Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Minimal change disease and idiopathic FSGS: manifestations of the same disease

Abstract

Minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) are the key histological findings in patients with idiopathic nephrotic syndrome (INS). Although MCD and idiopathic FSGS are often considered to represent separate entities based on differences in their presenting characteristics, histology and outcomes, little evidence exists for this separation. We propose that MCD and idiopathic FSGS are different manifestations of the same progressive disease. The gradual development of FSGS in patients with non-remitting or relapsing INS has been well documented. Moreover, FSGS is the uniform result of substantial podocyte loss in animal models, and a common feature of virtually all progressive human glomerulopathies. As evidence suggests a common aetiology, the pathogenesis of MCD and idiopathic FSGS should be studied together. In clinical trials, idiopathic FSGS should be considered to represent an advanced stage of disease progression that is less likely to respond to treatment than the earlier stage of disease, which is usually defined as MCD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of idiopathic nephrotic syndrome, minimal change disease and idiopathic focal segmental glomerulosclerosis (FSGS).
Figure 2: Minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) are manifestations of the same disease.

Similar content being viewed by others

References

  1. Mason, P. D. & Hoyer, P. F. in Comprehensive Clinical Nephrology (ed. Floege, J.) 218–227 (Elsevier, 2010).

    Book  Google Scholar 

  2. Appel, G. B. & D'Agati, V. in Comprehensive Clinical Nephrology (ed. Floege, J.) 229–240 (Elsevier, 2010).

    Google Scholar 

  3. Fogo, A. B. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat. Rev. Nephrol. 11, 76–87 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Schwartz, M. M. & Korbet, S. M. Primary focal and segmental glomerulosclerosis: pathology, histological variants, and pathogenesis. Am. J. Kidney Dis. 22, 874–883 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. D'Agati, V. D., Fogo, A. B., Bruijn, J. A. & Jennette, J. C. Pathologic classification of focal segmental glomerulosclerosis: a working proposal. Am. J. Kidney Dis. 43, 368–382 (2004).

    Article  PubMed  Google Scholar 

  6. Rennke, H. & Klein, P. S. Pathogenesis and significance of nonprimary focal and segmental glomerulosclerosis. Am. J. Kidney Dis. 13, 443–456 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Deegens, J. K., Steenbergen, E. J. & Wetzels, J. F. Review on diagnosis and treatment of focal segmental glomerulosclerosis. Neth. J. Med. 66, 3–12 (2008).

    CAS  PubMed  Google Scholar 

  8. Deegens, J. K. et al. Podocyte foot process effacement as a diagnostic tool in focal segmental glomerulosclerosis. Kidney Int. 74, 1568–1576 (2008).

    Article  PubMed  Google Scholar 

  9. Churg, J., Habib, R. & White, R. H. Pathology of the nephrotic syndrome in children: a report for the International Study of Kidney Disease in Children. Lancet 760, 1299–1302 (1970).

    Article  CAS  PubMed  Google Scholar 

  10. White, R. H., Glasgow, E. F. & Mills, R. J. Clinicopathological study of nephrotic syndrome in childhood. Lancet 1, 1353–1359 (1970).

    Article  CAS  PubMed  Google Scholar 

  11. Wiggins, R. C. The spectrum of podocytopathies: a unifying view of glomerular diseases. Kidney Int. 71, 1205–1214 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Kriz, W., Gretz, N. & Lemley, K. V. Progression of glomerular diseases: is the podocyte the culprit? Kidney Int. 54, 687–697 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Munk, F. Pathologie und klinik der Nephrosen, Nephritiden und Schrumpfnieren (Urban & Schwarzenberg, 1918).

    Google Scholar 

  14. Fahr, T. in Harnorgane Männliche Geschlechtsorgane (ed. Fahr, T.) 156–472 (Springer Vienna, 1925).

    Book  Google Scholar 

  15. Rich, A. R. A hitherto undescribed vulnerability of the juxtamedullary glomeruli in lipoid nephrosis. Bull. Johns Hopkins Hosp. 100, 173–186 (1957).

    CAS  PubMed  Google Scholar 

  16. Hyman, L. R. & Burkholder, P. M. Focal sclerosing glomerulonephropathy with hyalinosis. A clinical and pathologic analysis of the disease in children. J. Pediatr. 84, 217–225 (1974).

    Article  CAS  PubMed  Google Scholar 

  17. Habib, R. Focal glomerular sclerosis. Kidney Int. 4, 355–361 (1973).

    Article  CAS  PubMed  Google Scholar 

  18. Hayslett, J. P., Krassner, L. S., Bensch, K. G., Kashgarian, M. & Epstein, F. H. Progression of “lipoid nephrosis” to renal insufficiency. N. Engl. J. Med. 281, 181–187 (1969).

    Article  CAS  PubMed  Google Scholar 

  19. Tejani, A. Morphological transition in minimal change nephrotic syndrome. Nephron 39, 157–159 (1985).

    Article  CAS  PubMed  Google Scholar 

  20. Maas, R. J., Deegens, J. K., van den Brand, J. A., Cornelissen, E. A. & Wetzels, J. F. A retrospective study of focal segmental glomerulosclerosis: clinical criteria can identify patients at high risk for recurrent disease after first renal transplantation. BMC Nephrol. 14, 47 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Deegens, J. K., Andresdottir, M. B., Croockewit, S. & Wetzels, J. F. Plasma exchange improves graft survival in patients with recurrent focal glomerulosclerosis after renal transplant. Transpl. Int. 17, 151–157 (2004).

    Article  PubMed  Google Scholar 

  22. Artero, M., Sharma, R., Savin, V. J. & Vincenti, F. Plasmapheresis reduces proteinuria and serum capacity to injure glomeruli in patients with recurrent focal glomeruloclerosis. Am. J. Kidney Dis. 23, 574–581 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Canaud, G. et al. Recurrence of nephrotic syndrome after transplantation in a mixed population of children and adults: course of glomerular lesions and value of the Columbia classification of histological variants of focal and segmental glomerulosclerosis (FSGS). Nephrol. Dial. Transplant. 25, 1321–1328 (2010).

    Article  PubMed  Google Scholar 

  24. Ijpelaar, D. H. et al. Fidelity and evolution of recurrent FSGS in renal allografts. J. Am. Soc. Nephrol. 19, 2219–2224 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Artz, M. A., Dooper, P. M., Meuleman, E. J., van der Vliet, J. A. & Wetzels, J. F. Time course of proteinuria after living-donor kidney transplantation. Transplantation 76, 421–423 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Fatima, H. et al. Parietal epithelial cell activation marker in early recurrence of FSGS in the transplant. Clin. J. Am. Soc. Nephrol. 7, 1852–1858 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Smeets, B. et al. Detection of activated parietal epithelial cells on the glomerular tuft distinguishes early focal segmental glomerulosclerosis from minimal change disease. Am. J. Pathol. 184, 3239–3248 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dumoulin, A., Hill, G. S., Montseny, J. J. & Meyrier, A. Clinical and morphological prognostic factors in membranous nephropathy: significance of focal segmental glomerulosclerosis. Am. J. Kidney Dis. 41, 38–48 (2003).

    Article  PubMed  Google Scholar 

  29. Gupta, R. et al. Focal segmental glomerulosclerosis in idiopathic membranous glomerulonephritis: a clinico-pathological and stereological study. Nephrol. Dial. Transplant. 25, 444–449 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Rao, T. K. et al. Associated focal and segmental glomerulosclerosis in the acquired immunodeficiency syndrome. N. Engl. J. Med. 310, 669–673 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Meehan, S. M., Kim, L. & Chang, A. A spectrum of morphologic lesions of focal segmental glomerulosclerosis by Columbia criteria in human immunodeficiency virus infection. Virchows Arch. 460, 429–435 (2012).

    Article  PubMed  Google Scholar 

  32. Schachter, M. E. et al. Recurrent focal segmental glomerulosclerosis in the renal allograft: single center experience in the era of modern immunosuppression. Clin. Nephrol. 74, 173–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Matsusaka, T. et al. Genetic engineering of glomerular sclerosis in the mouse via control of onset and severity of podocyte-specific injury. J. Am. Soc. Nephrol. 16, 1013–1023 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Wharram, B. L. et al. Podocyte depletion causes glomerulosclerosis: diphtheria toxin-induced podocyte depletion in rats expressing human diphtheria toxin receptor transgene. J. Am. Soc. Nephrol. 16, 2941–2952 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Frenk, S., Antonowicz, I., Craig, J. M. & Metcoff, J. Experimental nephrotic syndrome induced in rats by aminonucleoside; renal lesions and body electrolyte composition. Proc. Soc. Exp. Biol. Med. 89, 424–427 (1955).

    Article  CAS  PubMed  Google Scholar 

  36. Bertani, T. et al. Adriamycin-induced nephrotic syndrome in rats: sequence of pathologic events. Lab. Invest. 46, 16–23 (1982).

    CAS  PubMed  Google Scholar 

  37. Smeets, B. et al. Podocyte changes upon induction of albuminuria in Thy-1.1 transgenic mice. Nephrol. Dial. Transplant. 18, 2524–2533 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Diamond, J. R. & Karnovsky, M. J. Focal and segmental glomerulosclerosis following a single intravenous dose of puromycin aminonucleoside. Am. J. Pathol. 122, 481–487 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim, Y. H. et al. Podocyte depletion and glomerulosclerosis have a direct relationship in the PAN-treated rat. Kidney Int. 60, 957–968 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Le Berre, L. et al. The Buffalo/Mna rat, an animal model of FSGS recurrence after renal transplantation. Transplant. Proc. 33, 3338–3340 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Le Berre, L. et al. Extrarenal effects on the pathogenesis and relapse of idiopathic nephrotic syndrome in Buffalo/Mna rats. J. Clin. Invest. 109, 491–498 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Robins, R., Baldwin, C., Aoudjit, L., Gupta, I. R. & Takano, T. The spectrum of nephrotic syndrome from minimal change disease to FSGS correlates with Rac1 activation. J. Am. Soc. Nephrol. 26, abstr. SA-OR053 (2015).

    Google Scholar 

  43. Mundel, P. & Reiser, J. Proteinuria: an enzymatic disease of the podocyte? Kidney Int. 77, 571–580 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Mentzel, S., van Son, J. P., Dijkman, H. B., Wetzels, J. F. & Assmann, K. J. Induction of albuminuria in mice: synergistic effect of two monoclonal antibodies directed to different domains of aminopeptidase A. Kidney Int. 55, 1335–1347 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Addis, T. The mechanism of proteinuria. Proc. Natl Acad. Sci. USA 35, 194–198 (1949).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weening, J. J. et al. The pathophysiology of protein-overload proteinuria. Am. J. Pathol. 129, 64–73 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gelberg, H., Healy, L., Whiteley, H., Miller, L. A. & Vimr, E. In vivo enzymatic removal of α 2-→6-linked sialic acid from the glomerular filtration barrier results in podocyte charge alteration and glomerular injury. Lab. Invest. 74, 907–920 (1996).

    CAS  PubMed  Google Scholar 

  48. Reiser, J. et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J. Clin. Invest. 113, 1390–1397 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Trachtman, H., Del Pizzo, R., Valderrama, E. & Gauthier, B. The renal functional and structural consequences of corticosteroid and angiotensin-converting enzyme inhibitor therapy in chronic puromycin aminonucleoside nephropathy. Pediatr. Nephrol. 4, 501–504 (1990).

    Article  CAS  PubMed  Google Scholar 

  50. Wada, T., Pippin, J. W., Marshall, C. B., Griffin, S. V. & Shankland, S. J. Dexamethasone prevents podocyte apoptosis induced by puromycin aminonucleoside: role of p53 and Bcl-2-related family proteins. J. Am. Soc. Nephrol. 16, 2615–2625 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Clement, L. C. et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat. Med. 17, 117–122 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Pippin, J. W. et al. Inducible rodent models of acquired podocyte diseases. Am. J. Physiol. Renal Physiol. 296, F213–F229 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Chugh, S. et al. Aminopeptidase A: a nephritogenic target antigen of nephrotoxic serum. Kidney Int. 59, 601–613 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Chugh, S. S., Clement, L. C. & Mace, C. New insights into human minimal change disease: lessons from animal models. Am. J. Kidney Dis. 59, 284–292 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Maas, R. J., Deegens, J. K. & Wetzels, J. F. Permeability factors in idiopathic nephrotic syndrome: historical perspectives and lessons for the future. Nephrol. Dial. Transplant. 29, 2207–2216 (2014).

    Article  CAS  PubMed  Google Scholar 

  56. Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 17, 952–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. McCarthy, E. T., Sharma, M. & Savin, V. J. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin. J. Am. Soc. Nephrol. 5, 2115–2121 (2010).

    Article  PubMed  Google Scholar 

  58. Koyama, A., Fujisaki, M., Kobayashi, M., Igarashi, M. & Narita, M. A glomerular permeability factor produced by human T cell hybridomas. Kidney Int. 40, 453–460 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Brenchley, P. E. Vascular permeability factors in steroid-sensitive nephrotic syndrome and focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 18 (Suppl. 6), vi21–vi25 (2003).

    CAS  PubMed  Google Scholar 

  60. Mansour, H. et al. T-cell transcriptome analysis points up a thymic disorder in idiopathic nephrotic syndrome. Kidney Int. 67, 2168–2177 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Bakker, W. W. et al. Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr. Nephrol. 20, 1410–1415 (2005).

    Article  PubMed  Google Scholar 

  62. Maas, R. J., Wetzels, J. F. & Deegens, J. K. Serum-soluble urokinase receptor concentration in primary FSGS. Kidney Int. 81, 1043–1044 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Meijers, B. et al. The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney Int. 85, 636–640 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Wada, T. et al. A multicenter cross-sectional study of circulating soluble urokinase receptor in Japanese patients with glomerular disease. Kidney Int. 85, 641–648 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Sinha, A. et al. Serum-soluble urokinase receptor levels do not distinguish focal segmental glomerulosclerosis from other causes of nephrotic syndrome in children. Kidney Int. 85, 649–658 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Spinale, J. M. et al. A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease. Kidney Int. 87, 564–574 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Shalhoub, R. J. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 2, 556–560 (1974).

    Article  CAS  PubMed  Google Scholar 

  68. Araya, C. et al. T regulatory cell function in idiopathic minimal lesion nephrotic syndrome. Pediatr. Nephrol. 24, 1691–1698 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Prasad, N. et al. Differential alteration in peripheral T-regulatory and T-effector cells with change in P-glycoprotein expression in Childhood Nephrotic Syndrome: a longitudinal study. Cytokine 72, 190–196 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Le Berre, L. et al. Induction of T regulatory cells attenuates idiopathic nephrotic syndrome. J. Am. Soc. Nephrol. 20, 57–67 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Audard, V., Pawlak, A., Candelier, M., Lang, P. & Sahali, D. Upregulation of nuclear factor-related kappa B suggests a disorder of transcriptional regulation in minimal change nephrotic syndrome. PLoS ONE 7, e30523 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Aviles, D. H., Matti Vehaskari, V., Manning, J., Ochoa, A. C. & Zea, A. H. Decreased expression of T-cell NF-κB p65 subunit in steroid-resistant nephrotic syndrome. Kidney Int. 66, 60–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Lama, G. et al. T-Lymphocyte populations and cytokines in childhood nephrotic syndrome. Am. J. Kidney Dis. 39, 958–965 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Sellier-Leclerc, A. L. et al. A humanized mouse model of idiopathic nephrotic syndrome suggests a pathogenic role for immature cells. J. Am. Soc. Nephrol. 18, 2732–2739 (2007).

    Article  PubMed  Google Scholar 

  75. Hinkes, B. G. et al. Nephrotic syndrome in the first year of life: two thirds of cases are caused by mutations in 4 genes (NPHS1, NPHS2, WT1, and LAMB2). Pediatrics 119, e907–e919 (2007).

    Article  PubMed  Google Scholar 

  76. Autio-Harmainen, H. & Rapola, J. Renal pathology of fetuses with congenital nephrotic syndrome of the Finnish type. a qualitative and quantitative light microscopic study. Nephron 29, 158–163 (1981).

    Article  CAS  PubMed  Google Scholar 

  77. Kaplan, J. M. et al. Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet. 24, 251–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Brown, E. J. et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat. Genet. 42, 72–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Gbadegesin, R. A. et al. Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS. J. Am. Soc. Nephrol. 25, 1991–2002 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brown, E. J., Pollak, M. R. & Barua, M. Genetic testing for nephrotic syndrome and FSGS in the era of next-generation sequencing. Kidney Int. 85, 1030–1038 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Santin, S. et al. Clinical utility of genetic testing in children and adults with steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 6, 1139–1148 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Rood, I. M., Deegens, J. K. & Wetzels, J. F. Genetic causes of focal segmental glomerulosclerosis: implications for clinical practice. Nephrol. Dial. Transplant. 27, 882–890 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Sadowski, C. E. et al. A single-gene cause in 29.5% of cases of steroid-resistant nephrotic syndrome. J. Am. Soc. Nephrol. 26, 1279–1289 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Karp, A. M. & Gbadegesin, R. A. Genetics of childhood steroid-sensitive nephrotic syndrome. Pediatr. Nephrol. http://dx.doi.org/10.1007/s00467-016-3456-8 (2016).

  86. Gee, H. Y. et al. Mutations in EMP2 cause childhood-onset nephrotic syndrome. Am. J. Hum. Genet. 94, 884–890 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wan, X. et al. Loss of epithelial membrane protein 2 aggravates podocyte injury via upregulation of caveolin-1. J. Am. Soc. Nephrol. 27, 1066–1075 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Gbadegesin, R. A. et al. HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J. Am. Soc. Nephrol. 26, 1701–1710 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. McAdam, A. J., Schweitzer, A. N. & Sharpe, A. H. The role of B7 co-stimulation in activation and differentiation of CD4+ and CD8+ T cells. Immunol. Rev. 165, 231–247 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Garin, E. H. et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int. 78, 296–302 (2010).

    Article  CAS  PubMed  Google Scholar 

  91. Cara-Fuentes, G. et al. CD80 and suPAR in patients with minimal change disease and focal segmental glomerulosclerosis: diagnostic and pathogenic significance. Pediatr. Nephrol. 29, 1363–1371 (2014).

    Article  PubMed  Google Scholar 

  92. Ling, C. et al. Urinary CD80 levels as a diagnostic biomarker of minimal change disease. Pediatr. Nephrol. 30, 309–316 (2014).

    Article  PubMed  Google Scholar 

  93. Yu, C. C. et al. Abatacept in B7-1-positive proteinuric kidney disease. N. Engl. J. Med. 369, 2416–2423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Novelli, R., Gagliardini, E., Ruggiero, B., Benigni, A. & Remuzzi, G. Any value of podocyte B7-1 as a biomarker in human MCD and FSGS? Am. J. Physiol. Renal Physiol. 310, F335–F341 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Delville, M. et al. B7-1 blockade does not improve post-transplant nephrotic syndrome caused by recurrent FSGS. J. Am. Soc. Nephrol. 27, 2520–2527 (2016).

    Article  PubMed  Google Scholar 

  96. Larsen, C. P., Messias, N. C. & Walker, P. D. B7-1 immunostaining in proteinuric kidney disease. Am. J. Kidney Dis. 64, 1001–1003 (2014).

    Article  PubMed  Google Scholar 

  97. Garin, E. H. et al. Case series: CTLA4-IgG1 therapy in minimal change disease and focal segmental glomerulosclerosis. Pediatr. Nephrol. 30, 469–477 (2015).

    Article  PubMed  Google Scholar 

  98. Regele, H. M. et al. Glomerular expression of dystroglycans is reduced in minimal change nephrosis but not in focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 11, 403–412 (2000).

    CAS  PubMed  Google Scholar 

  99. Giannico, G., Yang, H., Neilson, E. G. & Fogo, A. B. Dystroglycan in the diagnosis of FSGS. Clin. J. Am. Soc. Nephrol. 4, 1747–1753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vogtlander, N. P. et al. Expression of sialidase and dystroglycan in human glomerular diseases. Nephrol. Dial. Transplant. 25, 478–484 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Schmid, H. et al. Gene expression profiles of podocyte-associated molecules as diagnostic markers in acquired proteinuric diseases. J. Am. Soc. Nephrol. 14, 2958–2966 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Hodgin, J. B. et al. A molecular profile of focal segmental glomerulosclerosis from formalin-fixed, paraffin-embedded tissue. Am. J. Pathol. 177, 1674–1686 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shankland, S. J., Smeets, B., Pippin, J. W. & Moeller, M. J. The emergence of the glomerular parietal epithelial cell. Nat. Rev. Nephrol. 10, 158–173 (2014).

    Article  CAS  PubMed  Google Scholar 

  104. Bennett, M. R. et al. Laser capture microdissection-microarray analysis of focal segmental glomerulosclerosis glomeruli. Nephron Exp. Nephrol. 107, e30–e40 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Endlich, N. et al. Analysis of differential gene expression in stretched podocytes: osteopontin enhances adaptation of podocytes to mechanical stress. FASEB J. 16, 1850–1852 (2002).

    Article  CAS  PubMed  Google Scholar 

  106. Hanley, K. P. et al. Ectopic SOX9 mediates extracellular matrix deposition characteristic of organ fibrosis. J. Biol. Chem. 283, 14063–14071 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. International Study of Kidney Disease in Children. Nephrotic syndrome in children: prediction of histopathology from clinical and laboratory characteristics at time of diagnosis. Kidney Int. 13, 159–165 (1978).

  108. Malone, A. F. et al. Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int. 86, 1253–1259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jao, W., Pollak, V. E., Norris, S. H., Lewy, P. & Pirani, C. L. Lipoid nephrosis: an approach to the clinicopathologic analysis and dismemberment of idiopathic nephrotic syndrome with minimal glomerular changes. Medicine (Baltimore) 52, 445–468 (1973).

    Article  CAS  Google Scholar 

  110. Fogo, A. et al. Glomerular hypertrophy in minimal change disease predicts subsequent progression to focal glomerular sclerosis. Kidney Int. 38, 115–123 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Nyberg, E., Bohman, S. O. & Berg, U. Glomerular volume and renal function in children with different types of the nephrotic syndrome. Pediatr. Nephrol. 8, 285–289 (1994).

    Article  CAS  PubMed  Google Scholar 

  112. Suzuki, J., Yoshikawa, N. & Nakamura, H. A quantitative analysis of the glomeruli in focal segmental glomerulosclerosis. Pediatr. Nephrol. 8, 416–419 (1994).

    Article  CAS  PubMed  Google Scholar 

  113. Tsuboi, N. et al. Glomerular density in renal biopsy specimens predicts the long-term prognosis of IgA nephropathy. Clin. J. Am. Soc. Nephrol. 5, 39–44 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Puelles, V. G. et al. Podocyte number in children and adults: associations with glomerular size and numbers of other glomerular resident cells. J. Am. Soc. Nephrol. 26, 2277–2288 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Cameron, J. S. & Blandford, G. The simple assessment of selectivity in heavy proteinuria. Lancet 2, 242–247 (1966).

    Article  CAS  PubMed  Google Scholar 

  116. Hanamura, K., Tojo, A. & Fujita, T. Urinary and glomerular podocytes in patients with chronic kidney diseases. Clin. Exp. Nephrol. 18, 95–103 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Wickman, L. et al. Urine podocyte mRNAs, proteinuria, and progression in human glomerular diseases. J. Am. Soc. Nephrol. 24, 2081–2095 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mak, S. K., Short, C. D. & Mallick, N. P. Long-term outcome of adult-onset minimal-change nephropathy. Nephrol. Dial. Transplant. 11, 2192–2201 (1996).

    Article  CAS  PubMed  Google Scholar 

  119. Nolasco, F. et al. Adult-onset minimal change nephrotic syndrome: a long-term follow-up. Kidney Int. 29, 1215–1223 (1986).

    Article  CAS  PubMed  Google Scholar 

  120. Waldman, M. et al. Adult minimal-change disease: clinical characteristics, treatment, and outcomes. Clin. J. Am. Soc. Nephrol. 2, 445–453 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Cameron, J. S. The long term prognosis of patients with focal glomerulosclerosis. Clin. Nephrol. 10, 213–229 (1978).

    CAS  PubMed  Google Scholar 

  122. Beaufils, H., Alphonse, J. C., Guedon, J. & Legrain, M. Focal glomerulosclerosis: natural history and treatment. A report of 70 cases. Nephron 21, 75–85 (1978).

    Article  CAS  PubMed  Google Scholar 

  123. Banfi, G. et al. The impact of prolonged immunosuppression on the outcome of idiopathic focal-segmental glomerulosclerosis with nephrotic syndrome in adults. A collaborative retrospective study. Clin. Nephrol. 36, 53–59 (1991).

    CAS  PubMed  Google Scholar 

  124. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerulonephritis Work Group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int. 2 (Suppl.), 139–274 (2012).

  125. Ding, W. Y. et al. Initial steroid sensitivity in children with steroid-resistant nephrotic syndrome predicts post-transplant recurrence. J. Am. Soc. Nephrol. 25, 1342–1348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Coggins, C. H. Adult minimal change nephropathy: experience of the collaborative study of glomerular disease. Trans. Am. Clin. Climatol. Assoc. 97, 18–26 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Matsusaka, T. et al. Podocyte injury damages other podocytes. J. Am. Soc. Nephrol. 22, 1275–1285 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Venkatareddy, M. et al. Estimating podocyte number and density using a single histologic section. J. Am. Soc. Nephrol. 25, 1118–1129 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by the Dutch Kidney Foundation (OW08, R.J.M and J.F.W.; 14A3D104, B.S.), the Netherlands Organization for Scientific Research (NWO grant 92003587, J.K.D.), the consortium STOP-FSGS by the German Ministry for Science and Education (BMBF 01GM1518A, M.J.M.), and TP17 of the SFB/Transregio 57 “Mechanisms of organ fibrosis” of the German Research Foundation (M.J.M). M.J.M. has also been awarded a Heisenberg Professorship (DFG MO 1082/7-1).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, discussed the content and wrote the manuscript. R.J.M. and J.F.W. revised and edited the manuscript before submission.

Corresponding author

Correspondence to Rutger J. Maas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maas, R., Deegens, J., Smeets, B. et al. Minimal change disease and idiopathic FSGS: manifestations of the same disease. Nat Rev Nephrol 12, 768–776 (2016). https://doi.org/10.1038/nrneph.2016.147

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing