Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Podocyte–actin dynamics in health and disease

Key Points

  • The actin cytoskeleton of podocytes reflects their physiological functions and underlies their unique morphology, which can adjust in response to environmental changes to maintain filtration barrier integrity

  • Podocyte focal adhesions and slit diaphragms are signalling networks that interact with the actin cytoskeleton, maintain balance between intracellular and extracellular signals, and regulate podocyte function and morphology

  • The cell-surface expression of components of the focal adhesion and slit diaphragm is controlled by actin-dependent endocytic pathways, which have been identified as crucial regulators of filtration barrier integrity

  • Mutations in proteins that connect actin dynamics, focal adhesions, slit diaphragms and endocytic pathways might cause glomerular disorders characterized by glomerular basement abnormalities, podocyte foot process effacement and proteinuria

  • New insights into how defects in podocyte anchoring lead to distinct forms of glomerular diseases will pave the way for more effective therapies, creating the possibility of personalized nephrology care

Abstract

Genetic studies of hereditary forms of nephrotic syndrome have identified several proteins that are involved in regulating the permselective properties of the glomerular filtration system. Further extensive research has elucidated the complex molecular basis of the glomerular filtration barrier and clearly established the pivotal role of podocytes in the pathophysiology of glomerular diseases. Podocyte architecture is centred on focal adhesions and slit diaphragms — multiprotein signalling hubs that regulate cell morphology and function. A highly interconnected actin cytoskeleton enables podocytes to adapt in order to accommodate environmental changes and maintain an intact glomerular filtration barrier. Actin-based endocytosis has now emerged as a regulator of podocyte integrity, providing an impetus for understanding the precise mechanisms that underlie the steady-state control of focal adhesion and slit diaphragm components. This Review outlines the role of actin dynamics and endocytosis in podocyte biology, and discusses how molecular heterogeneity in glomerular disorders could be exploited to deliver more rational therapeutic interventions, paving the way for targeted medicine in nephrology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Architecture and anatomical structure of the glomerular filtration barrier.
Figure 2: Podocyte dysfunction is a common feature of renal injury.
Figure 3: Integrative signalling networks enable interactions between podocyte focal adhesions, the slit diaphragm and actin dynamics.
Figure 4: Endocytic vesicles in podocytes.
Figure 5: Endocytic pathways in podocytes.

Similar content being viewed by others

References

  1. Ballestrem, C., Wehrle-Haller, B. & Imhof, B. A. Actin dynamics in living mammalian cells. J. Cell Sci. 111, 1649–1658 (1998).

    CAS  PubMed  Google Scholar 

  2. Greka, A. & Mundel, P. Cell biology and pathology of podocytes. Annu. Rev. Physiol. 74, 299–323 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Scott, R. P. & Quaggin, S. E. Review series: The cell biology of renal filtration. J. Cell Biol. 209, 199–210 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Saleem, M. A. et al. The molecular and functional phenotype of glomerular podocytes reveals key features of contractile smooth muscle cells. Am. J. Physiol. Renal Physiol. 295, F959–F970 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Inkyo-Hayasaka, K., Sakai, T., Kobayashi, N., Shirato, I. & Tomino, Y. Three-dimensional analysis of the whole mesangium in the rat. Kidney Int. 50, 672–683 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Peti-Peterdi, J. & Sipos, A. A high-powered view of the filtration barrier. J. Am. Soc. Nephrol. 21, 1835–1841 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Eekhoff, A., Bonakdar, N., Alonso, J. L., Hoffmann, B. & Goldmann, W. H. Glomerular podocytes: a study of mechanical properties and mechano-chemical signaling. Biochem. Biophys. Res. Commun. 406, 229–233 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Burford, J. L. et al. Intravital imaging of podocyte calcium in glomerular injury and disease. J. Clin. Invest. 124, 2050–2058 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Peti-Peterdi, J., Kidokoro, K. & Riquier-Brison, A. Novel in vivo techniques to visualize kidney anatomy and function. Kidney Int. 88, 44–51 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hildebrandt, F. Genetic kidney diseases. Lancet 375, 1287–1295 (2010). Review of the involvement of single-gene mutations in kidney disorders with special emphasis on diagnosis, prognosis and specific targeted treatments.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Welsh, G. I. & Saleem, M. A. The podocyte cytoskeleton—key to a functioning glomerulus in health and disease. Nat. Rev. Nephrol. 8, 14–21 (2012).

    Article  CAS  Google Scholar 

  12. Lennon, R., Randles, M. J. & Humphries, M. J. The importance of podocyte adhesion for a healthy glomerulus. Front. Endocrinol. (Lausanne) 5, 160 (2014).

    Article  Google Scholar 

  13. St John, P. L. & Abrahamson, D. R. Glomerular endothelial cells and podocytes jointly synthesize laminin-1 and -11 chains. Kidney Int. 60, 1037–1046 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Miner, J. H. The glomerular basement membrane. Exp. Cell Res. 318, 973–978 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suh, J. H. & Miner, J. H. The glomerular basement membrane as a barrier to albumin. Nat. Rev. Nephrol. 9, 470–477 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, Y. M. et al. Laminin β2 gene missense mutation produces endoplasmic reticulum stress in podocytes. J. Am. Soc. Nephrol. 24, 1223–1233 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kamiyoshi, N. et al. Genetic, clinical, and pathologic backgrounds of patients with autosomal dominant alport syndrome. Clin. J. Am. Soc. Nephrol. 11, 1441–1449 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kriz, W. & Lemley, K. V. A potential role for mechanical forces in the detachment of podocytes and the progression of CKD. J. Am. Soc. Nephrol. 26, 258–269 (2015). Review of the mechanical challenges that lead to podocyte loss and detachment from the glomerular basement membrane in physiologic and pathophysiologic conditions.

    Article  CAS  PubMed  Google Scholar 

  19. Kriz, W., Hahnel, B., Hosser, H., Rosener, S. & Waldherr, R. Structural analysis of how podocytes detach from the glomerular basement membrane under hypertrophic stress. Front. Endocrinol. (Lausanne) 5, 207 (2014).

    Article  Google Scholar 

  20. Kriz, W. & Lemley, K. V. Mechanical challenges to the glomerular filtration barrier: adaptations and pathway to sclerosis. Pediatr. Nephrol. http://dx.doi.org/10.1007/s00467-016-3358-9 (2016).

  21. Tharaux, P. L. & Huber, T. B. How many ways can a podocyte die? Semin. Nephrol. 32, 394–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Vogelmann, S. U., Nelson, W. J., Myers, B. D. & Lemley, K. V. Urinary excretion of viable podocytes in health and renal disease. Am. J. Physiol. Renal Physiol. 285, F40–F48 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schiffer, M. et al. Apoptosis in podocytes induced by TGF-β and Smad7. J. Clin. Invest. 108, 807–816 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schiffer, M., Mundel, P., Shaw, A. S. & Bottinger, E. P. A novel role for the adaptor molecule CD2-associated protein in transforming growth factor-β-induced apoptosis. J. Biol. Chem. 279, 37004–37012 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Susztak, K. & Bottinger, E. P. Diabetic nephropathy: a frontier for personalized medicine. J. Am. Soc. Nephrol. 17, 361–367 (2006).

    Article  PubMed  Google Scholar 

  26. Liapis, H., Romagnani, P. & Anders, H. J. New insights into the pathology of podocyte loss: mitotic catastrophe. Am. J. Pathol. 183, 1364–1374 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Korhonen, M., Ylanne, J., Laitinen, L. & Virtanen, I. The α1–α6 subunits of integrins are characteristically expressed in distinct segments of developing and adult human nephron. J. Cell Biol. 111, 1245–1254 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Durbeej, M., Henry, M. D., Ferletta, M., Campbell, K. P. & Ekblom, P. Distribution of dystroglycan in normal adult mouse tissues. J. Histochem. Cytochem. 46, 449–457 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Bjornson Granqvist, A. et al. Podocyte proteoglycan synthesis is involved in the development of nephrotic syndrome. Am. J. Physiol. Renal Physiol. 291, F722–F730 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Sachs, N. & Sonnenberg, A. Cell-matrix adhesion of podocytes in physiology and disease. Nat. Rev. Nephrol. 9, 200–210 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Pozzi, A. & Zent, R. Integrins in kidney disease. J. Am. Soc. Nephrol. 24, 1034–1039 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bouaouina, M., Harburger, D. S. & Calderwood, D. A. Talin and signaling through integrins. Methods Mol. Biol. 757, 325–347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, C., Ye, F. & Ginsberg, M. H. Regulation of integrin activation. Annu. Rev. Cell Dev. Biol. 27, 321–345 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Pozzi, A. et al. Beta1 integrin expression by podocytes is required to maintain glomerular structural integrity. Dev. Biol. 316, 288–301 (2008). Study reporting a critical role of focal adhesions and integrin β1 in maintaining the structural integrity of the glomerulus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kreidberg, J. A. et al. α3β1 integrin has a crucial role in kidney and lung organogenesis. Development 122, 3537–3547 (1996).

    CAS  PubMed  Google Scholar 

  36. Has, C. et al. Integrin α3 mutations with kidney, lung, and skin disease. N. Engl. J. Med. 366, 1508–1514 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fassler, R. & Meyer, M. Consequences of lack of β1 integrin gene expression in mice. Genes Dev. 9, 1896–1908 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Kanasaki, K. et al. Integrin β1-mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus. Dev. Biol. 313, 584–593 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Potla, U. et al. Podocyte-specific RAP1GAP expression contributes to focal segmental glomerulosclerosis-associated glomerular injury. J. Clin. Invest. 124, 1757–1769 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 17, 952–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abbate, M. et al. Transforming growth factor-β1 is up-regulated by podocytes in response to excess intraglomerular passage of proteins: a central pathway in progressive glomerulosclerosis. Am. J. Pathol. 161, 2179–2193 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, Y. J., Tian, Z. L., Yu, X. Y., Zhao, X. X. & Yao, L. Activation of integrin β1-focal adhesion kinase-RasGTP pathway plays a critical role in TGF β1-induced podocyte injury. Cell Signal. 25, 2769–2779 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, J. et al. A novel role of angiopoietin-like-3 associated with podocyte injury. Pediatr. Res. 77, 732–739 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Shankland, S. J. & Pollak, M. R. A suPAR circulating factor causes kidney disease. Nat. Med. 17, 926–927 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Yoo, T. H. et al. Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease. J. Am. Soc. Nephrol. 26, 133–147 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Alfano, M. et al. Full-length soluble urokinase plasminogen activator receptor down-modulates nephrin expression in podocytes. Sci. Rep. 5, 13647 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, J. et al. Urinary soluble urokinase receptor levels are elevated and pathogenic in patients with primary focal segmental glomerulosclerosis. BMC Med. 12, 81 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sinha, A. et al. Serum-soluble urokinase receptor levels do not distinguish focal segmental glomerulosclerosis from other causes of nephrotic syndrome in children. Kidney Int. 85, 649–658 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Wada, T. et al. A multicenter cross-sectional study of circulating soluble urokinase receptor in Japanese patients with glomerular disease. Kidney Int. 85, 641–648 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Meijers, B. et al. The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney Int. 85, 636–640 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Spinale, J. M. et al. A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease. Kidney Int. 87, 564–574 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Hayek, S. S. et al. Soluble urokinase receptor and chronic kidney disease. N. Engl. J. Med. 373, 1916–1925 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cathelin, D. et al. Administration of recombinant soluble urokinase receptor per se is not sufficient to induce podocyte alterations and proteinuria in mice. J. Am. Soc. Nephrol. 25, 1662–1668 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schlondorff, D. Are serum suPAR determinations by current ELISA methodology reliable diagnostic biomarkers for FSGS? Kidney Int. 85, 499–501 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Sever, S., Trachtman, H., Wei, C. & Reiser, J. Is there clinical value in measuring suPAR levels in FSGS? Clin. J. Am. Soc. Nephrol. 8, 1273–1275 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wada, T. & Nangaku, M. A circulating permeability factor in focal segmental glomerulosclerosis: the hunt continues. Clin. Kidney J. 8, 708–715 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hemler, M. E. Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Biol. 6, 801–811 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Sachs, N. et al. Kidney failure in mice lacking the tetraspanin CD151. J. Cell Biol. 175, 33–39 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ervasti, J. M. & Campbell, K. P. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122, 809–823 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Ervasti, J. M. & Campbell, K. P. Membrane organization of the dystrophin-glycoprotein complex. Cell 66, 1121–1131 (1991).

    Article  CAS  PubMed  Google Scholar 

  61. Regele, H. M. et al. Glomerular expression of dystroglycans is reduced in minimal change nephrosis but not in focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 11, 403–412 (2000).

    CAS  PubMed  Google Scholar 

  62. Giannico, G., Yang, H., Neilson, E. G. & Fogo, A. B. Dystroglycan in the diagnosis of FSGS. Clin. J. Am. Soc. Nephrol. 4, 1747–1753 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kojima, K. et al. Defective glycosylation of α-dystroglycan contributes to podocyte flattening. Kidney Int. 79, 311–316 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Jarad, G., Pippin, J. W., Shankland, S. J., Kreidberg, J. A. & Miner, J. H. Dystroglycan does not contribute significantly to kidney development or function, in health or after injury. Am. J. Physiol. Renal Physiol. 300, F811–F820 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, S. et al. Podocytes require the engagement of cell surface heparan sulfate proteoglycans for adhesion to extracellular matrices. Kidney Int. 78, 1088–1099 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rops, A. L. et al. Syndecan-1 deficiency aggravates anti-glomerular basement membrane nephritis. Kidney Int. 72, 1204–1215 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Cevikbas, F. et al. Unilateral nephrectomy leads to up-regulation of syndecan-2- and TGF-β-mediated glomerulosclerosis in syndecan-4 deficient male mice. Matrix Biol. 27, 42–52 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Kim, E. Y., Roshanravan, H. & Dryer, S. E. Syndecan-4 ectodomain evokes mobilization of podocyte TRPC6 channels and their associated pathways: An essential role for integrin signaling. Biochim. Biophys. Acta 1853, 2610–2620 (2015).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, S. et al. Loss of heparan sulfate glycosaminoglycan assembly in podocytes does not lead to proteinuria. Kidney Int. 74, 289–299 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Sugar, T. et al. N-sulfation of heparan sulfate is critical for syndecan-4 mediated podocyte cell-matrix interactions. Am. J. Physiol. Renal Physiol. 310, F1123–F1135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baker, E. L. & Zaman, M. H. The biomechanical integrin. J. Biomech. 43, 38–44 (2010).

    Article  PubMed  Google Scholar 

  72. Schaller, M. D. et al. pp125FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc. Natl Acad. Sci. USA 89, 5192–5196 (1992).

    Article  CAS  PubMed  Google Scholar 

  73. Tian, X. et al. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. J. Clin. Invest. 124, 1098–1113 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Xu, W., Ge, Y., Liu, Z. & Gong, R. Glycogen synthase kinase 3β dictates podocyte motility and focal adhesion turnover by modulating paxillin activity: implications for the protective effect of low-dose lithium in podocytopathy. Am. J. Pathol. 184, 2742–2756 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mitra, S. K., Hanson, D. A. & Schlaepfer, D. D. Focal adhesion kinase: in command and control of cell motility. Nat. Rev. Mol. Cell Biol. 6, 56–68 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Huveneers, S. & Danen, E. H. Adhesion signaling - crosstalk between integrins Src and Rho. J. Cell Sci. 122, 1059–1069 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Schaller, M. D. Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J. Cell Sci. 123, 1007–1013 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Kumagai, T. et al. Protein tyrosine phosphatase 1B inhibition protects against podocyte injury and proteinuria. Am. J. Pathol. 184, 2211–2224 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    Article  CAS  PubMed  Google Scholar 

  80. Michael, K. E., Dumbauld, D. W., Burns, K. L., Hanks, S. K. & Garcia, A. J. Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol. Biol. Cell 20, 2508–2519 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ma, H. et al. Inhibition of podocyte FAK protects against proteinuria and foot process effacement. J. Am. Soc. Nephrol. 21, 1145–1156 (2010). Study showing a potential therapeutic effect of enhancing podocyte anchoring in proteinuric glomerular disorders via FAK inhibition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hannigan, G. E. et al. Regulation of cell adhesion and anchorage-dependent growth by a new β1-integrin-linked protein kinase. Nature 379, 91–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  83. Fukuda, K., Knight, J. D., Piszczek, G., Kothary, R. & Qin, J. Biochemical, proteomic, structural, and thermodynamic characterizations of integrin-linked kinase (ILK): cross-validation of the pseudokinase. J. Biol. Chem. 286, 21886–21895 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hannigan, G. E., McDonald, P. C., Walsh, M. P. & Dedhar, S. Integrin-linked kinase: not so 'pseudo' after all. Oncogene 30, 4375–4385 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Wickstrom, S. A., Lange, A., Montanez, E. & Fassler, R. The ILK/PINCH/parvin complex: the kinase is dead, long live the pseudokinase! EMBO J. 29, 281–291 (2010).

    Article  CAS  PubMed  Google Scholar 

  86. Qin, J. & Wu, C. ILK: a pseudokinase in the center stage of cell-matrix adhesion and signaling. Curr. Opin. Cell Biol. 24, 607–613 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li, S. et al. PINCH1 regulates cell-matrix and cell-cell adhesions, cell polarity and cell survival during the peri-implantation stage. J. Cell Sci. 118, 2913–2921 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Sakai, T. et al. Integrin-linked kinase (ILK) is required for polarizing the epiblast, cell adhesion, and controlling actin accumulation. Genes Dev. 17, 926–940 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lange, A. et al. Integrin-linked kinase is an adaptor with essential functions during mouse development. Nature 461, 1002–1006 (2009). The first genetic evidence of the role of ILK kinase activity in mammalian kidney function and development.

    Article  CAS  PubMed  Google Scholar 

  90. Teixeira Vde, P. et al. Functional consequences of integrin-linked kinase activation in podocyte damage. Kidney Int. 67, 514–523 (2005).

    Article  PubMed  Google Scholar 

  91. Locatelli, M. et al. Shiga toxin promotes podocyte injury in experimental hemolytic uremic syndrome via activation of the alternative pathway of complement. J. Am. Soc. Nephrol. 25, 1786–1798 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. El-Aouni, C. et al. Podocyte-specific deletion of integrin-linked kinase results in severe glomerular basement membrane alterations and progressive glomerulosclerosis. J. Am. Soc. Nephrol. 17, 1334–1344 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Dai, C. et al. Essential role of integrin-linked kinase in podocyte biology: Bridging the integrin and slit diaphragm signaling. J. Am. Soc. Nephrol. 17, 2164–2175 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Sachs, N. et al. Blood pressure influences end-stage renal disease of Cd151 knockout mice. J. Clin. Invest. 122, 348–358 (2012).

    Article  CAS  PubMed  Google Scholar 

  95. Tu, Y., Wu, S., Shi, X., Chen, K. & Wu, C. Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell 113, 37–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Kretzler, M. et al. Integrin-linked kinase as a candidate downstream effector in proteinuria. FASEB J. 15, 1843–1845 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Alique, M. et al. Integrin-linked kinase plays a key role in the regulation of angiotensin II-induced renal inflammation. Clin. Sci. (Lond.) 127, 19–31 (2014).

    Article  CAS  Google Scholar 

  98. Gui, D. et al. Notoginsenoside R1 ameliorates podocyte adhesion under diabetic condition through α3β1 integrin upregulation in vitro and in vivo. Cell Physiol. Biochem. 34, 1849–1862 (2014).

    Article  CAS  PubMed  Google Scholar 

  99. Jung, E., Kim, J., Ho Kim, S., Kim, S. & Cho, M. H. Gemigliptin improves renal function and attenuates podocyte injury in mice with diabetic nephropathy. Eur. J. Pharmacol. 761, 116–124 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Chen, J. et al. Astragaloside IV ameliorates diabetic nephropathy involving protection of podocytes in streptozotocin induced diabetic rats. Eur. J. Pharmacol. 736, 86–94 (2014).

    Article  CAS  PubMed  Google Scholar 

  101. Chen, T. et al. Emodin ameliorates high glucose induced-podocyte epithelial-mesenchymal transition in-vitro and in-vivo. Cell Physiol. Biochem. 35, 1425–1436 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Meves, A., Stremmel, C., Gottschalk, K. & Fassler, R. The Kindlin protein family: new members to the club of focal adhesion proteins. Trends Cell Biol. 19, 504–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  103. Qu, H. et al. Kindlin-2 regulates podocyte adhesion and fibronectin matrix deposition through interactions with phosphoinositides and integrins. J. Cell Sci. 124, 879–891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Legate, K. R., Montanez, E., Kudlacek, O. & Fassler, R. I.L. K. PINCH and parvin: the tIPP of integrin signalling. Nat. Rev. Mol. Cell Biol. 7, 20–31 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Huet-Calderwood, C. et al. Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation. J. Cell Sci. 127, 4308–4321 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Montanez, E. et al. Kindlin-2 controls bidirectional signaling of integrins. Genes Dev. 22, 1325–1330 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Qu, H., Tu, Y., Guan, J. L., Xiao, G. & Wu, C. Kindlin-2 tyrosine phosphorylation and interaction with Src serve as a regulatable switch in the integrin outside-in signaling circuit. J. Biol. Chem. 289, 31001–31013 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Brakebusch, C. & Fassler, R. The integrin-actin connection, an eternal love affair. EMBO J. 22, 2324–2333 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zihni, C., Mills, C., Matter, K. & Balda, M. S. Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. http://dx.doi.org/10.1038/nrm.2016.80 (2016).

  110. Otey, C. A. & Carpen, O. Alpha-actinin revisited: a fresh look at an old player. Cell Motil. Cytoskeleton 58, 104–111 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Drenckhahn, D. & Franke, R. P. Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. Lab. Invest. 59, 673–682 (1988).

    CAS  PubMed  Google Scholar 

  112. Smoyer, W. E., Mundel, P., Gupta, A. & Welsh, M. J. Podocyte α-actinin induction precedes foot process effacement in experimental nephrotic syndrome. Am. J. Physiol. 273, F150–F157 (1997).

    CAS  PubMed  Google Scholar 

  113. Shirato, I., Sakai, T., Kimura, K., Tomino, Y. & Kriz, W. Cytoskeletal changes in podocytes associated with foot process effacement in Masugi nephritis. Am. J. Pathol. 148, 1283–1296 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Kos, C. H. et al. Mice deficient in α-actinin-4 have severe glomerular disease. J. Clin. Invest. 111, 1683–1690 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Goode, N. P., Shires, M., Khan, T. N. & Mooney, A. F. Expression of α-actinin-4 in acquired human nephrotic syndrome: a quantitative immunoelectron microscopy study. Nephrol. Dial. Transplant. 19, 844–851 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Weins, A. et al. Disease-associated mutant α-actinin-4 reveals a mechanism for regulating its F-actin-binding affinity. Proc. Natl Acad. Sci. USA 104, 16080–16085 (2007).

    Article  PubMed  Google Scholar 

  117. Kaplan, J. M. et al. Mutations in ACTN4, encoding α-actinin-4, cause familial focal segmental glomerulosclerosis. Nat. Genet. 24, 251–256 (2000). Study that provided the first evidence of a role of α-actinin-4 in foot process effacement and its pathogenic role in familial FSGS.

    Article  CAS  PubMed  Google Scholar 

  118. Henderson, J. M., Al-Waheeb, S., Weins, A., Dandapani, S. V. & Pollak, M. R. Mice with altered α-actinin-4 expression have distinct morphologic patterns of glomerular disease. Kidney Int. 73, 741–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Michaud, J. L. et al. Focal and segmental glomerulosclerosis in mice with podocyte-specific expression of mutant α-actinin-4. J. Am. Soc. Nephrol. 14, 1200–1211 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Dandapani, S. V. et al. Alpha-actinin-4 is required for normal podocyte adhesion. J. Biol. Chem. 282, 467–477 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Ichii, O. et al. Podocyte injury caused by indoxyl sulfate, a uremic toxin and aryl-hydrocarbon receptor ligand. PLoS ONE 9, e108448 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Feng, D., DuMontier, C. & Pollak, M. R. The role of α-actinin-4 in human kidney disease. Cell Biosci. 5, 44 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu, H. et al. α-Actinin-4 is involved in the process by which dexamethasone protects actin cytoskeleton stabilization from adriamycin-induced podocyte injury. Nephrol. (Carlton) 17, 669–675 (2012).

    Article  CAS  Google Scholar 

  124. Beeken, M. et al. Alterations in the ubiquitin proteasome system in persistent but not reversible proteinuric diseases. J. Am. Soc. Nephrol. 25, 2511–2525 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Huber, T. B. et al. Bigenic mouse models of focal segmental glomerulosclerosis involving pairwise interaction of CD2AP, Fyn, and synaptopodin. J. Clin. Invest. 116, 1337–1345 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yanagida-Asanuma, E. et al. Synaptopodin protects against proteinuria by disrupting Cdc42:IRSp53:Mena signaling complexes in kidney podocytes. Am. J. Pathol. 171, 415–427 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Faul, C. et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat. Med. 14, 931–938 (2008). Provocative paper delivering a novel view of calcineurin signalling in the treatment of proteinuric kidney diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Srivastava, T., Garola, R. E., Whiting, J. M. & Alon, U. S. Synaptopodin expression in idiopathic nephrotic syndrome of childhood. Kidney Int. 59, 118–125 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Yu, H. et al. Synaptopodin Limits TRPC6 Podocyte Surface Expression and Attenuates Proteinuria. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2015080896 (2016).

  130. Levidiotis, V. & Power, D. A. New insights into the molecular biology of the glomerular filtration barrier and associated disease. Nephrol. (Carlton) 10, 157–166 (2005).

    Article  CAS  Google Scholar 

  131. Haraldsson, B., Nystrom, J. & Deen, W. M. Properties of the glomerular barrier and mechanisms of proteinuria. Physiol. Rev. 88, 451–487 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Jarad, G. & Miner, J. H. Update on the glomerular filtration barrier. Curr. Opin. Nephrol. Hypertens. 18, 226–232 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wartiovaara, J. et al. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J. Clin. Invest. 114, 1475–1483 (2004). Pioneering study describing the structural role of nephrin in shaping the slit diaphragm architecture.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kanwar, Y. S. Continuum of historical controversies regarding the structural-functional relationship of the glomerular ultrafiltration unit. Am. J. Physiol. Renal Physiol. 308, F420–F424 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gagliardini, E., Conti, S., Benigni, A., Remuzzi, G. & Remuzzi, A. Imaging of the porous ultrastructure of the glomerular epithelial filtration slit. J. Am. Soc. Nephrol. 21, 2081–2089 (2010). Study depicting the ultrastructure of different sized pores, which differentially regulate the filtering properties of the slit diaphragm.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kestila, M. et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol. Cell 1, 575–582 (1998). Seminal study documenting the role of nephrin mutations in the development of nephrotic syndrome.

    Article  CAS  PubMed  Google Scholar 

  137. Arif, E. et al. Slit diaphragm protein Neph1 and its signaling: a novel therapeutic target for protection of podocytes against glomerular injury. J. Biol. Chem. 289, 9502–9518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Grahammer, F. et al. A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes. JCI Insight 1, e86177 (2016). Important ultrastructural study describing the roles of nephrin and NEPH1 in shaping different porous structures of the slit diaphragm.

    Article  PubMed Central  Google Scholar 

  139. Roth, J., Brown, D. & Orci, L. Regional distribution of N-acetyl-D-galactosamine residues in the glycocalyx of glomerular podocytes. J. Cell Biol. 96, 1189–1196 (1983).

    Article  CAS  PubMed  Google Scholar 

  140. Kerjaschki, D., Sharkey, D. J. & Farquhar, M. G. Identification and characterization of podocalyxin—the major sialoprotein of the renal glomerular epithelial cell. J. Cell Biol. 98, 1591–1596 (1984).

    Article  CAS  PubMed  Google Scholar 

  141. Pavenstadt, H. The charge for going by foot: modifying the surface of podocytes. Exp. Nephrol. 6, 98–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  142. Pavenstadt, H. Roles of the podocyte in glomerular function. Am. J. Physiol. Renal Physiol. 278, F173–F179 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Faul, C., Asanuma, K., Yanagida-Asanuma, E., Kim, K. & Mundel, P. Actin up: regulation of podocyte structure and function by components of the actin cytoskeleton. Trends Cell Biol. 17, 428–437 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Kriz, W., Shirato, I., Nagata, M., LeHir, M. & Lemley, K. V. The podocyte's response to stress: the enigma of foot process effacement. Am. J. Physiol. Renal Physiol. 304, F333–F347 (2013).

    Article  CAS  PubMed  Google Scholar 

  145. Jones, N. et al. Nck adaptor proteins link nephrin to the actin cytoskeleton of kidney podocytes. Nature 440, 818–823 (2006). Important study showing the critical role of crosstalk between podocyte actin dynamics and slit diaphragm components.

    Article  CAS  PubMed  Google Scholar 

  146. Ruotsalainen, V. et al. Nephrin is specifically located at the slit diaphragm of glomerular podocytes. Proc. Natl Acad. Sci. USA 96, 7962–7967 (1999).

    Article  CAS  PubMed  Google Scholar 

  147. Carney, E. F. Podocyte biology: phosphorylation preserves podocytes. Nat. Rev. Nephrol. 12, 197 (2016).

    CAS  PubMed  Google Scholar 

  148. Li, H., Lemay, S., Aoudjit, L., Kawachi, H. & Takano, T. SRC-family kinase Fyn phosphorylates the cytoplasmic domain of nephrin and modulates its interaction with podocin. J. Am. Soc. Nephrol. 15, 3006–3015 (2004).

    Article  PubMed  Google Scholar 

  149. Jones, N. et al. Nck proteins maintain the adult glomerular filtration barrier. J. Am. Soc. Nephrol. 20, 1533–1543 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhu, J. et al. p21-activated kinases regulate actin remodeling in glomerular podocytes. Am. J. Physiol. Renal Physiol. 298, F951–F961 (2010).

    Article  CAS  PubMed  Google Scholar 

  151. Verma, R. et al. Nephrin ectodomain engagement results in Src kinase activation, nephrin phosphorylation, Nck recruitment, and actin polymerization. J. Clin. Invest. 116, 1346–1359 (2006). Study reporting a critical role of nephrin post-translational modifications in its interactions with the actin cytoskeleton.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Verma, R. et al. Fyn binds to and phosphorylates the kidney slit diaphragm component Nephrin. J. Biol. Chem. 278, 20716–20723 (2003).

    Article  CAS  PubMed  Google Scholar 

  153. Blasutig, I. M. et al. Phosphorylated YDXV motifs and Nck SH2/SH3 adaptors act cooperatively to induce actin reorganization. Mol. Cell Biol. 28, 2035–2046 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Brandt, D. T. & Grosse, R. Get to grips: steering local actin dynamics with IQGAPs. EMBO Rep. 8, 1019–1023 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Harita, Y. et al. Phosphorylation of nephrin triggers Ca2+ signaling by recruitment and activation of phospholipase C-γ1. J. Biol. Chem. 284, 8951–8962 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Li, S., Wang, Q., Wang, Y., Chen, X. & Wang, Z. PLC-γ1 and Rac1 coregulate EGF-induced cytoskeleton remodeling and cell migration. Mol. Endocrinol. 23, 901–913 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Liu, Y. et al. IQGAP1 regulates actin cytoskeleton organization in podocytes through interaction with nephrin. Cell Signal. 27, 867–877 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Verma, R., Venkatareddy, M., Kalinowski, A., Patel, S. R. & Garg, P. Integrin ligation results in nephrin tyrosine phosphorylation in vitro. PLoS ONE 11, e0148906 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhu, J. et al. Nephrin mediates actin reorganization via phosphoinositide 3-kinase in podocytes. Kidney Int. 73, 556–566 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Huber, T. B. et al. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Mol. Cell Biol. 23, 4917–4928 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Canaud, G. et al. AKT2 is essential to maintain podocyte viability and function during chronic kidney disease. Nat. Med. 19, 1288–1296 (2013). Study documenting the prosurvival activity of AKT2 and its possible therapeutic potential in chronic kidney disease.

    Article  CAS  PubMed  Google Scholar 

  162. Garg, P. et al. Actin-depolymerizing factor cofilin-1 is necessary in maintaining mature podocyte architecture. J. Biol. Chem. 285, 22676–22688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, X., Zhang, X., Wang, X., Wang, S. & Ding, J. Cyclosporine A protects podocytes via stabilization of cofilin-1 expression in the unphosphorylated state. Exp. Biol. Med. (Maywood) 239, 922–936 (2014).

    Article  CAS  Google Scholar 

  164. Sellin, L. et al. NEPH1 defines a novel family of podocin interacting proteins. FASEB J. 17, 115–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. Garg, P., Verma, R., Nihalani, D., Johnstone, D. B. & Holzman, L. B. Neph1 cooperates with nephrin to transduce a signal that induces actin polymerization. Mol. Cell Biol. 27, 8698–8712 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Donoviel, D. B. et al. Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol. Cell Biol. 21, 4829–4836 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Liu, G. et al. Neph1 and nephrin interaction in the slit diaphragm is an important determinant of glomerular permeability. J. Clin. Invest. 112, 209–221 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Boute, N. et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat. Genet. 24, 349–354 (2000). Milestone study describing the role of podocin mutations in slit diaphragm impairment and the onset of nephrotic syndrome.

    Article  CAS  PubMed  Google Scholar 

  169. Huber, T. B. et al. Molecular basis of the functional podocin-nephrin complex: mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum. Mol. Genet. 12, 3397–3405 (2003).

    Article  CAS  PubMed  Google Scholar 

  170. He, B. et al. Lmx1b and FoxC combinatorially regulate podocin expression in podocytes. J. Am. Soc. Nephrol. 25, 2764–2777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Burghardt, T. et al. LMX1B is essential for the maintenance of differentiated podocytes in adult kidneys. J. Am. Soc. Nephrol. 24, 1830–1848 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Braun, D. A. et al. Mutations in nuclear pore genes NUP93, NUP205 and XPO5 cause steroid-resistant nephrotic syndrome. Nat. Genet. 48, 457–465 (2016). Study documenting the unanticipated role of nuclear pore encoding gene mutations in the onset of nephrotic syndrome.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang, D., Li, Y., Wu, C. & Liu, Y. PINCH1 is transcriptional regulator in podocytes that interacts with WT1 and represses podocalyxin expression. PLoS ONE 6, e17048 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Khurana, S. et al. Familial focal segmental glomerulosclerosis (FSGS)-linked α-actinin 4 (ACTN4) protein mutants lose ability to activate transcription by nuclear hormone receptors. J. Biol. Chem. 287, 12027–12035 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Reiser, J. et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat. Genet. 37, 739–744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Huber, T. B., Schermer, B. & Benzing, T. Podocin organizes ion channel-lipid supercomplexes: implications for mechanosensation at the slit diaphragm. Nephron. Exp. Nephrol. 106, e27–e31 (2007).

    Article  CAS  PubMed  Google Scholar 

  177. Dryer, S. E. & Reiser, J. TRPC6 channels and their binding partners in podocytes: role in glomerular filtration and pathophysiology. Am. J. Physiol. Renal Physiol. 299, F689–F701 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Moller, C. C., Flesche, J. & Reiser, J. Sensitizing the slit diaphragm with TRPC6 ion channels. J. Am. Soc. Nephrol. 20, 950–953 (2009).

    Article  CAS  PubMed  Google Scholar 

  179. Winn, M. P. et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308, 1801–1804 (2005). Seminal paper describing the discovery of the role of TRPC6 mechanosensation in podocytes and the role of TRPC6 mutations in the development of FSGS.

    Article  CAS  PubMed  Google Scholar 

  180. Sun, Z. J. et al. Genetic interactions between TRPC6 and NPHS1 variants affect posttransplant risk of recurrent focal segmental glomerulosclerosis. Am. J. Transplant. 15, 3229–3238 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Riehle, M. et al. TRPC6 G757D loss-of-function mutation associates with FSGS. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2015030318 (2016).

  182. Hinkes, B. et al. Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible. Nat. Genet. 38, 1397–1405 (2006). First description of a reversible variant of nephrotic syndrome induced by mutations in the slit diaphragm-associated protein PLCε1.

    Article  CAS  PubMed  Google Scholar 

  183. Freichel, M. et al. Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies. J. Physiol. 567, 59–66 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Jiang, L. et al. Over-expressing transient receptor potential cation channel 6 in podocytes induces cytoskeleton rearrangement through increases of intracellular Ca2+ and RhoA activation. Exp. Biol. Med. (Maywood) 236, 184–193 (2011).

    Article  CAS  Google Scholar 

  185. Greka, A. & Mundel, P. Calcium regulates podocyte actin dynamics. Semin. Nephrol. 32, 319–326 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Kirsch, K. H., Georgescu, M. M., Ishimaru, S. & Hanafusa, H. CMS: an adapter molecule involved in cytoskeletal rearrangements. Proc. Natl Acad. Sci. USA 96, 6211–6216 (1999).

    Article  CAS  PubMed  Google Scholar 

  187. Cormont, M. et al. CD2AP/CMS regulates endosome morphology and traffic to the degradative pathway through its interaction with Rab4 and c-Cbl. Traffic 4, 97–112 (2003).

    Article  CAS  PubMed  Google Scholar 

  188. Kobayashi, S., Sawano, A., Nojima, Y., Shibuya, M. & Maru, Y. The c-Cbl/CD2AP complex regulates VEGF-induced endocytosis and degradation of Flt-1 (VEGFR-1). FASEB J. 18, 929–931 (2004).

    Article  CAS  PubMed  Google Scholar 

  189. Lynch, D. K. et al. A Cortactin-CD2-associated protein (CD2AP) complex provides a novel link between epidermal growth factor receptor endocytosis and the actin cytoskeleton. J. Biol. Chem. 278, 21805–21813 (2003).

    Article  CAS  PubMed  Google Scholar 

  190. Schwarz, K. et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J. Clin. Invest. 108, 1621–1629 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Edwards, M. et al. Capping protein regulators fine-tune actin assembly dynamics. Nat. Rev. Mol. Cell Biol. 15, 677–689 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. van Duijn, T. J., Anthony, E. C., Hensbergen, P. J., Deelder, A. M. & Hordijk, P. L. Rac1 recruits the adapter protein CMS/CD2AP to cell-cell contacts. J. Biol. Chem. 285, 20137–20146 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Shih, N. Y. et al. Congenital nephrotic syndrome in mice lacking CD2-associated protein. Science 286, 312–315 (1999). Milestone study elucidating the role of CD2AP in the maintenance of slit diaphragm structure and its role in the development of nephrotic syndrome.

    Article  CAS  PubMed  Google Scholar 

  194. Cortes, P. et al. F-actin fiber distribution in glomerular cells: structural and functional implications. Kidney Int. 58, 2452–2461 (2000).

    Article  CAS  PubMed  Google Scholar 

  195. Endlich, N. et al. Podocytes respond to mechanical stress in vitro. J. Am. Soc. Nephrol. 12, 413–422 (2001).

    CAS  PubMed  Google Scholar 

  196. Ziembicki, J. et al. Mechanical force-activated phospholipase D is mediated by Gα12/13-Rho and calmodulin-dependent kinase in renal epithelial cells. Am. J. Physiol. Renal Physiol. 289, F826–F834 (2005).

    Article  CAS  PubMed  Google Scholar 

  197. Kanda, T. et al. Effect of fasudil on Rho-kinase and nephropathy in subtotally nephrectomized spontaneously hypertensive rats. Kidney Int. 64, 2009–2019 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Koshikawa, S., Nishikimi, T., Inaba, C., Akimoto, K. & Matsuoka, H. Fasudil, a Rho-kinase inhibitor, reverses L-NAME exacerbated severe nephrosclerosis in spontaneously hypertensive rats. J. Hypertens. 26, 1837–1848 (2008).

    Article  CAS  PubMed  Google Scholar 

  199. Ishikawa, Y. et al. Long-term administration of rho-kinase inhibitor ameliorates renal damage in malignant hypertensive rats. Hypertension 47, 1075–1083 (2006).

    Article  CAS  PubMed  Google Scholar 

  200. Sun, G. P. et al. Involvements of Rho-kinase and TGF-β pathways in aldosterone-induced renal injury. J. Am. Soc. Nephrol. 17, 2193–2201 (2006).

    Article  CAS  PubMed  Google Scholar 

  201. Sakurai, N. et al. Fluvastatin prevents podocyte injury in a murine model of HIV-associated nephropathy. Nephrol. Dial. Transplant. 24, 2378–2383 (2009).

    Article  CAS  PubMed  Google Scholar 

  202. Hidaka, T. et al. Amelioration of crescentic glomerulonephritis by RhoA kinase inhibitor, Fasudil, through podocyte protection and prevention of leukocyte migration. Am. J. Pathol. 172, 603–614 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Brown, E. J. et al. Mutations in the formin gene INF2 cause focal segmental glomerulosclerosis. Nat. Genet. 42, 72–76 (2010). First genetic evidence of the role of mutations in actin dynamic proteins and their pathogenic role in the development of FSGS.

    Article  CAS  PubMed  Google Scholar 

  204. Tamura, H. et al. Reduced INF2 expression in nephrotic syndrome is possibly related to clinical severity of steroid resistance in children. 21, 467–475 Nephrol. (Carlton) (2015).

    Article  CAS  Google Scholar 

  205. Chen, Z. et al. Structure and control of the actin regulatory WAVE complex. Nature 468, 533–538 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Campellone, K. G. & Welch, M. D. A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11, 237–251 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Padrick, S. B. & Rosen, M. K. Physical mechanisms of signal integration by WASP family proteins. Annu. Rev. Biochem. 79, 707–735 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Li, X., Ding, F., Wang, S., Li, B. & Ding, J. Cyclosporine A protects podocytes by regulating WAVE1 phosphorylation. Sci. Rep. 5, 17694 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Mouawad, F., Tsui, H. & Takano, T. Role of Rho-GTPases and their regulatory proteins in glomerular podocyte function. Can. J. Physiol. Pharmacol. 91, 773–782 (2013).

    Article  CAS  PubMed  Google Scholar 

  210. Sun, H., Schlondorff, J. S., Brown, E. J., Higgs, H. N. & Pollak, M. R. Rho activation of mDia formins is modulated by an interaction with inverted formin 2 (INF2). Proc. Natl Acad. Sci. USA 108, 2933–2938 (2011).

    Article  PubMed  Google Scholar 

  211. Sun, H., Schlondorff, J., Higgs, H. N. & Pollak, M. R. Inverted formin 2 regulates actin dynamics by antagonizing Rho/diaphanous-related formin signaling. J. Am. Soc. Nephrol. 24, 917–929 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Barua, M. et al. Mutations in the INF2 gene account for a significant proportion of familial but not sporadic focal and segmental glomerulosclerosis. Kidney Int. 83, 316–322 (2013).

    Article  CAS  PubMed  Google Scholar 

  213. Boyer, O. et al. Mutations in INF2 are a major cause of autosomal dominant focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22, 239–245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wang, L. et al. Mechanisms of the proteinuria induced by Rho GTPases. Kidney Int. 81, 1075–1085 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Babelova, A. et al. Activation of Rac-1 and RhoA contributes to podocyte injury in chronic kidney disease. PLoS ONE 8, e80328 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Shibata, S., Nagase, M. & Fujita, T. Fluvastatin ameliorates podocyte injury in proteinuric rats via modulation of excessive Rho signaling. J. Am. Soc. Nephrol. 17, 754–764 (2006).

    Article  CAS  PubMed  Google Scholar 

  217. Komers, R. et al. Rho kinase inhibition protects kidneys from diabetic nephropathy without reducing blood pressure. Kidney Int. 79, 432–442 (2011).

    Article  CAS  PubMed  Google Scholar 

  218. Mouawad, F., Aoudjit, L., Jiang, R., Szaszi, K. & Takano, T. Role of guanine nucleotide exchange factor-H1 in complement-mediated RhoA activation in glomerular epithelial cells. J. Biol. Chem. 289, 4206–4218 (2014).

    Article  CAS  PubMed  Google Scholar 

  219. Zhu, L., Jiang, R., Aoudjit, L., Jones, N. & Takano, T. Activation of RhoA in podocytes induces focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22, 1621–1630 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Scott, R. P. et al. Podocyte-specific loss of Cdc42 leads to congenital nephropathy. J. Am. Soc. Nephrol. 23, 1149–1154 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Wang, W. et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 15, 186–200 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wang, S. et al. Angiotensin II induces reorganization of the actin cytoskeleton and myosin light-chain phosphorylation in podocytes through rho/ROCK-signaling pathway. Ren. Fail. 38, 268–275 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Lv, Z. et al. Fyn mediates high glucose-induced actin cytoskeleton reorganization of podocytes via promoting ROCK activation in vitro. J. Diabetes Res. 2016, 5671803 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Gee, H. Y. et al. ARHGDIA mutations cause nephrotic syndrome via defective RHO GTPase signaling. J. Clin. Invest. 123, 3243–3253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Gupta, I. R. et al. ARHGDIA: a novel gene implicated in nephrotic syndrome. J. Med. Genet. 50, 330–338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Gee, H. Y. et al. KANK deficiency leads to podocyte dysfunction and nephrotic syndrome. J. Clin. Invest. 125, 2375–2384 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Akilesh, S. et al. Arhgap24 inactivates Rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. J. Clin. Invest. 121, 4127–4137 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Blattner, S. M. et al. Divergent functions of the Rho GTPases Rac1 and Cdc42 in podocyte injury. Kidney Int. 84, 920–930 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Zhang, H. et al. Role of Rho-GTPases in complement-mediated glomerular epithelial cell injury. Am. J. Physiol. Renal Physiol. 293, F148–F156 (2007).

    Article  CAS  PubMed  Google Scholar 

  230. Attias, O., Jiang, R., Aoudjit, L., Kawachi, H. & Takano, T. Rac1 contributes to actin organization in glomerular podocytes. Nephron. Exp. Nephrol. 114, e93–e106 (2010).

    Article  CAS  PubMed  Google Scholar 

  231. Laurin, M., Dumouchel, A., Fukui, Y. & Cote, J. F. The Rac-specific exchange factors Dock1 and Dock5 are dispensable for the establishment of the glomerular filtration barrier in vivo. Small GTPases 4, 221–230 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Yu, H. et al. Rac1 activation in podocytes induces rapid foot process effacement and proteinuria. Mol. Cell Biol. 33, 4755–4764 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Shibata, S. et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease. Nat. Med. 14, 1370–1376 (2008).

    Article  CAS  PubMed  Google Scholar 

  234. Auguste, D. et al. Disease-causing mutations of RhoGDIα induce Rac1 hyperactivation in podocytes. Small GTPases 7, 107–121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. George, B. et al. Crk1/2-dependent signaling is necessary for podocyte foot process spreading in mouse models of glomerular disease. J. Clin. Invest. 122, 674–692 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Schaldecker, T. et al. Inhibition of the TRPC5 ion channel protects the kidney filter. J. Clin. Invest. 123, 5298–5309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Tavasoli, M. et al. The chloride intracellular channel 5A stimulates podocyte Rac1, protecting against hypertension-induced glomerular injury. Kidney Int. 89, 833–847 (2016).

    Article  CAS  PubMed  Google Scholar 

  238. Wan, X., Lee, M. S. & Zhou, W. Dosage-dependent role of RAC1 in podocyte injury. Am. J. Physiol. Renal Physiol. 310, F777–F784 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Boyer, O. et al. INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. N. Engl. J. Med. 365, 2377–2388 (2011).

    Article  CAS  PubMed  Google Scholar 

  240. Huang, Z. et al. Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP pathway. Cell Death Dis. 7, e2142 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Campbell, K. N. et al. Yes-associated protein (YAP) promotes cell survival by inhibiting proapoptotic dendrin signaling. J. Biol. Chem. 288, 17057–17062 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Wennmann, D. O. et al. The Hippo pathway is controlled by Angiotensin II signaling and its reactivation induces apoptosis in podocytes. Cell Death Dis. 5, e1519 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Schwartzman, M. et al. Podocyte-specific deletion of yes-associated protein Causes FSGS and progressive renal failure. J. Am. Soc. Nephrol. 27, 216–226 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Ciani, L., Patel, A., Allen, N. D. & ffrench-Constant, C. Mice lacking the giant protocadherin mFAT1 exhibit renal slit junction abnormalities and a partially penetrant cyclopia and anophthalmia phenotype. Mol. Cell Biol. 23, 3575–3582 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Gee, H. Y. et al. FAT1 mutations cause a glomerulotubular nephropathy. Nat. Commun. 7, 10822 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Khalili, H. et al. Developmental origins for kidney disease due to Shroom3 deficiency. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2015060621 (2016).

  247. Kottgen, A. et al. Multiple loci associated with indices of renal function and chronic kidney disease. Nat. Genet. 41, 712–717 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Meyer, T. E. et al. Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six loci influencing serum magnesium levels. PLoS Genet. 6, e1001045 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Boger, C. A. et al. Association of eGFR-related loci identified by GWAS with incident CKD and ESRD. PLoS Genet. 7, e1002292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Schiffer, M. et al. Pharmacological targeting of actin-dependent dynamin oligomerization ameliorates chronic kidney disease in diverse animal models. Nat. Med. 21, 601–609 (2015). Paper describing the potential role of actin-based therapies in several forms of chronic kidney disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Sever, S. et al. Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease. J. Clin. Invest. 117, 2095–2104 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Waters, A. M. et al. Notch promotes dynamin-dependent endocytosis of nephrin. J. Am. Soc. Nephrol. 23, 27–35 (2012).

    Article  CAS  PubMed  Google Scholar 

  253. Soda, K. et al. Role of dynamin, synaptojanin, and endophilin in podocyte foot processes. J. Clin. Invest. 122, 4401–4411 (2012). Study elucidating the role of endocytosis in the physiologic functions of podocyte foot processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Urrutia, R., Henley, J. R., Cook, T. & McNiven, M. A. The dynamins: redundant or distinct functions for an expanding family of related GTPases? Proc. Natl Acad. Sci. USA 94, 377–384 (1997).

    Article  CAS  PubMed  Google Scholar 

  255. Henley, J. R., Cao, H. & McNiven, M. A. Participation of dynamin in the biogenesis of cytoplasmic vesicles. FASEB J. 13 (Suppl. 2), S243–S247 (1999).

    Article  CAS  PubMed  Google Scholar 

  256. Inoue, K. & Ishibe, S. Podocyte endocytosis in the regulation of the glomerular filtration barrier. Am. J. Physiol. Renal Physiol. 309, F398–F405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Schiessl, I. M. et al. Intravital imaging reveals angiotensin II-Induced transcytosis of albumin by podocytes. J. Am. Soc. Nephrol. 27, 731–744 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. McPherson, P. S. et al. A presynaptic inositol-5-phosphatase. Nature 379, 353–357 (1996).

    Article  CAS  PubMed  Google Scholar 

  259. Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  260. Milosevic, I. et al. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron 72, 587–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Gallop, J. L. et al. Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898–2910 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Inoki, K. et al. mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice. J. Clin. Invest. 121, 2181–2196 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Basquin, C. & Sauvonnet, N. Phosphoinositide 3-kinase at the crossroad between endocytosis and signaling of cytokine receptors. Commun. Integr. Biol. 6, e24243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Basquin, C. et al. The signalling factor PI3K is a specific regulator of the clathrin-independent dynamin-dependent endocytosis of IL-2 receptors. J. Cell Sci. 126, 1099–1108 (2013).

    Article  CAS  PubMed  Google Scholar 

  265. Harris, D. P. et al. Requirement for class II phosphoinositide 3-kinase C2α in maintenance of glomerular structure and function. Mol. Cell Biol. 31, 63–80 (2011).

    Article  CAS  PubMed  Google Scholar 

  266. Ceol, M. et al. Involvement of the tubular ClC-type exchanger ClC-5 in glomeruli of human proteinuric nephropathies. PLoS ONE 7, e45605 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Soda, K. & Ishibe, S. The function of endocytosis in podocytes. Curr. Opin. Nephrol. Hypertens. 22, 432–438 (2013).

    Article  CAS  PubMed  Google Scholar 

  268. Fan, X. et al. Inhibitory effects of Robo2 on nephrin: a crosstalk between positive and negative signals regulating podocyte structure. Cell Rep. 2, 52–61 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Yarar, D., Waterman-Storer, C. M. & Schmid, S. L. A dynamic actin cytoskeleton functions at multiple stages of clathrin-mediated endocytosis. Mol. Biol. Cell 16, 964–975 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Gu, C. et al. Direct dynamin-actin interactions regulate the actin cytoskeleton. EMBO J. 29, 3593–3606 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Krueger, E. W., Orth, J. D., Cao, H. & McNiven, M. A. A dynamin-cortactin-Arp2/3 complex mediates actin reorganization in growth factor-stimulated cells. Mol. Biol. Cell 14, 1085–1096 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Merrifield, C. J., Qualmann, B., Kessels, M. M. & Almers, W. Neural Wiskott Aldrich Syndrome Protein (N-WASP) and the Arp2/3 complex are recruited to sites of clathrin-mediated endocytosis in cultured fibroblasts. Eur. J. Cell Biol. 83, 13–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  273. Ferguson, S. M. et al. Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev. Cell 17, 811–822 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Perera, R. M., Zoncu, R., Lucast, L., De Camilli, P. & Toomre, D. Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc. Natl Acad. Sci. USA 103, 19332–19337 (2006).

    Article  CAS  PubMed  Google Scholar 

  275. Krendel, M., Osterweil, E. K. & Mooseker, M. S. Myosin 1E interacts with synaptojanin-1 and dynamin and is involved in endocytosis. FEBS Lett. 581, 644–650 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Mele, C. et al. MYO1E mutations and childhood familial focal segmental glomerulosclerosis. N. Engl. J. Med. 365, 295–306 (2011). First description of genetic mutations in the endocytotic protein MYO1e and its role in the onset of familial FSGS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Welsch, T. et al. Association of CD2AP with dynamic actin on vesicles in podocytes. Am. J. Physiol. Renal Physiol. 289, F1134–F1143 (2005).

    Article  CAS  PubMed  Google Scholar 

  278. Schafer, D. A., D'Souza-Schorey, C. & Cooper, J. A. Actin assembly at membranes controlled by ARF6. Traffic 1, 892–903 (2000).

    Article  CAS  PubMed  Google Scholar 

  279. Fawcett, J. P. et al. Nck adaptor proteins control the organization of neuronal circuits important for walking. Proc. Natl Acad. Sci. USA 104, 20973–20978 (2007).

    Article  PubMed  Google Scholar 

  280. Tossidou, I. et al. Podocytic PKC-α is regulated in murine and human diabetes and mediates nephrin endocytosis. PLoS ONE 5, e10185 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Qin, X. S. et al. Phosphorylation of nephrin triggers its internalization by raft-mediated endocytosis. J. Am. Soc. Nephrol. 20, 2534–2545 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  282. Quack, I. et al. β-Arrestin2 mediates nephrin endocytosis and impairs slit diaphragm integrity. Proc. Natl Acad. Sci. USA 103, 14110–14115 (2006).

    Article  CAS  PubMed  Google Scholar 

  283. Uchida, K. et al. Decreased tyrosine phosphorylation of nephrin in rat and human nephrosis. Kidney Int. 73, 926–932 (2008).

    Article  CAS  PubMed  Google Scholar 

  284. Ohashi, T. et al. Phosphorylation status of nephrin in human membranous nephropathy. Clin. Exp. Nephrol. 14, 51–55 (2010).

    Article  CAS  PubMed  Google Scholar 

  285. New, L. A. et al. Nephrin tyrosine phosphorylation is required to stabilize and restore podocyte foot process architecture. J. Am. Soc. Nephrol. 27, 2422–2435 (2016). Paper documenting the role of nephrin post-translational modifications in the maintenance of podocyte foot process architecture.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Buelli, S. et al. β-Arrestin-1 drives endothelin-1-mediated podocyte activation and sustains renal injury. J. Am. Soc. Nephrol. 25, 523–533 (2014).

    Article  CAS  PubMed  Google Scholar 

  287. Quack, I. et al. PKCα mediates β-arrestin2-dependent nephrin endocytosis in hyperglycemia. J. Biol. Chem. 286, 12959–12970 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Wang, Y., Cao, H., Chen, J. & McNiven, M. A. A direct interaction between the large GTPase dynamin-2 and FAK regulates focal adhesion dynamics in response to active Src. Mol. Biol. Cell 22, 1529–1538 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Delimont, D. et al. Laminin α2-mediated focal adhesion kinase activation triggers Alport glomerular pathogenesis. PLoS ONE 9, e99083 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Wu, M. J. et al. Rapamycin promotes podocyte migration through the up-regulation of urokinase receptor. Transplant. Proc. 46, 1226–1228 (2014).

    Article  CAS  PubMed  Google Scholar 

  291. Wu, X., Gan, B., Yoo, Y. & Guan, J. L. FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Dev. Cell 9, 185–196 (2005).

    Article  CAS  PubMed  Google Scholar 

  292. Sekiuchi, M. et al. Expression of matrix metalloproteinases 2 and 9 and tissue inhibitors of matrix metalloproteinases 2 and 1 in the glomeruli of human glomerular diseases: the results of studies using immunofluorescence. in situ hybridization, and immunoelectron microscopy. Clin. Exp. Nephrol. 16, 863–874 (2012).

    Article  CAS  PubMed  Google Scholar 

  293. Ashworth, S. et al. Cofilin-1 inactivation leads to proteinuria—studies in zebrafish, mice and humans. PLoS ONE 5, e12626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Ye, M. et al. Prednisone inhibits the focal adhesion kinase/receptor activator of NF-κB ligand/mitogen-activated protein kinase signaling pathway in rats with adriamycin-induced nephropathy. Mol. Med. Rep. 12, 7471–7478 (2015).

    Article  CAS  PubMed  Google Scholar 

  295. Fornoni, A. et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci. Transl. Med. 3, 85ra46 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Zhao, Z., Liao, G., Li, Y., Zhou, S. & Zou, H. The efficacy and safety of rituximab in treating childhood refractory nephrotic syndrome: a meta-analysis. Sci. Rep. 5, 8219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Gulati, A. et al. Efficacy and safety of treatment with rituximab for difficult steroid-resistant and -dependent nephrotic syndrome: multicentric report. Clin. J. Am. Soc. Nephrol. 5, 2207–2212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Magnasco, A. et al. Rituximab in children with resistant idiopathic nephrotic syndrome. J. Am. Soc. Nephrol. 23, 1117–1124 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Pradhan, M. & Furth, S. Rituximab in steroid-resistant nephrotic syndrome in children: a (false) glimmer of hope? J. Am. Soc. Nephrol. 23, 975–978 (2012).

    Article  CAS  PubMed  Google Scholar 

  300. Reiser, J. & Fornoni, A. Rituximab: a boot to protect the foot. J. Am. Soc. Nephrol. 25, 647–648 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Hoyer, P. F. & Brodeh, J. Initial treatment of idiopathic nephrotic syndrome in children: prednisone versus prednisone plus cyclosporine A: a prospective, randomized trial. J. Am. Soc. Nephrol. 17, 1151–1157 (2006).

    Article  CAS  PubMed  Google Scholar 

  302. Sumegi, V., Haszon, I., Bereczki, C., Papp, F. & Turi, S. Long-term follow-up after cyclophosphamide and cyclosporine-A therapy in steroid-dependent and -resistant nephrotic syndrome. Pediatr. Nephrol. 23, 1085–1092 (2008).

    Article  PubMed  Google Scholar 

  303. Gellermann, J. et al. Mycophenolate mofetil versus cyclosporin A in children with frequently relapsing nephrotic syndrome. J. Am. Soc. Nephrol. 24, 1689–1697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Fujinaga, S., Endo, A., Ohtomo, Y., Ohtsuka, Y. & Shimizu, T. Uncertainty in management of childhood-onset idiopathic nephrotic syndrome: is the long-term prognosis really favorable? Pediatr. Nephrol. 28, 2235–2238 (2013).

    Article  PubMed  Google Scholar 

  305. Fujinaga, S. et al. Positive role of rituximab in switching from cyclosporine to mycophenolate mofetil for children with high-dose steroid-dependent nephrotic syndrome. Pediatr. Nephrol. 30, 687–691 (2015).

    Article  PubMed  Google Scholar 

  306. Buscher, A. K. et al. Rapid response to cyclosporin A and favorable renal outcome in nongenetic versus genetic steroid-resistant nephrotic syndrome. Clin. J. Am. Soc. Nephrol. 11, 245–253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Wang, Y. et al. Activation of NFAT signaling in podocytes causes glomerulosclerosis. J. Am. Soc. Nephrol. 21, 1657–1666 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Naesens, M., Kuypers, D. R. & Sarwal, M. Calcineurin inhibitor nephrotoxicity. Clin. J. Am. Soc. Nephrol. 4, 481–508 (2009).

    Article  CAS  PubMed  Google Scholar 

  309. Yu, C. C. et al. Abatacept in B7-1-positive proteinuric kidney disease. N. Engl. J. Med. 369, 2416–2423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Novelli, R., Gagliardini, E., Ruggiero, B., Benigni, A. & Remuzzi, G. Any value of podocyte B7-1 as a biomarker in human MCD and FSGS? Am. J. Physiol. Renal Physiol. 310, F335–F341 (2016).

    Article  CAS  PubMed  Google Scholar 

  311. Larsen, C. P., Messias, N. C. & Walker, P. D. B7-1 immunostaining in proteinuric kidney disease. Am. J. Kidney Dis. 64, 1001–1003 (2014).

    Article  PubMed  Google Scholar 

  312. Benigni, A., Gagliardini, E. & Remuzzi, G. Abatacept in B7-1-positive proteinuric kidney disease. N. Engl. J. Med. 370, 1261–1263 (2014).

    Article  PubMed  Google Scholar 

  313. Alachkar, N., Carter-Monroe, N. & Reiser, J. Abatacept in B7-1-positive proteinuric kidney disease. N. Engl. J. Med. 370, 1263–1264 (2014).

    PubMed  Google Scholar 

  314. Grellier, J. et al. Belatacept in recurrent focal segmental glomerulosclerosis after kidney transplantation. Transpl. Int. 28, 1109–1110 (2015).

    Article  PubMed  Google Scholar 

  315. Delville, M. et al. B7-1 blockade does not improve post-transplant nephrotic syndrome caused by recurrent FSGS. J. Am. Soc. Nephrol. 27, 2520–2527 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  316. D'Agati, V. D. B7-1 biomarker bites the dust. Am. J. Physiol. Renal Physiol. 310, F810–F811 (2016).

    Article  CAS  PubMed  Google Scholar 

  317. Salant, D. J. Podocyte expression of B7-1/CD80: is it a reliable biomarker for the treatment of proteinuric kidney diseases with abatacept? J. Am. Soc. Nephrol. 27, 963–965 (2016).

    Article  CAS  PubMed  Google Scholar 

  318. New, L. A., Martin, C. E. & Jones, N. Advances in slit diaphragm signaling. Curr. Opin. Nephrol. Hypertens. 23, 420–430 (2014).

    Article  PubMed  Google Scholar 

  319. Helmstadter, M. et al. Functional study of mammalian Neph proteins in Drosophila melanogaster. PLoS ONE 7, e40300 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Arif, E. et al. Motor protein Myo1c is a podocyte protein that facilitates the transport of slit diaphragm protein Neph1 to the podocyte membrane. Mol. Cell Biol. 31, 2134–2150 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Bisson, N. et al. The adaptor protein Grb2 is not essential for the establishment of the glomerular filtration barrier. PLoS ONE 7, e50996 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Sampson, M. G. & Pollak, M. R. Opportunities and challenges of genotyping patients with nephrotic syndrome in the genomic era. Semin. Nephrol. 35, 212–221 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  323. Yu, H. et al. A role for genetic susceptibility in sporadic focal segmental glomerulosclerosis. J. Clin. Invest. 126, 1067–1078 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  324. Tanaka, E. et al. Notch2 activation ameliorates nephrosis. Nat. Commun. 5, 3296 (2014).

    Article  CAS  PubMed  Google Scholar 

  325. Yu, M., Ren, Q. & Yu, S. Y. Role of nephrin phosphorylation inducted by dexamethasone and angiotensin II in podocytes. Mol. Biol. Rep. 41, 3591–3595 (2014).

    Article  CAS  PubMed  Google Scholar 

  326. Castelli, M. et al. Regulation of the microtubular cytoskeleton by polycystin-1 favors focal adhesions turnover to modulate cell adhesion and migration. BMC Cell Biol. 16, 15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Passera and K. Mierke (Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy), for helping to edit the manuscript before submission. L.P.'s research is supported by a fellowship from Fondazione Aiuti per la Ricerca sulle Malattie Rare (ARMR), Bergamo, Italy.

Author information

Authors and Affiliations

Authors

Contributions

L.P. gathered data for the article and wrote the first draft of the manuscript. S.C. provided the images and helped to prepare the first draft. L.P., A.B. and G.R. contributed substantially to discussion of the article's content. A.B and G.R. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Giuseppe Remuzzi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Podocyte

Glomerular epithelial cell that resides on the visceral side of the Bowman capsule and wraps around glomerular capillaries. Podocytes are an integral component of the glomerular filtration barrier.

Permselectivity

The ability to restrict the permeation of macromolecules on the basis of their molecular size, charge and structural configuration.

Monogenic diseases

Pathological conditions that result from modifications in a single gene occurring in all cells of the body.

Anoikis

An apoptotic process that is induced by inadequate or inappropriate interaction between a cell and the underlying extracellular matrix.

Apoptosis

A form of cell death in which a programmed sequence of events leads to the elimination of a cell without the release of harmful substances that might affect neighbouring cells.

Hypertrophy

A process by which cells can increase their size. Hypertrophy can result in the enlargement of an organ or tissue without increasing the number of constituent cells.

Ectodomain

Part of a transmembrane protein that extends into the outer extracellular space.

Endoderm

The innermost primary germ layer of the embryo, which develops into the gastrointestinal tract, the lungs, the urinary bladder and part of the urethra.

Epiblast

The primordial outer layer of the embryo before the segregation of the germ layers.

Actin stress fibres

Contractile actin bundles found in non-muscle cells. They are composed of actin microfilaments and various crosslinking proteins, such as α-actinin.

Podocyturia

The presence of podocytes in the urine as a consequence of detachment from the glomerular basement membrane during pathological conditions.

Shunt pathways

An occasional, non-selective pathway consisting of non-selective pores that are larger in size than other pores of the slit diaphragm. This pathway might be responsible for the appearance of plasma proteins, such as albumin, in urine.

Occluding junctions

These cell junctions (also known as tight junctions) are formed by the fusion of integral proteins of the lateral cell membranes of adjacent epithelial cells, and limit permeability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perico, L., Conti, S., Benigni, A. et al. Podocyte–actin dynamics in health and disease. Nat Rev Nephrol 12, 692–710 (2016). https://doi.org/10.1038/nrneph.2016.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2016.127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing