Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The use of lineage tracing to study kidney injury and regeneration

Key Points

  • Lineage tracing involves labelling a single cell with a mark that is inherited by progeny cells; the number, cellular location, and differentiation status of the progeny can subsequently be determined

  • The type of promoter, switch, and reporter should be considered when designing a lineage tracing experiment; the induction time to study the specified end points must also be evaluated

  • The promoter should be specifically expressed by the cell type being studied and the expression pattern verified; definitive conclusions cannot be made when the marked cell type is unknown

  • Cre recombinase (Cre) is typically used as a switch to activate the transgene and allows transcription of the reporter to be turned on and off in a time-dependent manner

  • Inducible expression of Cre is preferable, as constitutive expression might mask transient target gene expression in other cell types or re-expression of the target gene at a later time point

  • Fluorescent reporters enable qualitative and quantitative analyses and live-cell imaging; multicolour reporters allow for evaluation of cell division, clonal analysis, and accurate genealogical descriptions of progenitor behaviour

Abstract

Lineage tracing is a powerful tool to track cells in vivo and provides enhanced spatial, temporal, and kinetic resolution of the mechanisms that underlie tissue renewal and repair. The data obtained from novel mouse models engineered for lineage tracing has started to transform our understanding of the changes in cell fate that underlie renal pathophysiology, the role of stem and/or progenitor cells in kidney development, and the mechanisms of kidney regeneration. The complexity of the genetic systems that are engineered for lineage tracing requires careful analysis and interpretation. In this Review we emphasize that close attention in lineage tracing studies must be paid to the specificity of the promoter, the use of drug-controlled activation of Cre recombinase as a genetic switch, and the type of reporter that should be engineered into lineage tracing genetic constructs. We evaluate the optimal experimental conditions required to achieve the pre-specified aims of the study and discuss the novel genetic techniques that are becoming available to study putative renal progenitor cells and the mechanisms of kidney regeneration.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Oestrogen receptor-based lineage tracing system.
Figure 2: Tet-ON inducible system for lineage tracing.
Figure 3: Cre-mediated double fluorescent (mT/mG) reporter transgenic for lineage tracing in the kidney.
Figure 4: Cre-recombinase-mediated multicolour reporter transgenic line for lineage tracing and clonal analysis, as a genetic strategy to mark cells with multiple fluorescent proteins.
Figure 5: Clonal analysis of the renal epithelia.
Figure 6: CRISPR-based system for lineage tracing of genome-edited cells.

Similar content being viewed by others

References

  1. Chaible, L. M., Corat, M. A., Abdelhay, E. & Dagli, M. L. Genetically modified animals for use in research and biotechnology. Genet. Mol. Res. 9, 1469–1482 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Rios, A. C., Fu, N. Y., Lindeman, G. J. & Visvader, J. E. In situ identification of bipotent stem cells in the mammary gland. Nature 506, 322–327 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Rompolas, P., Mesa, K. R. & Greco, V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513–518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Snippert, H. J. et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Ritsma, L. et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507, 362–365 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Barker, N., et al. Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep. 2, 540–552 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Appel, D. et al. Recruitment of podocytes from glomerular parietal epithelial cells. J. Am. Soc. Nephrol. 20, 333–343 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Starke, C. et al. Renin lineage cells repopulate the glomerular mesangium after injury. J. Am. Soc. Nephrol. 26, 48–54 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Humphreys, B. D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284–291 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Kobayashi, A. et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3, 169–181 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rinkevich, Y. et al. In vivo clonal analysis reveals lineage-restricted progenitor characteristics in mammalian kidney development, maintenance, and regeneration. Cell Rep. 7, 1270–1283 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kretzschmar, K. & Watt, F. M. Lineage tracing. Cell 148, 33–45 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Blanpain, C. & Simons, B. D. Unravelling stem cell dynamics by lineage tracing. Nat. Rev. Mol. Cell Biol. 14, 489–502, (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Humphreys, B. D. & Dirocco, D. P. Lineage-tracing methods and the kidney. Kidney Int. 86, 481–488 (2014).

    Article  PubMed  Google Scholar 

  16. Hoess, R. H., Wierzbicki, A. & Abremski, K. The role of the loxP spacer region in P1 site-specific recombination. Nucleic Acids Res. 14, 2287–2300 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Humphreys, B. D., Czerniak, S., DiRocco, D. P., Hasnain, W., Cheema, R. & Bonventre, J. V. Repair of injured proximal tubule does not involve specialized progenitors. Proc. Natl Acad. Sci. USA 108, 9226–9231 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kusaba, T., Lalli, M., Kramann, R., Kobayashi, A. & Humphreys, B. D. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl Acad. Sci. USA 111, 1527–1532 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Mascré, G. et al. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489, 257–262 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Pina, C. et al. Inferring rules of lineage commitment in haematopoiesis. Nature Cell Biol. 14, 287–294 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Miyoshi, G. & Fishell, G Directing neuron-specific transgene expression in the mouse CNS. Curr. Opin. Neurobiol. 16, 577–584 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Awatramani, R., Soriano, P., Rodriguez, C., Mai, J. J. & Dymecki, S.M. Cryptic boundaries in roof plate and choroid plexus identified by intersectional gene activation. Nat. Genet. 35, 70–75 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Jensen, P. et al. Redefining the serotonergic system by genetic lineage. Nat. Neurosci. 11, 417–419 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lindgren, D. et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am. J. Pathol. 178, 828–837 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Angelotti, M. L. et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells 30, 1714–1725 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Smeets, B. et al. Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J. Pathol. 229, 645–659 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berger, K. et al. Origin of regenerating tubular cells after acute kidney injury. Proc. Natl Acad. Sci. USA. 111, 1533–1538 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moeller, M. J. et al. Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis. J. Am. Soc. Nephrol. 15, 61–67 (2004).

    Article  PubMed  Google Scholar 

  30. Smeets, B. et al. Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis. J. Am. Soc. Nephrol. 22, 1262–1274 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smeets, B. et al. Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells. J. Am. Soc. Nephrol. 20, 2604–2615 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Berger, K. et al. The regenerative potential of parietal epithelial cells in adult mice. J. Am. Soc. Nephrol. 25, 693–705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berger, K. & Moeller, M. J. Podocytopenia, parietal epithelial cells and glomerulosclerosis. Nephrol. Dial. Transplant. 29, 948–950 (2014).

    Article  PubMed  Google Scholar 

  34. Romagnani, P., Lasagni, L. & Remuzzi, G. Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nat. Rev. Nephrol. 9, 137–146 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Romagnani, P. & Remuzzi, G. Renal progenitors in non-diabetic and diabetic nephropathies. Trends Endocrinol. Metab. 24, 13–20 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Lasagni, L. & Romagnani, P. Glomerular epithelial stem cells: the good, the bad, and the ugly. J. Am. Soc. Nephrol. 21, 1612–1619 (2010).

    Article  PubMed  Google Scholar 

  37. Sagrinati, C. et al. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. J. Am. Soc. Nephrol. 17, 2443–2456 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Ronconi, E. et al. Regeneration of glomerular podocytes by human renal progenitors. J. Am. Soc. Nephrol. 20, 322–332 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bussolati, B. et al. Isolation of renal progenitor cells from adult human kidney. Am. J. Pathol. 166, 545–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mazzinghi, B. et al. Essential but differential role for CXCR4 and CXCR7 in the therapeutic homing of human renal progenitor cells. J. Exp. Med. 205, 479–490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lazzeri, E. et al. Urine-derived human renal progenitors for personalized modeling of genetic kidney disorders. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014010057.

  42. Dziedzic, K., Pleniceanu, O. & Dekel, B. Kidney stem cells in development, regeneration and cancer. Semin. Cell Dev. Biol. 36, 57–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Metsuyanim, S. et al. Expression of stem cell markers in the human fetal kidney. PLoS ONE 4, e6709 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harari-Steinberg, O. et al. Identification of human nephron progenitors capable of generation of kidney structures and functional repair of chronic renal disease. EMBO Mol. Med. 5, 1556–1568 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pode-Shakked, N. et al. The isolation and characterization of renal cancer initiating cells from human Wilms' tumour xenografts unveils new therapeutic targets. EMBO Mol. Med. 5, 18–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Shukrun, R. et al. Wilms' tumor blastemal stem cells dedifferentiate to propagate the tumor bulk. Stem Cell Report. 3, 24–33 (2014).

    Article  CAS  Google Scholar 

  47. Buzhor, E. et al. Reactivation of NCAM1 defines a subpopulation of human adult kidney epithelial cells with clonogenic and stem/progenitor properties. Am. J. Pathol. 183, 1621–1633 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Lazzeri, E. et al. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. J. Am. Soc. Nephrol. 18, 3128–3138 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Dekel, B. et al. Isolation and characterization of nontubular sca-1+lin- multipotent stem/progenitor cells from adult mouse kidney. J. Am. Soc. Nephrol. 17, 3300–3314 (2006).

    Article  PubMed  Google Scholar 

  50. Angelotti, M. L., Lazzeri, E., Lasagni, L. & Romagnani, P. Only anti-CD133 antibodies recognizing the CD133/1 or the CD133/2 epitopes can identify human renal progenitors. Kidney Int. 78, 620–621 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Shmelkov, S. V., St Clair, R., Lyden, D. & Rafii, S. AC133/CD133/Prominin-1. Int. J. Biochem. Cell Biol. 37, 715–719 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Grosse-Gehling, P. et al. CD133 as a biomarker for putative cancer stem cells in solid tumours: limitations, problems and challenges. J. Pathol. 229, 355–378 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Greenhalgh, S. N., Conroy, K. P. & Henderson, N. C. Cre-activity in the liver: transgenic approaches to targeting hepatic non-parenchymal cells. Hepatology http://dx.doi.org/10.1002/hep.27606.

  54. Sakamoto, K. et al. The direction and role of phenotypic transition between podocytes and parietal epithelial cells in focal segmental glomerulosclerosis. Am. J. Physiol. Renal Physiol. 306, F98–F104 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Guhr, S. S. et al. The expression of podocyte-specific proteins in parietal epithelial cells is regulated by protein degradation. Kidney Int. 84, 532–544, (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Peired, A. et al. Proteinuria impairs podocyte regeneration by sequestering retinoic acid. J. Am. Soc. Nephrol. 24, 1756–1768 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pippin, J. W. et al. Cells of renin lineage are progenitors of podocytes and parietal epithelial cells in experimental glomerular disease. Am. J. Pathol. 183, 542–557 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pippin, J. W. et al. Cells of renin lineage take on a podocyte phenotype in aging nephropathy. Am. J. Physiol. Renal Physiol. 306, F1198–F1209 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liebau, M. C. et al. Functional expression of the renin-angiotensin system in human podocytes. Am. J. Physiol. Renal Physiol. 290, F710–F719 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Velez, J. C., Bland, A. M., Arthur, J. M., Raymond, J. R. & Janech, M. G. Characterization of renin-angiotensin system enzyme activities in cultured mouse podocytes. Am. J. Physiol. Renal Physiol. 293, F398–F407 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Rosenberg, M. E., Correa-Rotter, R., Inagami, T., Kren, S. M. & Hostetter, T. H. Glomerular renin synthesis and storage in the remnant kidney in the rat. Kidney Int. 40, 677–683 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Johansson, C. B. et al. Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat. Cell. Biol. 10, 575–583 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wagers, A. J., Sherwood, R. I., Christensen, J. L. & Weissman, I. L. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297, 2256–2259 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Hackl, M. J. et al. Tracking the fate of glomerular epithelial cells in vivo using serial multiphoton imaging in new mouse models with fluorescent lineage tags. Nat. Med. 19, 1661–1666 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wanner, N. et al. Unraveling the role of podocyte turnover in glomerular aging and injury. J. Am. Soc. Nephrol. 25, 707–716 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ueno, H. & Weissman, I. L. Clonal analysis of mouse development reveals a polyclonal origin for yolk sac blood islands. Dev. Cell 11, 519–533 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Buzhor, E. et al. Kidney spheroids recapitulate tubular organoids leading to enhanced tubulogenic potency of human kidney-derived cells. Tissue Eng. Part A. 17, 2305–2319 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Hirrlinger, J. et al. Split-cre complementation indicates coincident activity of different genes in vivo. PLoS ONE 4, e4286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang, P. et al. Intersectional Cre driver lines generated using split-intein mediated split-Cre reconstitution. Sci. Rep. 2, 497 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Beckervordersandforth, R. et al. In vivo fate mapping and expression analysis reveals molecular hallmarks of prospectively isolated adult neural stem cells. Cell Stem Cell 7, 744–758 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Yamamoto, M. et al. A multifunctional reporter mouse line for Cre- and FLP-dependent lineage analysis. Genesis 47, 107–114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nagy, A., Rossant, J., Nagy, R., Abramow-Newerly, W. & Roder, J. C. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl Acad. Sci. USA 90, 8424–8428 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551–2561 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A. & Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P. & Siksnys, V. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. 39, 9275–9282 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lienert, F. et al. Synthetic biology in mammalian cells: Next generation research tools and therapeutics. Nat. Rev. Mol. Cell. Biol. 15, 95–107 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Platt, R. J. et al. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hofmann, J. N. & Purdue, M. P. CKD and risk of renal cell carcinoma: a causal association? J. Am. Soc. Nephrol. 25, 2147–2148 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.R. has received funding from the European Research Council under the Consolidator Grant RENOIR (ERC-2014-CoG grant number 648,274) and from the European Community under the European Community's Seventh Framework Programme (FP7/2012-2016), grant number 305,436. B.D. has received funding from the Israel Scientific Foundation Grant Award 910/11 and the NephroTools Marie Curie Program FP7.

Author information

Authors and Affiliations

Authors

Contributions

P.R. and B.D. researched data for the article. All authors provided substantial contributions to discussions of its content, wrote the article, and undertook review and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Paola Romagnani or Benjamin Dekel.

Ethics declarations

Competing interests

P.R. is listed on patents regarding renal progenitors that are owned by the Meyer Children's Hospital. B.D. is listed on patents regarding isolated populations of kidney stem cells that are owned by the Sheba Medical Centre. Y.R. declares no competing interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romagnani, P., Rinkevich, Y. & Dekel, B. The use of lineage tracing to study kidney injury and regeneration. Nat Rev Nephrol 11, 420–431 (2015). https://doi.org/10.1038/nrneph.2015.67

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.67

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing