Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The expanding phenotypic spectra of kidney diseases: insights from genetic studies

Key Points

  • Findings from next-generation sequencing (NGS) have led to a shift in phenotypic boundaries and reclassifications of some kidney diseases

  • NGS techniques are a valuable addition to the diagnostic toolbox in nephrology and findings from NGS can have important implications for therapeutic strategies and clinical outcomes

  • Interpretation of genetic variants and accurate prediction of the associated kidney phenotype can be challenging despite the increasing availability of bioinformatics tools and functional tests

  • Data sharing initiatives are imperative to establish clinically useful genotype–phenotype correlations and to maximize the benefit of genetic testing in routine nephrology practice

Abstract

Next-generation sequencing (NGS) has led to the identification of previously unrecognized phenotypes associated with classic kidney disease genes. In addition to improving diagnostics for genetically heterogeneous diseases and enabling a faster rate of gene discovery, NGS has enabled an expansion and redefinition of nephrogenetic disease categories. Findings from these studies raise the question of whether disease diagnoses should be made on clinical grounds, on genetic evidence or a combination thereof. Here, we discuss the major kidney disease-associated genes and gene categories for which NGS has expanded the phenotypic spectrum. For example, COL4A3–5 genes, which are classically associated with Alport syndrome, are now understood to also be involved in the aetiology of focal segmental glomerulosclerosis. DGKE, which is associated with nephrotic syndrome, is also mutated in patients with atypical haemolytic uraemic syndrome. We examine how a shared genetic background between diverse clinical phenotypes can provide insight into the function of genes and novel links with essential pathophysiological mechanisms. In addition, we consider genetic and epigenetic factors that contribute to the observed phenotypic heterogeneity of kidney diseases and discuss the challenges in the interpretation of genetic data. Finally, we discuss the implications of the expanding phenotypic spectra associated with kidney disease genes for clinical practice, genetic counselling and personalized care, and present our recommendations for the use of NGS-based tests in routine nephrology practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The phenotypic spectrum of COL4A3–5 mutations.
Figure 2: Sources of phenotypic heterogeneity in nephrogenetic disease.
Figure 3: Implementation of next-generation sequencing (NGS) data in routine nephrology practice.

Similar content being viewed by others

References

  1. Eisenberger, T. et al. An efficient and comprehensive strategy for genetic diagnostics of polycystic kidney diseas. PLoS ONE 10, e0116680 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tavira, B. et al. A labor and cost effective next generation sequencing of PKHD1 in autosomal recessive polycystic kidney disease patients. Gene 561, 165–169 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Morinière, V. et al. Improving mutation screening in familial hematuric nephropathies through next generation sequencing. J. Am. Soc. Nephrol. 25, 2740–2751 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lohmann, K. & Klein, C. Next generation sequencing and the future of genetic diagnosis. Neurotherapeutics 11, 699–707 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sampson, M. G. et al. Using population genetics to interrogate the monogenic nephrotic syndrome diagnosis in a case cohort. J. Am. Soc. Nephrol. 27, 1–14 (2015).

    Google Scholar 

  6. Otto, E. A. et al. Candidate exome capture identifies mutation of SDCCAG8 as the cause of a retinal-renal ciliopathy. Nat. Genet. 42, 840–850 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gupta, I. R. et al. ARHGDIA: a novel gene implicated in nephrotic syndrome. J. Med. Genet. 50, 330–338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gee, H. Y. et al. Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am. J. Hum. Genet. 94, 884–890 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gbadegesin, R. A. et al. Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J. Am. Soc. Nephrol. 25, 1991–2002 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saisawat, P. et al. Whole-exome resequencing reveals recessive mutations in TRAP1 in individuals with CAKUT and VACTERL association. Kidney Int. 85, 1310–1317 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Humbert, C. et al. Integrin alpha 8 recessive mutations are responsible for bilateral renal agenesis in humans. Am. J. Hum. Genet. 94, 288–294 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vivante, A. & Hildebrandt, F. Exploring the genetic basis of early-onset chronic kidney disease. Nat. Rev. Nephrol. 12, 133–146 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nassirpour, R. et al. Identification of tubular injury microRNA biomarkers in urine: comparison of next-generation sequencing and qPCR-based profiling platforms. BMC Genomics 15, 485 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Marsaud, A. et al. Dismantling papillary renal cell carcinoma classification: the heterogeneity of genetic profiles suggests several independent diseases. Genes Chromosomes Cancer 54, 369–382 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Lan, J. & Zhang, Q. Clinical applications of next-generation sequencing in histocompatibility and transplantation. Curr. Opin. Organ Transplant. 20, 461–7 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Sun, Y. et al. Next-generation diagnostics: gene panel, exome, or whole genome? Hum. Mutat. 36, 648–655 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Bergmann, C. ARPKD and early manifestations of ADPKD: the original polycystic kidney disease and phenocopies. Pediatr. Nephrol. 30, 651–16 (2014).

    Google Scholar 

  19. Gee, H. Y. et al. Whole-exome resequencing distinguishes cystic kidney diseases from phenocopies in renal ciliopathies. Kidney Int. 85, 880–7 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Lemaire, M. et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat. Genet. 45, 531–536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mele, C. et al. Characterization of a new DGKE intronic mutation in genetically unsolved cases of familial atypical hemolytic uremic syndrome. Clin. J. Am. Soc. Nephrol. 10, 1011–1019 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Westland, R. et al. Phenotypic expansion of DGKE-associated diseases. J. Am. Soc. Nephrol. 25, 1408–14 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kashtan, C. in GeneReviews 1–22 (Univ. of Washington, 2015).

    Google Scholar 

  24. Artuso, R. et al. Advances in Alport syndrome diagnosis using next-generation sequencing. Eur. J. Hum. Genet. 20, 50–7 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Braun, D. A. et al. Whole exome sequencing identifies causative mutations in the majority of consanguineous or familial cases with childhood-onset increased renal echogenicity. Kidney Int. 89, 468–475 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nogueira, M. et al. Thin basement membrane disease with heavy proteinuria or nephrotic syndrome at presentation. Am. J. Kidney Dis. 35, E15 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Voskarides, K. et al. COL4A3/COL4A4 mutations producing focal segmental glomerulosclerosis and renal failure in thin basement membrane nephropathy. J. Am. Soc. Nephrol. 18, 3004–3016 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Pierides, A. et al. Clinico-pathological correlations in 127 patients in 11 large pedigrees, segregating one of three heterozygous mutations in the COL4A3/ COL4A4 genes associated with familial haematuria and significant late progression to proteinuria and chronic kidney dis. Nephrol. Dial. Transplant. 24, 2721–9 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Chatterjee, R. et al. Targeted exome sequencing integrated with clinicopathological information reveals novel and rare mutations in atypical, suspected and unknown cases of Alport syndrome or proteinuria. PLoS ONE 8, e76360 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McCarthy, H. J. et al. Simultaneous sequencing of 24 genes associated with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 8, 637–648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gibson, J. et al. Exome analysis resolves differential diagnosis of familial kidney disease and uncovers a potential confounding variant. Genet. Res. 95, 165–73 (2013).

    Article  CAS  Google Scholar 

  32. Bullich, G. et al. Targeted next-generation sequencing in steroid-resistant nephrotic syndrome: mutations in multiple glomerular genes may influence disease severity. Eur. J. Hum. Genet. 23, 1192–1199 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Xie, J. et al. COL4A3 mutations cause focal segmental glomerulosclerosis. J. Mol. Cell. Biol. 6, 498–505 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Malone, A. F. et al. Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int. 86, 1253–1259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gast, C. et al. Collagen (COL4A) mutations are the most frequent mutations underlying adult focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 31, 961–970 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Deltas, C., Savva, I., Voskarides, K., Papazachariou, L. & Pierides, A. Carriers of autosomal recessive alport syndrome with thin basement membrane nephropathy presenting as focal segmental glomerulosclerosis in later life. Nephron 130, 271–280 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Savige, J. et al. Thin basement membrane nephropathy. Kidney Int. 64, 1169–1178 (2003).

    Article  PubMed  Google Scholar 

  38. Miner, J. H. Pathology versus molecular genetics: (re)defining the spectrum of Alport syndrome. Kidney Int. 86, 1084–1086 (2014).

    Article  CAS  Google Scholar 

  39. Ozaltin, F. et al. DGKE variants cause a glomerular microangiopathy that mimics membranoproliferative GN. J. Am. Soc. Nephrol. 24, 377–384 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Sánchez Chinchilla, D. et al. Complement mutations in diacylglycerol kinase-ε-associated atypical hemolytic uremic syndrome. Clin. J. Am. Soc. Nephrol. 9, 1611–1619 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sadowski, C. E. et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 26, 1279–1289 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Noris, M. et al. Relative role of genetic complement abnormalities in sporadic and familial aHUS and their impact on clinical phenotype. Clin. J. Am. Soc. Nephrol. 5, 1844–1859 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Licht, C. & Fremeaux-Bacchi, V. Hereditary and acquired complement dysregulation in membranoproliferative glomerulonephritis. Thromb. Haemost. 101, 1271–278 (2009).

    Google Scholar 

  44. Noris, M., Mele, C. & Remuzzi, G. Podocyte dysfunction in atypical haemolytic uraemic syndrome. Nat. Rev. Nephrol. 11, 245–252 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Bruneau, S. et al. Loss of DGKε induces endothelial cell activation and death independently of complement activation. Blood 125, 1038–1046 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Offermanns, S. Activation of platelet function through G protein – coupled receptors. Circ. Res. 99, 1293–1304 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Takano, T. & Cybulsky, A. V. Complement C5b-9-mediated arachidonic acid metabolism in glomerular epithelial cells role of cyclooxygenase-1 and -2. Am. J. Pathol. 156, 2091–2101 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Winn, M. P., Daskalakis, N., Spurney, R. F. & Middleton, J. P. Unexpected role of TRPC6 channel in familial nephrotic syndrome: does it have clinical implications? J. Am. Soc. Nephrol. 378–387 (2006).

  49. Renner, B. et al. Cyclosporine induces endothelial cell release of complement-activating microparticles. J. Am. Soc. Nephrol. 24, 1849–1862 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tran, P. V. et al. THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat. Genet. 40, 403–410 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Davis, E. E. et al. TTC21B contributes both causal and modifying alleles across the ciliopathy spectrum. Nat. Genet. 43, 189–196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Huynh Cong, E. et al. A homozygous missense mutation in the ciliary gene TTC21B causes familial FSGS. J. Am. Soc. Nephrol. 25, 2435–2443 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Bullich, G. et al. Contribution of the TTC21B gene to glomerular and cystic kidney diseases. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfv453 (2016).

  54. Romani, M. et al. Mutations in B9D1 and MKS1 cause mild Joubert syndrome: expanding the genetic overlap with the lethal ciliopathy Meckel syndrome. Orphanet J. Rare Dis. 9, 72 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Slaats, G. G. et al. MKS1 regulates ciliary INPP5E levels in Joubert syndrome. J. Med. Genet. 53, 62–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Thomas, S. et al. A homozygous PDE6D mutation in Joubert syndrome impairs targeting of farnesylated INPP5E protein to the primary cilium. Hum. Mutat. 35, 137–146 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bielas, S. L. et al. Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat. Genet. 41, 1032–1036 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fehrenbach, H. et al. Mutations in WDR19 encoding the intraflagellar transport component IFT144 cause a broad spectrum of ciliopathies. Pediatr. Nephrol. 29, 1451–1456 (2014).

    Article  PubMed  Google Scholar 

  59. Habbig, S. & Liebau, M. C. Ciliopathies — from rare inherited cystic kidney diseases to basic cellular function. Mol. Cell. Pediatr. 2, 8–13 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Drivas, T. G., Wojno, A. P., Tucker, B. A., Stone, E. M. & Bennett, J. Basal exon skipping and genetic pleiotropy: a predictive model of disease pathogenesis. Sci. Transl. Med. 7, 291ra97 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Littink, K. W. et al. A novel nonsense mutation in CEP290 induces exon skipping and leads to a relatively mild retinal phenotype. Invest. Opthalmol. Vis. Sci. 51, 3646–3652 (2010).

    Article  Google Scholar 

  62. Hoefele, J. et al. Evidence of oligogenic inheritance in nephronophthisis. J. Am. Soc. Nephrol. 18, 2789–2795 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Royer-Pokora, B. et al. Twenty-four new cases of WT1 germline mutations and review of the literature: genotype / phenotype correlations for wilms tumor development. Am. J. Med. Genet. A 257, 249–257 (2004).

    Article  Google Scholar 

  64. Dome, J. & Huff, V. in GeneReviews (eds Pagon, R. A. et al.) 1–24 (Univ. of Washington, 2015).

    Google Scholar 

  65. Lipska, B. S. et al. Genotype–phenotype associations in WT1 glomerulopathy. Kidney Int. 85, 1169–1178 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Nielsen, S. M. et al. Von Hippel-Lindau disease: genetics and role of genetic counseling in a multiple neoplasia syndrome. J. Clin. Oncol. http://dx.doi.org/10.1200/JCO.2015.65.6140 (2016).

  67. Stanescu, D. E., Hughes, N., Kaplan, B., Stanley, C. a. & De León, D. D. Novel presentations of congenital hyperinsulinism due to mutations in the MODY genes: HNF1A and HNF4A. J. Clin. Endocrinol. Metab. 97, 1–5 (2012).

    Article  CAS  Google Scholar 

  68. Hamilton, A. J. et al. The HNF4A R76W mutation causes atypical dominant Fanconi syndrome in addition to a β cell phenotype. J. Med. Genet. 51, 165–169 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Edwards, N. et al. A novel LMX1B mutation in a family with end-stage renal disease of 'unknown cause'. Clin. Kidney J. 8, 113–119 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Isojima, T. et al. LMX1B mutation with residual transcriptional activity as a cause of isolated glomerulopathy. Nephrol. Dial. Transplant. 29, 81–88 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Boyer, O. et al. LMX1B mutations cause hereditary FSGS without extrarenal involvement. J. Am. Soc. Nephrol. 24, 1216–1222 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hoopes, R. R. et al. Dent disease with mutations in OCRL1. Am. J. Hum. Genet. 76, 260–267 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Saisawat, P. et al. Identification of two novel CAKUT-causing genes by massively parallel exon resequencing of candidate genes in patients with unilateral renal agenesis. Kidney Int. 81, 196–200 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Kohl, S. et al. Mild recessive mutations in six Fraser Syndrome-related genes cause isolated congenital anomalies of the kidney and urinary tract. J. Am. Soc. Nephrol. 25, 1917–1922 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Adam, J. et al. Genetic testing can resolve diagnostic confusion in Alport syndrome. Clin. Kidney J. 7, 197–200 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Choi, M. et al. Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proc. Natl Acad. Sci. USA 106, 19096–19101 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Besbas, N., Ozaltin, F., Jeck, N., Seyberth, H. & Ludwig, M. CLCN5 mutation (R347X) associated with hypokalaemic metabolic alkalosis in a Turkish child: an unusual presentation of Dent's disease. Nephrol. Dial. Transplant. 20, 1476–1479 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Bogdanovic, R. et al. A novel CLCN5 mutation in a boy with Bartter-like syndrome and partial growth hormone deficiency. Pediatr. Nephrol. 25, 2363–2368 (2010).

    Article  PubMed  Google Scholar 

  79. Okamoto, T., Tajima, T., Hirayama, T. & Sasaki, S. A patient with Dent disease and features of Bartter syndrome caused by a novel mutation of CLCN5. Eur. J. Pediatr. 171, 401–404 (2012).

    Article  PubMed  Google Scholar 

  80. Sethi, S. K. et al. A boy with proteinuria and focal global glomerulosclerosis: answers. Pediatr. Nephrol. 30, 1945–1946 (2015).

    Article  PubMed  Google Scholar 

  81. Copelovitch, L., Nash, M. A. & Kaplan, B. S. Hypothesis: Dent disease is an underrecognized cause of focal glomerulosclerosis. J. Am. Soc. Nephrol. 2, 914–918 (2007).

    Article  CAS  Google Scholar 

  82. Frishberg, Y. et al. Dent' s disease manifesting as focal glomerulosclerosis: is it the tip of the iceberg? Pediatr. Nephrol. 24, 2369–2373 (2009).

    Article  PubMed  Google Scholar 

  83. Valina, M. et al. A novel CLCN5 mutation in a boy with asymptomatic proteinuria and focal global glomerulosclerosis. Clin. Nephrol. 80, 377–384 (2013).

    Article  PubMed  Google Scholar 

  84. Cramer, M. T. et al. Expanding the phenotype of proteinuria in Dent disease. A case series. Pediatr. Nephrol. 29, 2051–2054 (2014).

    Article  PubMed  Google Scholar 

  85. Johnston, J. J. et al. Individualized iterative phenotyping for genome-wide analysis of loss-of-function mutations. Am. J. Hum. Genet. 96, 913–925 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Verhave, J. C., Bech, A. P., Wetzels, J. F. M. & Nijenhuis, T. Hepatocyte nuclear factor 1β-associated kidney disease: more than renal cysts and diabetes. J. Am. Soc. Nephrol. 27, 345–353 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Bergmann, C. et al. Mutations in multiple PKD genes may explain early and severe polycystic kidney disease. J. Am. Soc. Nephrol. 22, 2047–2056 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Khanna, H. et al. A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat. Genet. 41, 739–745 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Leitch, C. C. et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet–Biedl syndrome. Nat. Genet. 40, 443–448 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Renkema, K. Y., Stokman, M. F., Giles, R. H. & Knoers, N. V. A. M. Next-generation sequencing for research and diagnostics in kidney disease. Nat. Rev. Nephrol. 10, 433–444 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Saunier, S. et al. A novel gene that encodes a protein with a putative src homology 3 domain is a candidate gene for familial juvenile nephronophthisis. Hum. Mol. Genet. 6, 2317–2323 (1997).

    Article  CAS  PubMed  Google Scholar 

  92. Hildebrandt, F. et al. A novel gene encoding an SH3 domain protein is mutated in nephronophthisis type 1. Nat. Genet. 17, 149–153 (1997).

    Article  CAS  PubMed  Google Scholar 

  93. Arts, H. H. & Knoers, N. V. A. M. Current insights into renal ciliopathies: what can genetics teach us? Pediatr. Nephrol. 28, 863–874 (2013).

    Article  PubMed  Google Scholar 

  94. Schueler, M. et al. Large-scale targeted sequencing comparison highlights extreme genetic heterogeneity in nephronophthisis-related ciliopathies. J. Med. Genet. 53, 208–214 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Kubiak, M. & Lewandowska, M. A. Can chromatin conformation technologies bring light into human molecular pathology? Acta Biochim. Pol. 62, 483–489 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Mimura, I., Kanki, Y., Kodama, T. & Nangaku, M. Revolution of nephrology research by deep sequencing: ChIP-seq and RNA-seq. Kidney Int. 85, 31–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Elumalai, R., Periasamy, S., Ramanathan, G., Lakkakula, B. V. & Soundararajan, P. Journal of renal injury prevention role of endothelial nitric oxide synthase VNTR (intron 4 a/b) polymorphism on the progression of renal disease in autosomal dominant polycystic kidney disease. J. Renal Inj. Prev. 3, 69–73 (2014).

    PubMed  PubMed Central  Google Scholar 

  98. Merta, M., Reiterová, J., Tesar, V., Štekrová, J. & Viklický, O. Influence of the endothelial nitric oxide synthase polymorphism on the progression of autosomal dominant polycystic kidney disease and IgA nephropathy. Ren. Fail. 24, 585–593 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. King, K., Flinter, F. A., Nihalani, V. & Green, P. M. Unusual deep intronic mutations in the COL4A5 gene cause X linked Alport syndrome. Hum. Genet. 111, 548–554 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. van de Hoek, G. et al. Functional models for congenital anomalies of the kidney and urinary tract. Nephron 129, 62–67 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Yao, X.-D. et al. Challenge in pathologic diagnosis of Alport syndrome: evidence from correction of previous misdiagnosis. Orphanet J. Rare Dis. 7, 100 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Jais, J. P. et al. X-linked Alport syndrome: natural history in 195 families and genotype–phenotype correlations in males. J. Am. Soc. Nephrol. 11, 649–657 (2000).

    CAS  PubMed  Google Scholar 

  104. Stenson, P. D. et al. The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum. Genet. 133, 1–9 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2011).

  106. Perrichot, R. et al. DGGE screening of PKD1 gene reveals novel mutations in a large cohort of 146 unrelated patients. Hum. Genet. 105, 231–239 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Harris, P. C. & Torres, V. E. in GeneReviews (eds Pagon, R. A. et al.) 1–46 (Univ. of Washington, 2015).

    Google Scholar 

  108. Biesecker, L. G. et al. The ClinSeq Project: piloting large-scale genome sequencing for research in genomic medicine. Genome Res. 19, 1665–1674 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Nicolaou, N. et al. Prioritization and burden analysis of rare variants in 208 candidate genes suggest they do not play a major role in CAKUT. Kidney Int. 89, 476–486 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Roversi, G. et al. Constitutional de novo deletion of the FBXW7 gene in a patient with focal segmental glomerulosclerosis and multiple primitive tumors. Sci. Rep. 5, 15454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chaki, M. et al. Genotype–phenotype correlation in 440 patients with NPHP-related ciliopathies. Kidney Int. 80, 1239–1245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Firth, H. V. et al. DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. Am. J. Hum. Genet. 84, 524–533 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 44, 862–868 (2016).

    Article  CAS  Google Scholar 

  114. Nicolaou, N., Renkema, K. Y., Bongers, E. M. H. F., Giles, R. H. & Knoers, N. V. A. M. Genetic, environmental, and epigenetic factors involved in CAKUT. Nat. Rev. Nephrol. 11, 720–731 (2015).

    Article  CAS  PubMed  Google Scholar 

  115. Prakash, S. & Gharavi, A. G. Diagnosing kidney disease in the genetic era. Curr. Opin. Nephrol. Hypertens. 24, 380–387 (2015).

    PubMed  Google Scholar 

  116. Liebau, M. C. An emerging molecular understanding and novel targeted treatment approaches in pediatric kidney diseases. Front. Pediatr. 2, 68 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Weber, S. & Tonshoff, B. Recurrence of focal-segmental glomerulosclerosis in children after renal transplantation: clinical and genetic aspects. Transplantation 80, S128–S134 (2005).

    Article  PubMed  Google Scholar 

  118. Noris, M., Bresin, E., Mele, C. & Remuzzi, G. in GeneReviews 1–28 (2013).

    Google Scholar 

  119. Gross, O. et al. Early angiotensin-converting enzyme inhibition in Alport syndrome delays renal failure and improves life expectancy. Kidney Int. 81, 494–501 (2012).

    Article  CAS  PubMed  Google Scholar 

  120. Webb, N. J. et al. Losartan and enalapril are comparable in reducing proteinuria in children with Alport syndrome. Pediatr. Nephrol. 28, 737–743 (2013).

    Article  PubMed  Google Scholar 

  121. Slaats, G. G., Lilien, M. R. & Giles, R. H. Nephronophthisis: should we target cysts or fibrosis? Pediatr. Nephrol. 31, 545–554 (2016).

    Article  PubMed  Google Scholar 

  122. Lemmink, H. H. et al. Benign familial hematuria due to mutation of the type IV collagen A4 gene. J. Clin. Invest. 98, 1114–1118 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Badenas, C. et al. Mutations in the COL4A4 and COL4A3 genes cause familial benign hematuria. J. Am. Soc. Nephrol. 13, 1248–1254 (2002).

    CAS  PubMed  Google Scholar 

  124. Mochizuki, T. et al. Identification of mutations in the α3(IV) and α4(IV) collagen genes in autosomal recessive Alport syndrome. Nat. Genet. 8, 77–82 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Barker, D. et al. Identification of mutations in the COL4A5 collagen gene in Alport syndrome. Science 248, 1224–1227 (1990).

    Article  CAS  PubMed  Google Scholar 

  126. Sanyanusin, P. et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies and vesicoureteral reflux. Nat. Genet. 9, 358–364 (1995).

    Article  CAS  PubMed  Google Scholar 

  127. Nishimoto, K. et al. PAX2 gene mutation in a family with isolated renal hypoplasia. J. Am. Soc. Nephrol. 12, 1769–1772 (2001).

    CAS  PubMed  Google Scholar 

  128. Barua, M. et al. Mutations in PAX2 associate with adult-onset FSGS. J. Am. Soc. Nephrol. 25, 1942–1953 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Horikawa, Y. et al. Mutation in hepatocyte nuclear factor-1β gene (TCF2) associated with MODY. Nat. Genet. 15, 57–61 (1997).

    Article  Google Scholar 

  130. Weber, S. et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. J. Am. Soc. Nephrol. 17, 2864–2870 (2006).

    Article  CAS  PubMed  Google Scholar 

  131. Hwang, D.-Y. et al. Mutations in 12 known dominant disease-causing genes clarify many congenital anomalies of the kidney and urinary tract. Kidney Int. 85, 1–5 (2014).

    Article  CAS  Google Scholar 

  132. Thomas, R. et al. HNF1B and PAX2 mutations are a common cause of renal hypodysplasia in the CKiD cohort. Pediatr. Nephrol. 26, 897–903 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Hiesberger, H. H. et al. Mutation of hepatocyte nuclear factor-1B inhibits Pkhd1 gene expression and produces renal cysts in mice. J. Clin. Invest. 113, 814–825 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Gresh, L. et al. A transcriptional network in polycystic kidney disease. EMBO 23, 1657–1668 (2004).

    Article  CAS  Google Scholar 

  135. Heidet, L. et al. Spectrum of HNF1B mutations in a large cohort of patients who harbor renal diseases. Clin. J. Am. Soc. Nephrol. 5, 1079–1090 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kyttälä, M. et al. MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat. Genet. 38, 155–157 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Hopp, K. et al. B9d1 is revealed as a novel Meckel syndrome (MKS) gene by targeted exon-enriched next-generation sequencing and deletion analysis. Hum. Mol. Genet. 20, 2524–2534 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sayer, J. A. et al. The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4. Nat. Genet. 38, 674–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Baala, L. et al. Pleiotropic effects of CEP290 (NPHP6) mutations extend to Meckel syndrome. Am. J. Hum. Genet. 81, 170–179 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Haber, D. A. et al. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor. Cell 61, 1257–1269 (1990).

    Article  CAS  PubMed  Google Scholar 

  141. Hastie, N. Dominant negative mutations in the Wilms tumour (WT1) gene cause Denys-Drash syndrome — proof that a tumour-suppressor gene plays a crucial role in normal genitourinary development. Hum. Molec. Genet. 1, 293–295 (1992).

    Article  CAS  PubMed  Google Scholar 

  142. Jeanpierre, C. et al. Identification of constitutional WT1 mutations, in patients with isolated diffuse mesangial sclerosis, and analysis of genotype/phenotype correlations by use of a computerized mutation database. Am. J. Hum. Genet. 62, 824–833 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yamagata, K. et al. Mutations in the hepatocyte nuclear factor-4α gene in maturity-onset diabetes of the young (MODY1). Nature 384, 458–460 (1996).

    Article  CAS  PubMed  Google Scholar 

  144. Dreyer, S. D. et al. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat. Genet. 19, 47–50 (1998).

    Article  CAS  PubMed  Google Scholar 

  145. Bongers, E. M. et al. Genotype-phenotype studies in nail-patella syndrome show that LMX1B mutation location is involved in the risk of developing nephropathy. Eur. J. Hum. Genet. 13, 935–946 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Bailey, L. J. et al. Characterization of a candidate gene for OCRL. Am. J. Hum. Genet. 51, 1 (1992).

    Google Scholar 

  147. Shrimpton, A. E. et al. OCRL1 mutations in dent 2 patients suggest a mechanism for phenotypic variability. Nephron. Physiol. 112, 27–36 (2009).

    Article  CAS  Google Scholar 

  148. Hichri, H. et al. From lowe syndrome to Dent disease: Correlations between mutations of the OCRL1 gene and clinical and biochemical phenotypes. Hum. Mutat. 32, 379–388 (2011).

    Article  CAS  PubMed  Google Scholar 

  149. Mehta, Z. B., Pietka, G. & Lowe, M. The cellular and physiological functions of the lowe syndrome protein OCRL1. Traffic 15, 471–487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. McGregor, L. et al. Fraser syndrome and mouse blebbed phenotype caused by mutations in FRAS1/Fras1 encoding a putative extracellular matrix protein. Nat. Genet. 34, 203–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  151. Jadeja, S. et al. Identification of a new gene mutated in Fraser syndrome and mouse myelencephalic blebs. Nat. Genet. 37, 520–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Vogel, M. J. et al. Mutations in GRIP1 cause Fraser syndrome. J. Med. Genet. 49, 303–306 (2012).

    Article  PubMed  Google Scholar 

  153. Jais, J. P. et al. X-linked Alport syndrome: natural history and genotype-phenotype correlations in girls and women belonging to 195 families: a 'European Community Alport Syndrome Concerted Action' Study. J. Am. Soc. Nephrol. 14, 2603–2610 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The researchers receive funding from the Dutch Kidney Foundation under grant agreements CP11.18 Kouncil (N.V.A.M.K. and R.H.G.) and KSTP12 010 (A.M.v.E.), the European Community's Seventh Framework Programme (FP7/2009) under grant agreement 305608 EURenOmics (N.V.A.M.K., F.S. and K.Y.R.) and Fonds NutsOhra grant 1303–070 (A.M.v.E.).

Author information

Authors and Affiliations

Authors

Contributions

M.F.S. researched data for the article and wrote the article. All authors made substantial contributions to discussions of the article's content and reviewed/edited the manuscript before submission

Corresponding author

Correspondence to Nine V.A.M. Knoers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Related links

Related links

DATABASES

OMIM

256300

173900

603278

610805

256100

615008

235400

301050

141200

613820

613819

249000

213300

194070

194080

125850

616026

227810

161200

309000

300555

219000

601678

300009

263200

240300

311200

603965

ExAC database

Human Gene Mutation Database

Decipher

ClinVar

Glossary

Next-generation sequencing

A technique that enables the simultaneous investigation of mulitple genes and pathways in parallel. The term includes all forms of modern, high-throughput sequencing techniques, including gene panel sequencing, whole-exome sequencing and whole-genome sequencing.

Nephrogenetic diseases

Kidney diseases with a genetic aetiology, including hereditary kidney disorders for which the responsible genes have not yet been identified.

Pseudogenes

DNA sequences that are similar to genes but do not encode functional proteins.

Gene panel sequencing

Targeted sequencing of a set of genes that are associated with a specific phenotype.

Whole-exome sequencing

Targeted sequencing of all the protein-coding regions (1–2%) of the genome.

Whole-genome sequencing

Untargeted sequencing of the complete genome.

Causal

Variant(s) that are the cause of a specific phenotype.

Missense

A variant that results in a single amino-acid substitution.

Truncating

A variant that introduces a premature stop codon and results in a shortened protein.

Biallelic

Variant present on both alleles of a specific gene. Biallelic variants can be homozygous or compound heterozygous.

Probands

Patients who are the starting points of genetic studies in families.

Pathogenic

Variant that has an effect on protein function that is associated with a specific disease phenotype.

Hypomorphic

A mutation that results in reduced expression or reduced activity of a protein. The resulting disease phenotype is potentially milder than when mutations cause a complete loss of functional protein.

Phenotypic heterogeneity

When mutations in the same gene can give rise to two or more distinct clinical phenotypes.

Oligogenic inheritance

Inheritance model in which a phenotype is determined by the combination of a few genes.

Chromosome conformation capture

A technique used to study the in vivo organization and interactions of genomic elements.

Chromatin immunoprecipitation sequencing

A technique that combines chromatin immunoprecipitation with NGS to study the in vivo interaction between proteins (for example transcription factors) or epigenetic modifications (for example histone modifications) and the DNA.

Incidental findings

Findings that are unrelated to the condition for which the DNA test is performed, including alleles that confer disease-risk to the patient as well as carriership for recessive or X-linked disease.

Variants of unknown significance

Variants for which the association with disease risk is unknown.

Copy number variation

A type of structural variation that alters the diploid status of DNA (deletions and duplications).

Loss-of-function

Variant that results in a protein with reduced or no function.

Segregation analysis

Study of the association between a genetic variant and a specific phenotype in a family. It is used to establish the mode of inheritance and to investigate if a specific genetic variant could potentially be causal for the disease in a family.

Canonical

A canonical disease gene is a gene that is typically associated with a particular disease.

Replication stress

Occurs when replication fork progression is slow or problematic and can result in DNA damage and genomic instability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stokman, M., Renkema, K., Giles, R. et al. The expanding phenotypic spectra of kidney diseases: insights from genetic studies. Nat Rev Nephrol 12, 472–483 (2016). https://doi.org/10.1038/nrneph.2016.87

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.87

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing