Scholar 

  117. Mulay, S. R., Kumar, S. V., Lech, M., Desai, J. & Anders, H. J. How kidney cell death induces renal necroinflammation. Semin. Nephrol. 36, 162–173 (2016).

    Article  PubMed  CAS  Google Scholar 

  118. Mulay, S. R. et al. Hyperoxaluria requires TNF receptors to initiate crystal adhesion and kidney stone disease. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2016040486 (2016).

  119. Scales, C. D. et al. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160–165 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Sayer, J. A. Progress in understanding the genetics of calcium-containing nephrolithiasis. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2016050576 (2016).

  121. Correa-Rotter, R., Wesseling, C. & Johnson, R. J. CKD of unknown origin in Central America: the case for a Mesoamerican nephropathy. Am. J. Kidney Dis. 63, 506–520 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Miller, D. C. & Wolf, J. S. Jr. Acute renal colic. N. Engl. J. Med. 350, 2422–2423 (2004).

    Article  PubMed  CAS  Google Scholar 

  123. Song, Y., Hernandez, N., Gee, M. S., Noble, V. E. & Eisner, B. H. Can ureteral stones cause pain without causing hydronephrosis? World J. Urol. 34, 1285–1288 (2016).

    Article  PubMed  Google Scholar 

  124. Coe, F. L., Worcester, E. M. & Evan, A. P. Idiopathic hypercalciuria and formation of calcium renal stones. Nat. Rev. Nephrol. 12, 519–533 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Dursun, M., Ozbek, E., Otunctemur, A., Sahin, S. & Cakir, S. S. Clinical presentation of urolithiasis in older and younger population. Arch. Ital. Urol. Androl. 86, 249–252 (2014).

    Article  PubMed  Google Scholar 

  126. Randall, A. The origin and growth of renal calculi. Ann. Surg. 105, 1009–1027 (1937).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Evan, A. P. et al. Randall's plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J. Clin. Invest. 111, 607–616 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Stoller, M. L., Meng, M. V., Abrahams, H. M. & Kane, J. P. The primary stone event: a new hypothesis involving a vascular etiology. J. Urol. 171, 1920–1924 (2004).

    Article  PubMed  Google Scholar 

  129. Williams, J. C. Jr et al. Calcium oxalate calculi found attached to the renal papilla: preliminary evidence for early mechanisms in stone formation. J. Endourol. 20, 885–890 (2006).

    Article  PubMed  Google Scholar 

  130. Kumar, V. et al. Cell biology of pathologic renal calcification: contribution of crystal transcytosis, cell-mediated calcification, and nanoparticles. J. Investig. Med. 54, 412–424 (2006).

    Article  PubMed  CAS  Google Scholar 

  131. Evan, A. P. et al. Mechanism of formation of human calcium oxalate renal stones on Randall's plaque. Anat. Rec. (Hoboken) 290, 1315–1323 (2007).

    Article  CAS  Google Scholar 

  132. Kumar, V., Pena de la Vega, L., Farell, G. & Lieske, J. C. Urinary macromolecular inhibition of crystal adhesion to renal epithelial cells is impaired in male stone formers. Kidney Int. 68, 1784–1792 (2005).

    Article  PubMed  Google Scholar 

  133. Robertson, W. G. Potential role of fluctuations in the composition of renal tubular fluid through the nephron in the initiation of Randall's plugs and calcium oxalate crystalluria in a computer model of renal function. Urolithiasis 43 (Suppl. 1), 93–107 (2015).

    Article  PubMed  CAS  Google Scholar 

  134. Verkoelen, C. F., van der Boom, B. G., Houtsmuller, A. B., Schroder, F. H. & Romijn, J. C. Increased calcium oxalate monohydrate crystal binding to injured renal tubular epithelial cells in culture. Am. J. Physiol. 274, F958–F965 (1998).

    Article  PubMed  CAS  Google Scholar 

  135. Verkoelen, C. F. et al. Cell type-specific acquired protection from crystal adherence by renal tubule cells in culture. Kidney Int. 55, 1426–1433 (1999).

    Article  PubMed  CAS  Google Scholar 

  136. Mulay, S. R. et al. Oxalate-induced chronic kidney disease with its uremic and cardiovascular complications in C57BL/6 mice. Am. J. Physiol. Renal Physiol. 310, F785–F795 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Evan, A. P. Physiopathology and etiology of stone formation in the kidney and the urinary tract. Pediatr. Nephrol. 25, 831–841 (2010).

    Article  PubMed  Google Scholar 

  138. Kok, D. J. & Khan, S. R. Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int. 46, 847–854 (1994).

    Article  PubMed  CAS  Google Scholar 

  139. Evan, A. P. et al. Renal crystal deposits and histopathology in patients with cystine stones. Kidney Int. 69, 2227–2235 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Evan, A. P., Worcester, E. M., Coe, F. L., Williams, J. Jr & Lingeman, J. E. Mechanisms of human kidney stone formation. Urolithiasis 43 (Suppl. 1), 19–32 (2015).

    Article  PubMed  Google Scholar 

  141. Khan, S. R. & Canales, B. K. Unified theory on the pathogenesis of Randall's plaques and plugs. Urolithiasis 43 (Suppl. 1), 109–123 (2015).

    Article  PubMed  CAS  Google Scholar 

  142. Sharma, M., Kaur, T. & Singla, S. K. Role of mitochondria and NADPH oxidase derived reactive oxygen species in hyperoxaluria induced nephrolithiasis: therapeutic intervention with combinatorial therapy of N-acetyl cysteine and Apocynin. Mitochondrion 27, 15–24 (2016).

    Article  PubMed  CAS  Google Scholar 

  143. Huang, H. S., Ma, M. C., Chen, C. F. & Chen, J. Lipid peroxidation and its correlations with urinary levels of oxalate, citric acid, and osteopontin in patients with renal calcium oxalate stones. Urology 62, 1123–1128 (2003).

    Article  PubMed  Google Scholar 

  144. Huang, H. S., Chen, J., Chen, C. F. & Ma, M. C. Vitamin E attenuates crystal formation in rat kidneys: roles of renal tubular cell death and crystallization inhibitors. Kidney Int. 70, 699–710 (2006).

    Article  PubMed  CAS  Google Scholar 

  145. Khan, S. R. Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol. Res. 40, 95–112 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Joshi, S., Saylor, B. T., Wang, W., Peck, A. B. & Khan, S. R. Apocynin-treatment reverses hyperoxaluria induced changes in NADPH oxidase system expression in rat kidneys: a transcriptional study. PLoS ONE 7, e47738 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Zuo, J., Khan, A., Glenton, P. A. & Khan, S. R. Effect of NADPH oxidase inhibition on the expression of kidney injury molecule and calcium oxalate crystal deposition in hydroxy-L-proline-induced hyperoxaluria in the male Sprague-Dawley rats. Nephrol. Dial. Transplant. 26, 1785–1796 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Khan, S. R., Joshi, S., Wang, W. & Peck, A. B. Regulation of macromolecular modulators of urinary stone formation by reactive oxygen species: transcriptional study in an animal model of hyperoxaluria. Am. J. Physiol. Renal Physiol. 306, F1285–F1295 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Tsuji, H. et al. Involvement of renin-angiotensin-aldosterone system in calcium oxalate crystal induced activation of NADPH oxidase and renal cell injury. World J. Urol. 34, 89–95 (2016).

    Article  PubMed  CAS  Google Scholar 

  150. Umekawa, T., Hatanaka, Y., Kurita, T. & Khan, S. R. Effect of angiotensin II receptor blockage on osteopontin expression and calcium oxalate crystal deposition in rat kidneys. J. Am. Soc. Nephrol. 15, 635–644 (2004).

    Article  PubMed  CAS  Google Scholar 

  151. Toblli, J. E., Ferder, L., Stella, I., Angerosa, M. & Inserra, F. Protective role of enalapril for chronic tubulointerstitial lesions of hyperoxaluria. J. Urol. 166, 275–280 (2001).

    Article  PubMed  CAS  Google Scholar 

  152. Tungsanga, K., Sriboonlue, P., Futrakul, P., Yachantha, C. & Tosukhowong, P. Renal tubular cell damage and oxidative stress in renal stone patients and the effect of potassium citrate treatment. Urol. Res. 33, 65–69 (2005).

    Article  PubMed  CAS  Google Scholar 

  153. Becker, G. & Caring for Australians with Renal, I. The CARI guidelines. Kidney stones: uric acid stones. Nephrology (Carlton) 12 (Suppl. 1), S21–S25 (2007).

    Article  CAS  Google Scholar 

  154. Mohayuddin, N. et al. The outcome of extracorporeal shockwave lithotripsy for renal pelvic stone with and without JJ stent — a comparative study. J. Pak. Med. Assoc. 59, 143–146 (2009).

    PubMed  Google Scholar 

  155. Lu, Y., Ping, J. G., Zhao, X. J., Hu, L. K. & Pu, J. X. Randomized prospective trial of tubeless versus conventional minimally invasive percutaneous nephrolithotomy. World J. Urol. 31, 1303–1307 (2013).

    Article  PubMed  Google Scholar 

  156. Humphreys, M. R. et al. A new world revealed: early experience with digital ureteroscopy. J. Urol. 179, 970–975 (2008).

    Article  PubMed  Google Scholar 

  157. Giedelman, C. et al. Laparoscopic anatrophic nephrolithotomy: developments of the technique in the era of minimally invasive surgery. J. Endourol. 26, 444–450 (2012).

    Article  PubMed  Google Scholar 

  158. Moufid, K. et al. Large impacted upper ureteral calculi: a comparative study between retrograde ureterolithotripsy and percutaneous antegrade ureterolithotripsy in the modified lateral position. Urol. Ann. 5, 140–146 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  159. El-Assmy, A. et al. Extracorporeal shock wave lithotripsy of upper urinary tract calculi in patients with cystectomy and urinary diversion. Urology 66, 510–513 (2005).

    Article  PubMed  Google Scholar 

  160. Prakash, J. et al. Retroperitoneoscopic versus open mini-incision ureterolithotomy for upper- and mid-ureteric stones: a prospective randomized study. Urolithiasis 42, 133–139 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

S.R.M and H.-J.A. are supported by the Deutsche Forschungsgemeinschaft (MU 3906/1-1, AN372/14-3, AN372/16-1, AN372/20-1, and AN372/23-1).

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to researching data for the article, discussing the article's content, writing the article and reviewing and editing of the manuscript before submission.

Corresponding author

Correspondence to Hans-Joachim Anders.

Ethics declarations

Competing interests

H.-J.A. has received consultancy fees from Roche, Bayer, Janssen, and lecture fees from Novartis, Amgen, Fresenius, and Roche. S.R.M. declares no competing interests.

PowerPoint slides

Glossary

Crystallization

Periodic self-aggregation of atoms, ions or misfolded proteins into a highly ordered solid structure consisting atoms, molecules or ions.

Crystalluria

Presence of crystals in urine.

Inflammasome

Multiprotein oligomer complex present in the cytosol that activates the inflammatory caspase 1 and sometimes caspase 5 (in mice caspase 11) to cleave pro-IL-1β and pro-IL-18 into respective mature forms and eventually induce pyroptosis, a form of regulated necrosis that mainly occurs upon recognition of bacterial endotoxin inside the cytoplasm of infected macrophages.

Crystallopathies

Diseases caused by crystals or crystal-like microparticles.

Cholesterol embolism

Obstruction of a blood vessel by cholesterol crystals that are released from an atherosclerotic plaque in veins.

Acral ischaemia

Ischaemia of the tips of the fingers or toes due to the obstruction of terminal arteries.

Necroptosis

Form of regulated necrosis that involves the RIPK3/MLKL pathway triggered by TNFR1, TLR4/TRIF, TLR3/TRIF, CD95 or IFNγ/STAT3 signalling pathways.

Niemann–Pick disease

Inherited metabolic disorder caused by sphingomyelin accumulation in lysosomes.

Crystalglobulinaemia

Presence of cryoglobulin crystals in serum.

Crystal-storing histiocytosis

Presence of cryoglobulin crystals in histiocytes (tissue macrophages).

Hepatorenal syndrome

Particular type of kidney failure that affects patients with hepatic dysfunction (cirrosis, fulminant liver failure or portal hypertension and ascites).

Rhabdomyolysis

Condition involving rapid break down of damaged skeletal muscles.

Nephrocalcinosis

Deposition of calcium salts such as calcium phosphate and calcium oxalate in the parenchyma of the kidney.

Necroinflammation

Amplification loop between cell necrosis and inflammation.

Ferroptosis

Iron-dependent form of regulated necrosis that involves impaired glutathione peroxidase 4 function and leads to lethal accumulation of lipid peroxides.

Damage-associated molecular pattern

(DAMP). Intracellular components that induce inflammation by activating receptors of the innate immune system on other cells when released into extracellular space after cell necrosis.

Cystinosis

Genetic metabolic disease involving accumulation of cystine in various organs.

Extratubulation

Process of translocation of crystal plugs from the tubular lumen to the interstitium.

Tubule plugs

Cast-like plugs of crystals that form inside the lumen of renal tubules.

Brushite

Phosphate mineral in complex with calcium (CaHPO4·2H2O).

Hydroxyapatite

Crystals of calcium phosphate usually present in bones, kidney stones, and vascular calcifications.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulay, S., Anders, HJ. Crystal nephropathies: mechanisms of crystal-induced kidney injury. Nat Rev Nephrol 13, 226–240 (2017). https://doi.org/10.1038/nrneph.2017.10

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.10

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing