Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Primary disease recurrence—effects on paediatric renal transplantation outcomes

Key Points

  • Primary disease recurrence after renal transplantation accounts for 7–8% of graft losses

  • Disease recurrence after paediatric renal transplantation can be associated with a high or low risk of graft loss depending on the underlying primary disease

  • Understanding of the pathophysiology of most kidney diseases has advanced dramatically in the past few years, which will hopefully lead to improvements in the global prognosis of paediatric renal transplantation

  • Targeted treatment strategies are available for specific diseases that can improve graft survival in patients with disease recurrence

Abstract

Primary disease recurrence after renal transplantation is mainly diagnosed by examination of biopsy samples, but can also be associated with clinical symptoms. In some patients, recurrence can lead to graft loss (7–8% of all graft losses). Primary disease recurrence is generally associated with a high risk of graft loss in patients with focal segmental glomerulosclerosis, membranous proliferative glomerulonephritis, primary hyperoxaluria or atypical haemolytic uraemic syndrome. By contrast, disease recurrence is associated with a limited risk of graft loss in patients with IgA nephropathy, renal involvement associated with Henoch–Schönlein purpura, antineutrophil cytoplasmic antibody-associated glomerulonephritis or lupus nephritis. The presence of systemic diseases that affect the kidneys, such as sickle cell anaemia and diabetes mellitus, also increases the risk of delayed graft loss. This Review provides an overview of the epidemiology, pathophysiology and management of primary disease recurrence in paediatric renal graft recipients, and describes the overall effect on graft survival of each of the primary diseases listed above. With appropriate management, few paediatric patients should be excluded from renal transplantation programmes because of an increased risk of recurrence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proposed algorithm for managing SRNS in the context of paediatric renal transplantation.
Figure 2: Proposed algorithm for managing aHUS in the context of paediatric renal transplantation.

Similar content being viewed by others

References

  1. North American Pediatric Renal Trials and Collaborative Studies. NAPRTCS 2010 Annual Transplant Report. The EMMES Corporation [online], (2010).

  2. Cochat, P. et al. Disease recurrence in paediatric renal transplantation. Pediatr. Nephrol. 24, 2097–2108 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Van Stralen, K. J. et al. Impact of graft loss among kidney diseases with a high risk of post-transplant recurrence in the paediatric population. Nephrol. Dial. Transplant. 28, 1031–1038 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Holmberg, C. & Jalanko, H. Congenital nephrotic syndrome and recurrence of proteinuria after renal transplantation. Pediatr. Nephrol. 29, 2309–2317 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Canaud, G. et al. The kidney as a reservoir for HIV1 after renal transplantation. J. Am. Soc. Nephrol. 25, 407–419 (2014).

    Article  PubMed  Google Scholar 

  6. Mekahli, D. et al. Long-term outcome of idiopathic steroid-resistant nephrotic syndrome: a multicenter study. Pediatr. Nephrol. 24, 1525–1532 (2009).

    Article  PubMed  Google Scholar 

  7. Harambat, J. et al. Paediatric ESRD: 2013 data from the REIN registry. Société de néphrologie [online], (2013).

    Google Scholar 

  8. Fine, R. N. Recurrence of nephrotic syndrome/focal segmental glomerulosclerosis following renal transplantation in children. Pediatr. Nephrol. 22, 496–502 (2007).

    Article  PubMed  Google Scholar 

  9. Baum, M. A., Ho, M., Stablein, D. & Alexander, S. R. Outcome of renal transplantation in adolescents with focal segmental glomerulosclerosis. Pediatr. Transplant. 6, 488–492 (2002).

    Article  PubMed  Google Scholar 

  10. Saleem, M. A. The phenomenon of focal segmental glomerulosclerosis posttransplantationa one-hit wonder? Pediatr. Nephrol. 27, 2163–2166 (2012).

    Article  PubMed  Google Scholar 

  11. Shankland, S. J. & Pollak, M. R. A suPAR circulating factor causes kidney disease. Nat. Med. 17, 926–927 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Wei, C. et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat. Med. 17, 952–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gallon, L., Leventhal, J., Skaro, A., Kanwar, Y. & Alvarado, A. Resolution of recurrent focal segmental glomerulosclerosis after retransplantation. N. Engl. J. Med. 366, 1648–1649 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Mohey, H., Thibaudin, L., Laurent, B. & Berthoux, F. The podocin mutation R229Q and early recurrence (within the first year) of glomerular disease after renal transplantation. Ann. Transplant. 18, 436–442 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Bouchireb, K. et al. NPHS2 mutations in steroid-resistant nephrotic syndrome: a mutation update and the associated phenotypic spectrum. Hum. Mutat. 35, 178–186 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Buscher, A. K. et al. Mutations in podocyte genes are a rare cause of primary FSGS associated with ESRD in adult patients. Clin. Nephrol. 78, 47–53 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Fujisawa, M. et al. Long term outcome of FSGS after Japanese pediatric renal transplantation. Pediatr. Nephrol. 17, 165–168 (2002).

    Article  PubMed  Google Scholar 

  18. Couloures, K., Pepkowitz, S. H., Goldfinger, D., Kamil, E. S. & Puliyanda, D. P. Preventing recurrence of focal segmental glomerulosclerosis following renal transplantation: a case report. Pediatr. Transplant. 10, 962–965 (2006).

    Article  PubMed  Google Scholar 

  19. Gonzalez, E., Ettenger, R., Rianthavorn, P., Tsai, E. & Malekzadeh, M. Preemptive plasmapheresis and recurrence of focal segmental glomerulosclerosis in pediatric renal transplantation. Pediatr. Transplant. 15, 495–501 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Chikamoto, H. et al. Pretransplantation combined therapy with plasmapheresis and rituximab in a second living-related kidney transplant pediatric recipient with a very high risk for focal segmental glomerulosclerosis recurrence. Pediatr. Transplant. 16, E286–E290 (2012).

    Article  PubMed  Google Scholar 

  21. Cochat, P. Is there a need for a multicenter study to determine the optimal approach to recurrent nephrotic syndrome following renal transplantation? Pediatr. Transplant. 5, 394–397 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Fargue, S. et al. Prevention and treatment of recurrence of steroid-resistant nephrotic syndrome after kidney transplantation in children. Pediatr. Nephrol. 23, 1685 (2008).

    Google Scholar 

  23. Kasiske, B. L. et al. KDIGO clinical practice guideline for the care of kidney transplant recipients: a summary. Kidney Int. 77, 299–311 (2010).

    Article  PubMed  Google Scholar 

  24. Hodson, E. M., Willis, N. S. & Craig, J. C. Interventions for idiopathic steroid-resistant nephrotic syndrome in children. Cochrane Database of Systematic Reviews, Issue 11. Art. No.: CD003594 (2010).

  25. Vinai, M., Waber, P. & Seikaly, M. G. Recurrence of focal segmental glomerulosclerosis in renal allograft: an in-depth review. Pediatr. Transplant. 14, 314–325 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Hickson, L. J. et al. Kidney transplantation for primary focal segmental glomerulosclerosis: outcomes and response to therapy for recurrence. Transplantation 87, 1232–1239 (2009).

    Article  PubMed  Google Scholar 

  27. Grenda, R., Jarmuzek, W., Piatosa, B. & Rubik, J. Long-term effect of rituximab in maintaining remission of recurrent and plasmapheresis-dependent nephrotic syndrome post-renal transplantation—case report. Pediatr. Transplant. 15, E121–E125 (2011).

    Article  PubMed  Google Scholar 

  28. Meyer, T. N., Thaiss, F. & Stahl, R. A. Immunoadsorbtion and rituximab therapy in a second living-related kidney transplant patient with recurrent focal segmental glomerulosclerosis. Transpl. Int. 20, 1066–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Kumar, J. et al. Rituximab in post-transplant pediatric recurrent focal segmental glomerulosclerosis. Pediatr. Nephrol. 28, 333–338 (2013).

    Article  PubMed  Google Scholar 

  30. Bayrakci, U. S., Baskin, E., Sakalli, H., Karakayali, H. & Haberal, M. Rituximab for post-transplant recurrences of FSGS. Pediatr. Transplant. 13, 240–243 (2009).

    Article  PubMed  Google Scholar 

  31. Stewart, Z. A., Shetty, R., Nair, R., Reed, A. I. & Brophy, P. D. Case report: successful treatment of recurrent focal segmental glomerulosclerosis with a novel rituximab regimen. Transplant. Proc. 43, 3994–3996 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Cochat, P. et al. Recurrent nephrotic syndrome after transplantation: early treatment with plasmaphaeresis and cyclophosphamide. Pediatr. Nephrol. 7, 50–54 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Nathanson, S. et al. Recurrence of nephrotic syndrome after renal transplantation: influence of increased immunosuppression. Pediatr. Nephrol. 20, 1801–1804 (2005).

    Article  PubMed  Google Scholar 

  34. Straatmann, C. et al. Success with plasmapheresis treatment for recurrent focal segmental glomerulosclerosis in pediatric renal transplant recipients. Pediatr. Transplant. 18, 29–34 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Dantal, J. et al. Effect of plasma protein adsorption on protein excretion in kidney-transplant recipients with recurrent nephrotic syndrome. N. Engl. J. Med. 330, 7–14 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Fencl, F. et al. Recurrence of nephrotic proteinuria in children with focal segmental glomerulosclerosis after renal transplantation treated with plasmapheresis and immunoadsorption: case reports. Transplant. Proc. 39, 3488–3490 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Beaudreuil, S. et al. Protein A immunoadsorption cannot significantly remove the soluble receptor of urokinase from sera of patients with recurrent focal segmental glomerulosclerosis. Nephrol. Dial. Transplant. 29, 458–463 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Kwon, T., Nattes, E. & Deschenes, G. Efficacy of immunoadsorption in pediatric nephrotic syndrome. Presented at the 2014 European Society for Pediatric Nephrology meeting, Porto, Portugal.

  39. Yu, C. C. et al. Abatacept in B7-1-positive proteinuric kidney disease. N. Engl. J. Med. 369, 2416–2423 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Basu, B. Ofatumumab for rituximab-resistant nephrotic syndrome. N. Engl. J. Med. 370, 1268–1270 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Sgambat, K., Banks, M. & Moudgil, A. Effect of galactose on glomerular permeability and proteinuria in steroid-resistant nephrotic syndrome. Pediatr. Nephrol. 28, 2131–2135 (2013).

    Article  PubMed  Google Scholar 

  42. Raafat, R., Travis, L., Kalia, A. & Diven, S. Role of transplant induction. Pediatr. Nephrol. 14, 189–194 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Little, M. A., Dupont, P., Campbell, E., Dorman, A. & Walshe, J. J. Severity of primary MPGN, rather than MPGN type, determines renal survival and post-transplantation recurrence risk. Kidney Int. 69, 504–511 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Pickering, M. C. et al. C3 glomerulopathy: consensus report. Kidney Int. 84, 1079–1089 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sethi, S., Nester, C. M. & Smith, R. J. H. Membranoproliferative glomerulonephritis and C3 glomerulopathy: resolving the confusion. Kidney Int. 81, 434–441 (2012).

    Article  PubMed  Google Scholar 

  46. Zand, L. et al. Clinical findings, pathology, and outcomes of C3GN after kidney transplantation. J. Am. Soc. Nephrol. 25, 1110–1117 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Lorenz, E. C. et al. Recurrent membranoproliferative glomerulonephritis after kidney transplantation. Kidney Int. 77, 721–728 (2010).

    Article  PubMed  Google Scholar 

  48. Marinaki, S., Lionaki, S. & Boletis, J. N. Glomerular disease recurrence in the renal allograft: a hurdle but not a barrier for successful kidney transplantation. Transplant. Proc. 45, 3–9 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. McCaughan, J. A., O'Rourke, D. M. & Courtney, A. E. Recurrent dense deposit disease after renal transplantation: an emerging role for complementary therapies. Am. J. Transplant. 12, 1046–1051 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Radhakrishnan, S. et al. Eculizumab and refractory membranoproliferative glomerulonephritis. N. Engl. J. Med. 366, 1165–1166 (2012).

    Article  CAS  PubMed  Google Scholar 

  51. Gurkan, S. et al. Eculizumab and recurrent C3 glomerulonephritis. Pediatr. Nephrol. 28, 1975–1981 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nester, C. et al. Pre-emptive eculizumab and plasmapheresis for renal transplant in atypical hemolytic uremic syndrome. Clin. J. Am. Soc. Nephrol. 6, 1488–1494 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Moroni, G. et al. Long-term outcome of renal transplantation in patients with idiopathic membranous glomerulonephritis (MN). Nephrol. Dial. Transplant. 25, 3408–3415 (2010).

    Article  PubMed  Google Scholar 

  54. Beck, L. H. Jr et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med. 361, 11–21 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Debiec, H. et al. Autoantibodies specific for the phospholipase A2 receptor in recurrent and de novo membranous nephropathy. Am. J. Transplant. 11, 2144–2152 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. El-Zoghby, Z. M. et al. Recurrent idiopathic membranous nephropathy: early diagnosis by protocol biopsies and treatment with anti-CD20 monoclonal antibodies. Am. J. Transplant. 9, 2800–2807 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Rodriguez, E. F. et al. The pathology and clinical features of early recurrent membranous glomerulonephritis. Am. J. Transplant. 12, 1029–1038 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Andrews, P. A. Lipoprotein glomerulopathy: a new cause of nephrotic syndrome after renal transplantation. Implications for renal transplantation. Nephrol. Dial. Transplant. 14, 239–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  59. Loirat, C. & Fremeaux-Bacchi, V. Hemolytic uremic syndrome recurrence after renal transplantation. Pediatr. Transplant. 12, 619–629 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Sellier-Leclerc, A. L. et al. Differential impact of complement mutations on clinical characteristics in atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 18, 2392–2400 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Kwon, T. et al. Successful pre-transplant management of a patient with anti-factor H autoantibodies-associated haemolytic uraemic syndrome. Nephrol. Dial. Transplant. 23, 2088–2090 (2008).

    Article  PubMed  Google Scholar 

  62. Loirat, C., Girma, J. P., Desconclois, C., Coppo, P. & Veyradier, A. Thrombotic thrombocytopenic purpura related to severe ADAMTS13 deficiency in children. Pediatr. Nephrol. 24, 19–29 (2009).

    Article  PubMed  Google Scholar 

  63. Zimmerhackl, L. B. et al. Epidemiology, clinical presentation, and pathophysiology of atypical and recurrent hemolytic uremic syndrome. Semin. Thromb. Hemost. 32, 113–120 (2006).

    Article  PubMed  Google Scholar 

  64. Zuber, J. et al. Targeted strategies in the prevention and management of atypical HUS recurrence after kidney transplantation. Transplant. Rev. (Orlando) 27, 117–125 (2013).

    Article  Google Scholar 

  65. Le Quintrec, M. et al. Complement genes strongly predict recurrence and graft outcome in adult renal transplant recipients with atypical hemolytic and uremic syndrome. Am. J. Transplant. 13, 663–675 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Lemaire, M. et al. Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome. Nat. Genet. 45, 531–536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bresin, E. et al. Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype. J. Am. Soc. Nephrol. 24, 475–486 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pabst, W. L. et al. Successful long-term outcome after renal transplantation in a patient with atypical haemolytic uremic syndrome with combined membrane cofactor protein CD46 and complement factor I mutations. Pediatr. Nephrol. 28, 1141–1144 (2013).

    Article  PubMed  Google Scholar 

  69. Michaux, K. et al. Eculizumab in neonatal hemolytic uremic syndrome with homozygous factor H deficiency. Pediatr. Nephrol. 29, 2415–2419 (2014).

    Article  PubMed  Google Scholar 

  70. Hirt-Minkowski, P. et al. Haemolytic uraemic syndrome caused by factor H mutation: is single kidney transplantation under intensive plasmatherapy an option? Nephrol. Dial. Transplant. 24, 3548–3551 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Zuber, J. et al. Eculizumab for atypical hemolytic uremic syndrome recurrence in renal transplantation. Am. J. Transplant. 12, 3337–3354 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Weitz, M., Amon, O., Bassler, D., Koenigsrainer, A. & Nadalin, S. Prophylactic eculizumab prior to kidney transplantation for atypical hemolytic uremic syndrome. Pediatr. Nephrol. 26, 1325–1329 (2011).

    Article  PubMed  Google Scholar 

  73. Al-Akash, S. I., Almond, P. S., Savell, V. H. Jr, Gharaybeh, S. I. & Hogue, C. Eculizumab induces long-term remission in recurrent post-transplant HUS associated with C3 gene mutation. Pediatr. Nephrol. 26, 613–619 (2011).

    Article  PubMed  Google Scholar 

  74. Chatelet, V. et al. Eculizumab: safety and efficacy after 17 months of treatment in a renal transplant patient with recurrent atypical hemolytic-uremic syndrome: case report. Transplant. Proc. 42, 4353–4355 (2010).

    Article  CAS  PubMed  Google Scholar 

  75. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Roman-Ortiz, E. et al. Eculizumab long-term therapy for pediatric renal transplant in aHUS with CFH/CFHR1 hybrid gene. Pediatr. Nephrol. 29, 149–153 (2014).

    Article  PubMed  Google Scholar 

  77. Loirat, C., Coppo, P. & Veyradier, A. Thrombotic thrombocytopenic purpura in children. Curr. Opin. Pediatr. 25, 216–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Khandelwal, P. et al. Effect of plasma exchange and immunosuppressive medications on antibody titers and outcome in anti-complement factor H antibody-associated hemolytic uremic syndrome. Pediatr. Nephrol. 30, 451–457 (2015).

    Article  PubMed  Google Scholar 

  79. Khandelwal, P. et al. Outcomes of renal transplant in patients with anti-complement factor H antibody-associated hemolytic uremic syndrome. Pediatr. Transplant. 18, E134–E139 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Midtvedt, K., Bitter, J. & Dorje, C. Belatacept as immunosuppression in patient with recurrence of HUS after renal transplantation. Transplantation 87, 1901–1903 (2009).

    Article  PubMed  Google Scholar 

  81. Noris, M. et al. Dynamics of complement activation in aHUS and how to monitor eculizumab therapy. Blood 124, 1715–1726 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cochat, P. & Rumsby, G. Primary hyperoxaluria. N. Engl. J. Med. 369, 649–658 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Cochat, P. et al. Primary hyperoxaluria Type 1: indications for screening and guidance for diagnosis and treatment. Nephrol. Dial. Transplant. 27, 1729–1736 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Filler, G. & Hoppe, B. Combined liver-kidney transplantation for hyperoxaluria type II? Pediatr. Transplant. 18, 237–239 (2014).

    Article  PubMed  Google Scholar 

  85. Harambat, J., Fargue, S., Bacchetta, J., Acquaviva, C. & Cochat, P. Primary hyperoxaluria. Int. J. Nephrol. 2011, 864580 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Naderi, G., Latif, A., Tabassomi, F. & Esfahani, S. T. Failure of isolated kidney transplantation in a pediatric patient with primary hyperoxaluria type 2. Pediatr. Transplant. 18, E69–E73 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Harambat, J. et al. Characteristics and outcomes of children with primary oxalosis requiring renal replacement therapy. Clin. J. Am. Soc. Nephrol. 7, 458–465 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Brinkert, F. et al. Transplantation procedures in children with primary hyperoxaluria type 1: outcome and longitudinal growth. Transplantation 87, 1415–1421 (2009).

    Article  PubMed  Google Scholar 

  89. Perera, M. T. et al. Pre-emptive liver transplantation for primary hyperoxaluria (PHI) arrests long-term renal function deterioration. Nephrol. Dial. Transplant. 26, 354–359 (2011).

    Article  PubMed  Google Scholar 

  90. Jamieson, N. V. & the European PH1 Transplantation Study Group. A 20-year experience of combined liver/kidney transplantation for primary hyperoxaluria (PH1): the European PH1 transplant registry experience 1984–2004. Am. J. Nephrol. 25, 282–289 (2005).

    Article  PubMed  Google Scholar 

  91. Cibrik, D. M., Kaplan, B., Arndorfer, J. A. & Meier-Kriesche, H. U. Renal allograft survival in patients with oxalosis. Transplantation 74, 707–710 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Millan, M. T. et al. One hundred percent patient and kidney allograft survival with simultaneous liver and kidney transplantation in infants with primary hyperoxaluria: a single-center experience. Transplantation 76, 1458–1463 (2003).

    Article  PubMed  Google Scholar 

  93. Ellis, S. R., Hulton, S. A., McKiernan, P. J., de Ville de Goyet, J. & Kelly, D. A. Combined liver-kidney transplantation for primary hyperoxaluria type 1 in young children. Nephrol. Dial. Transplant. 16, 348–354 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Bergstralh, E. J. et al. Transplantation outcomes in primary hyperoxaluria. Am. J. Transplant. 10, 2493–2501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Malla, I. et al. Two-step transplantation for primary hyperoxaluria: cadaveric liver followed by living donor related kidney transplantation. Pediatr. Transplant. 13, 782–784 (2009).

    Article  PubMed  Google Scholar 

  96. Lai, C. et al. Inhibition of glycolate oxidase (HAO1) with dicer-substrate siRNAs as a substrate reduction therapy for primary hyperoxaluria Type I [online], (2014).

  97. Bollee, G. et al. Adenine phosphoribosyltransferase deficiency. Clin. J. Am. Soc. Nephrol. 7, 1521–1527 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Harambat, J., Bollee, G., Daudon, M., Ceballos-Picot, I. & Bensman, A. Adenine phosphoribosyltransferase deficiency in children. Pediatr. Nephrol. 27, 571–579 (2012).

    Article  PubMed  Google Scholar 

  99. Gagne, E. R., Deland, E., Daudon, M., Noel, L. H. & Nawar, T. Chronic renal failure secondary to 2, 8-dihydroxyadenine deposition: the first report of recurrence in a kidney transplant. Am. J. Kidney Dis. 24, 104–107 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Cassidy, M. J., McCulloch, T., Fairbanks, L. D. & Simmonds, H. A. Diagnosis of adenine phosphoribosyltransferase deficiency as the underlying cause of renal failure in a renal transplant recipient. Nephrol. Dial. Transplant. 19, 736–738 (2004).

    Article  PubMed  Google Scholar 

  101. Kaartinen, K. et al. Adenine phosphoribosyltransferase deficiency as a rare cause of renal allograft dysfunction. J. Am. Soc. Nephrol. 25, 671–674 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stratta, P. et al. Decreased kidney function and crystal deposition in the tubules after kidney transplant. Am. J. Kidney Dis. 56, 585–590 (2010).

    Article  PubMed  Google Scholar 

  103. Nasr, S. H. et al. Crystalline nephropathy due to 2, 8-dihydroxyadeninuria: an under-recognized cause of irreversible renal failure. Nephrol. Dial. Transplant. 25, 1909–1915 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Zaidan, M. et al. Recurrent 2, 8-dihydroxyadenine nephropathy: a rare but preventable cause of renal allograft failure. Am. J. Transplant. 14, 2623–2632 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bollee, G. et al. Phenotype and genotype characterization of adenine phosphoribosyltransferase deficiency. J. Am. Soc. Nephrol. 21, 679–688 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hogg, R. J. Idiopathic immunoglobulin A nephropathy in children and adolescents. Pediatr. Nephrol. 25, 823–829 (2010).

    Article  PubMed  Google Scholar 

  107. Ortiz, F. et al. IgA nephropathy recurs early in the graft when assessed by protocol biopsy. Nephrol. Dial. Transplant. 27, 2553–2558 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Coppo, R. et al. Predictors of outcome in Henoch-Schonlein nephritis in children and adults. Am. J. Kidney Dis. 47, 993–1003 (2006).

    Article  PubMed  Google Scholar 

  109. Narchi, H. Risk of long term renal impairment and duration of follow up recommended for Henoch-Schonlein purpura with normal or minimal urinary findings: a systematic review. Arch. Dis. Child. 90, 916–920 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Coppo, R. et al. Serological and genetic factors in early recurrence of IgA nephropathy after renal transplantation. Clin. Transplant. 21, 728–737 (2007).

    PubMed  Google Scholar 

  111. Kanaan, N. et al. Recurrence and graft loss after kidney transplantation for henoch-schonlein purpura nephritis: a multicenter analysis. Clin. J. Am. Soc. Nephrol. 6, 1768–1772 (2011).

    Article  PubMed  Google Scholar 

  112. Moroni, G. et al. Renal transplantation in adults with Henoch-Schonlein purpura: long-term outcome. Nephrol. Dial. Transplant. 23, 3010–3016 (2008).

    Article  PubMed  Google Scholar 

  113. Oliveira, C. S. et al. Renal transplantation in lupus nephritis: a Brazilian cohort. Lupus 21, 570–574 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Moroni, G. et al. The long-term prognosis of renal transplantation in patients with lupus nephritis. Am. J. Kidney Dis 45, 903–911 (2005).

    Article  PubMed  Google Scholar 

  115. Yu, T. M. et al. Impact of recurrent lupus nephritis on lupus kidney transplantation: a 20-year single center experience. Clin. Rheumatol. 31, 705–710 (2012).

    Article  PubMed  Google Scholar 

  116. Burgos, P. I. et al. Risk factors and impact of recurrent lupus nephritis in patients with systemic lupus erythematosus undergoing renal transplantation: date from a single US institution. Arthritis Rheum. 60, 2757–2766 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Norby, G. E. et al. Recurrent lupus nephritis after kidney transplantation: a surveillance biopsy study. Ann. Rheum. Dis. 69, 1484–1487 (2010).

    Article  PubMed  Google Scholar 

  118. Stone, J. H., Amend, W. J. & Criswell, L. A. Antiphospholipid antibody syndrome in renal transplantation: occurrence of clinical events in 96 consecutive patients with systemic lupus erythematosus. Am. J. Kidney Dis. 34, 1040–1047 (1999).

    Article  CAS  PubMed  Google Scholar 

  119. Gonzalez-Pulido, C., Croca, S., Abrol, E. & Isenberg, D. A. Long-term activity index after renal failure in a cohort of 32 patients with lupus nephritis. Clin. Exp. Rheumatol. 32, 301–307 (2014).

    CAS  PubMed  Google Scholar 

  120. Yu, T. M. et al. Renal outcome and evolution of disease activity in Chinese lupus patients after renal transplantation. Lupus 17, 687–694 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Friedman, G. S. et al. Hypercoagulable states in renal transplant candidates: impact of anticoagulation upon incidence of renal allograft thrombosis. Transplantation 72, 1073–1078 (2001).

    Article  CAS  PubMed  Google Scholar 

  122. Morrissey, P. E. et al. Management of thrombophilia in renal transplant patients. Am. J. Transplant. 2, 872–876 (2002).

    Article  PubMed  Google Scholar 

  123. Barbour, T. D. et al. Antiphospholipid syndrome in renal transplantation. Nephrology (Carlton) 19, 177–185 (2014).

    Article  CAS  Google Scholar 

  124. Falkeis, C. et al. Kidney transplantation in patients suffering from hereditary complete complement C4 deficiency. Transpl. Int. 20, 1044–1049 (2007).

    Article  PubMed  Google Scholar 

  125. Little, M. A. et al. Renal transplantation in systemic vasculitis: when is it safe? Nephrol. Dial. Transplant. 24, 3219–3125 (2009).

    Article  PubMed  Google Scholar 

  126. Booth, A. D. et al. Outcome of ANCA-associated renal vasculitis: a 5year retrospective study. Am. J. Kidney Dis. 41, 776–784 (2003).

    Article  PubMed  Google Scholar 

  127. Marco, H. et al. Long-term outcome of antineutrophil cytoplasmic antibody-associated small vessel vasculitis after renal transplantation. Clin. Transplant. 27, 338–347 (2013).

    Article  PubMed  Google Scholar 

  128. Elmedhem, A., Adu, D. & Savage, C. O. Relapse rate and outcome of ANCA-associated small vessel vasculitis after transplantation. Nephrol. Dial. Transplant. 18, 1001–1004 (2003).

    Article  PubMed  Google Scholar 

  129. Murakami, C., Manoharan, P., Carter-Monroe, N. & Geetha, D. Rituximab for remission induction in recurrent ANCA-associated glomerulonephritis postkidney transplant. Transpl. Int. 26, 1225–1231 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Geetha, D., Seo, P., Specks, U. & Fervenza, F. C. Successful induction of remission with rituximab for relapse of ANCA-associated vasculitis post-kidney transplant: report of two cases. Am. J. Transplant. 7, 2821–2825 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Van Stralen, K. J. et al. Improvement in the renal prognosis in nephropathic cystinosis. Clin. J. Am. Soc. Nephrol. 6, 2485–2491 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ojo, A. et al. Excellent outcome of renal transplantation in patients with Fabry's disease. Transplantation 69, 2337–2339 (2000).

    Article  CAS  PubMed  Google Scholar 

  133. Luan, F. L. & Samaniego, M. Transplantation in diabetic kidney failure patients: modalities, outcomes, and clinical management. Semin. Dial. 23, 198–205 (2010).

    Article  PubMed  Google Scholar 

  134. Nath, J. et al. Sickle cell and renal transplant: a national survey and literature review. Exp. Clin. Transplant. 10, 1–7 (2012).

    Article  PubMed  Google Scholar 

  135. Vargas, F., Gedalia, A., Craver, R. D. & Matti Vehaskari, V. Recurrence of granulomatous interstitial nephritis in transplanted kidney. Pediatr. Transplant. 14, e54–e57 (2010).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.B. and P.C. contributed equally to researching data for the article and discussions of the article's content. J.B. wrote the manuscript, and J.B. and P.C. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Justine Bacchetta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacchetta, J., Cochat, P. Primary disease recurrence—effects on paediatric renal transplantation outcomes. Nat Rev Nephrol 11, 371–384 (2015). https://doi.org/10.1038/nrneph.2015.54

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.54

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing