Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The effect of RAAS blockade on the progression of diabetic nephropathy

A Correction to this article was published on 11 March 2014

This article has been updated

Key Points

  • Renin–angiotensin–aldosterone system (RAAS) blockade using angiotensin-converting-enzyme inhibitors or angiotensin-receptor blockers, which have antihypertensive and antialbuminuric properties, has become the cornerstone of treatment of diabetic renal disease

  • As single-agent RAAS blockade does not completely block RAAS activation the residual renal risk of treated patients is high

  • Data from clinical trials of dual RAAS blockade (including the use of aldosterone blockers or renin inhibitors) are contradictory and safety remains a concern

  • Possible alternatives to dual RAAS blockade include restricting dietary sodium, increasing drug doses or using novel drugs to block the deleterious effects of RAAS activation whilst preserving its physiological role

  • Novel omic techniques might enable the identification of patients who are most likely to benefit from RAAS blockade and the individual tailoring of interventions

Abstract

The renin–angiotensin–aldosterone system (RAAS) has a key role in the regulation of blood pressure, sodium and water balance, and cardiovascular and renal homeostasis. In diabetic nephropathy, excessive activation of the RAAS results in progressive renal damage. RAAS blockade using angiotensin-converting-enzyme inhibitors or angiotensin-receptor blockers is the cornerstone of treatment of diabetic renal disease. Alternative RAAS-blockade strategies include renin inhibition and aldosterone blockade. Data from small initial studies of these agents are promising. However, single-agent interventions do not fully block the RAAS and patients treated with these therapies remain at high residual renal risk. Approaches to optimize drug responses include dietary changes and increasing dosages. The theoretically attractive option of combining different RAAS interventions has also been tested in clinical trials but long-term outcomes were disappointing. However, dual RAAS blockade might represent a good therapeutic option for specific patients. A better knowledge of the pathophysiology of the RAAS is crucial to fully understand the mechanisms of action of RAAS blockers and to exploit their renoprotective effects. Moreover, lifestyle interventions or diagnostic tools might be used to optimize RAAS blockade and identify those patients who are most likely to benefit from the therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Current and potential targets for therapeutic interventions in the RAAS cascade.
Figure 2: Randomized controlled trials that have investigated the effects of RAAS blockade at the various stages of progression of diabetic nephropathy.
Figure 3: The effect of enalapril versus metoprolol on surrogate outcomes in patients with type 1 diabetes (n = 40).
Figure 4: Residual risk of ESRD in patients with hypertension and diabetic nephropathy receiving angiotensin-converting-enzyme inhibitor or angiotensin-receptor blocker therapy (n = 1,428).
Figure 5: The addition of spironolactone (25 mg per day) to renin–angiotensin–aldosterone system blockade in diabetic patients with proteinuria (n = 87) resulted in an initial acute fall in eGFR and a sustained reduction in proteinuria.64

Similar content being viewed by others

Change history

  • 11 March 2014

    In the February 2014 issue of Nature Reviews Nephrology, the key in Figure 4 of this article was labelled incorrectly. The correct labelling is as follows: pale green <1; dark green 1–2, blue 2–3; purple >3.5. This error has been corrected online.

References

  1. Collins, A. J. et al. US Renal Data System 2012 Annual Data Report. Am. J. Kidney Dis. 61 (Suppl. 1), e1–e476 (2013).

    Google Scholar 

  2. Gross, J. L. et al. Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28, 164–176 (2005).

    PubMed  Google Scholar 

  3. Grundy, S. M. et al. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100, 1134–1146 (1999).

    CAS  PubMed  Google Scholar 

  4. Lopes-Virella, M. F. et al. Risk factors related to inflammation and endothelial dysfunction in the DCCT/EDIC cohort and their relationship with nephropathy and macrovascular complications. Diabetes Care 31, 2006–2012 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Kanwar, Y. S. et al. Diabetic nephropathy: mechanisms of renal disease progression. Exp. Biol. Med. (Maywood) 233, 4–11 (2008).

    CAS  Google Scholar 

  6. Schrijvers, B. F., De Vriese, A. S. & Flyvbjerg, A. From hyperglycemia to diabetic kidney disease: the role of metabolic, hemodynamic, intracellular factors and growth factors/cytokines. Endocr. Rev. 25, 971–1010 (2004).

    CAS  PubMed  Google Scholar 

  7. Atlas, S. A. The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J. Manag. Care Pharm. 13, 9–20 (2007).

    PubMed  Google Scholar 

  8. Ruggenenti, P., Cravedi, P. & Remuzzi, G. The RAAS in the pathogenesis and treatment of diabetic nephropathy. Nat. Rev. Nephrol. 6, 319–330 (2010).

    CAS  PubMed  Google Scholar 

  9. Giacchetti, G., Sechi, L. A., Rilli, S. & Carey, R. M. The renin-angiotensin-aldosterone system, glucose metabolism and diabetes. Trends Endocrinol. Metab. 16, 120–126 (2005).

    CAS  PubMed  Google Scholar 

  10. Kagami, S., Border, W. A., Miller, D. E. & Noble, N. A. Angiotensin II stimulates extracellular matrix protein synthesis through induction of transforming growth factor-β expression in rat glomerular mesangial cells. J. Clin. Invest. 93, 2431–2437 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ruiz-Ortega, M. et al. Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol. Dial. Transplant. 21, 16–20 (2006).

    CAS  PubMed  Google Scholar 

  12. Siragy, H. M. & Carey, R. M. Role of the intrarenal renin-angiotensin-aldosterone system in chronic kidney disease. Am. J. Nephrol. 31, 541–550 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Adler, A. I. et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney Int. 63, 225–232 (2003).

    PubMed  Google Scholar 

  14. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    CAS  PubMed  Google Scholar 

  15. Tuck, M. L. et al. Insulin stimulates endogenous angiotensin II production via a mitogen-activated protein kinase pathway in vascular smooth muscle cells. J. Hypertens. 22, 1779–1785 (2004).

    CAS  PubMed  Google Scholar 

  16. Hilgers, K. F. & Veelken, R. Type 2 diabetic nephropathy: never too early to treat? J. Am. Soc. Nephrol. 16, 574–575 (2005).

    PubMed  Google Scholar 

  17. Yusuf, S. et al. Ramipril and the development of diabetes. JAMA 286, 1882–1885 (2001).

    CAS  PubMed  Google Scholar 

  18. Abuissa, H., Jones, P. G., Marso, S. P. & O'Keefe, J. H. Jr. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J. Am. Coll. Cardiol. 46, 821–826 (2005).

    CAS  PubMed  Google Scholar 

  19. The DREAM Trial Investigators. Effect of ramipril on the incidence of diabetes. N. Engl. J. Med. 355, 1551–1562 (2006).

  20. The NAVIGATOR Study Group. Effect of valsartan on the incidence of diabetes and cardiovascular events. N. Engl. J. Med. 362, 1477–1490 (2010).

  21. Ravid, M. et al. Use of enalapril to attenuate decline in renal function in normotensive, normoalbuminuric patients with type 2 diabetes mellitus. A randomized, controlled trial. Ann. Intern. Med. 128, 982–988 (1998).

    CAS  PubMed  Google Scholar 

  22. Ruggenenti, P. et al. Preventing microalbuminuria in type 2 diabetes. N. Engl. J. Med. 351, 1941–1951 (2004).

    CAS  PubMed  Google Scholar 

  23. Haller, H. et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N. Engl. J. Med. 364, 907–917 (2011).

    CAS  PubMed  Google Scholar 

  24. Parving, H. H. et al. The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N. Engl. J. Med. 345, 870–878 (2001).

    CAS  PubMed  Google Scholar 

  25. Makino, H. et al. Prevention of transition from incipient to overt nephropathy with telmisartan in patients with type 2 diabetes. Diabetes Care 30, 1577–1578 (2007).

    CAS  PubMed  Google Scholar 

  26. Patel, A. et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 370, 829–840 (2007).

    CAS  PubMed  Google Scholar 

  27. Lewis, E. J., Hunsicker, L. G., Bain, R. P. & Rohde, R. D. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N. Engl. J. Med. 329, 1456–1462 (1993).

    CAS  PubMed  Google Scholar 

  28. Lewis, E. J. et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N. Engl. J. Med. 345, 851–860 (2001).

    CAS  PubMed  Google Scholar 

  29. Brenner, B. M. et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med. 345, 861–869 (2001).

    CAS  PubMed  Google Scholar 

  30. de Zeeuw, D. et al. Renal risk and renoprotection among ethnic groups with type 2 diabetic nephropathy: a post hoc analysis of RENAAL. Kidney Int. 69, 1675–1682 (2006).

    CAS  PubMed  Google Scholar 

  31. Imai, E. et al. Effects of olmesartan on renal and cardiovascular outcomes in type 2 diabetes with overt nephropathy: a multicentre, randomised, placebo-controlled study. Diabetologia 54, 2978–2986 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mauer, M. et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N. Engl. J. Med. 361, 40–51 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Barnett, A. H. et al. Angiotensin-receptor blockade versus converting-enzyme inhibition in type 2 diabetes and nephropathy. N. Engl. J. Med. 351, 1952–1961 (2004).

    CAS  PubMed  Google Scholar 

  34. Lacourciere, Y. et al. Long-term comparison of losartan and enalapril on kidney function in hypertensive type 2 diabetics with early nephropathy. Kidney Int. 58, 762–769 (2000).

    CAS  PubMed  Google Scholar 

  35. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 3, 1–150 (2013).

  36. Parving, H. H., Andersen, A. R., Smidt, U. M. & Svendsen, P. A. Early aggressive antihypertensive treatment reduces rate of decline in kidney function in diabetic nephropathy. Lancet 1, 1175–1179 (1983).

    CAS  PubMed  Google Scholar 

  37. Bakris, G. L. et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. Am. J. Kidney Dis. 36, 646–661 (2000).

    CAS  PubMed  Google Scholar 

  38. Bjorck, S., Mulec, H., Johnsen, S. A., Norden, G. & Aurell, M. Renal protective effect of enalapril in diabetic nephropathy. BMJ 304, 339–343 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. [No authors listed] Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. BMJ 317, 713–720 (1998).

    PubMed Central  Google Scholar 

  40. Nielsen, F. S. et al. Long-term effect of lisinopril and atenolol on kidney function in hypertensive NIDDM subjects with diabetic nephropathy. Diabetes 46, 1182–1188 (1997).

    CAS  PubMed  Google Scholar 

  41. Holmer, S. R. et al. Marked suppression of renin levels by β-receptor blocker in patients treated with standard heart failure therapy: a potential mechanism of benefit from β-blockade. J. Intern. Med. 249, 167–172 (2001).

    CAS  PubMed  Google Scholar 

  42. Atkins, R. C. et al. Proteinuria reduction and progression to renal failure in patients with type 2 diabetes mellitus and overt nephropathy. Am. J. Kidney Dis. 45, 281–287 (2005).

    PubMed  Google Scholar 

  43. de Zeeuw, D. et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 65, 2309–2320 (2004).

    CAS  PubMed  Google Scholar 

  44. Hellemons, M. E. et al. Initial angiotensin receptor blockade-induced decrease in albuminuria is associated with long-term renal outcome in type 2 diabetic patients with microalbuminuria: a post hoc analysis of the IRMA-2 trial. Diabetes Care 34, 2078–2083 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Perkins, B. A., Ficociello, L. H., Roshan, B., Warram, J. H. & Krolewski, A. S. In patients with type 1 diabetes and new-onset microalbuminuria the development of advanced chronic kidney disease may not require progression to proteinuria. Kidney Int. 77, 57–64 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Apperloo, A. J., de Zeeuw, D. & de Jong, P. E. A short-term antihypertensive treatment-induced fall in glomerular filtration rate predicts long-term stability of renal function. Kidney Int. 51, 793–797 (1997).

    CAS  PubMed  Google Scholar 

  47. Holtkamp, F. A. et al. An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney Int. 80, 282–287 (2011).

    CAS  PubMed  Google Scholar 

  48. Hansen, H. P. et al. Increased glomerular filtration rate after withdrawal of long-term antihypertensive treatment in diabetic nephropathy. Kidney Int. 47, 1726–1731 (1995).

    CAS  PubMed  Google Scholar 

  49. Eijkelkamp, W. B. et al. Albuminuria is a target for renoprotective therapy independent from blood pressure in patients with type 2 diabetic nephropathy: post hoc analysis from the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. J. Am. Soc. Nephrol. 18, 1540–1546 (2007).

    CAS  PubMed  Google Scholar 

  50. Rossing, K., Schjoedt, K. J., Jensen, B. R., Boomsma, F. & Parving, H. H. Enhanced renoprotective effects of ultrahigh doses of irbesartan in patients with type 2 diabetes and microalbuminuria. Kidney Int. 68, 1190–1198 (2005).

    CAS  PubMed  Google Scholar 

  51. Hou, F. F. et al. Renoprotection of Optimal Antiproteinuric Doses (ROAD) Study: a randomized controlled study of benazepril and losartan in chronic renal insufficiency. J. Am. Soc. Nephrol. 18, 1889–1898 (2007).

    CAS  PubMed  Google Scholar 

  52. Forclaz, A., Maillard, M., Nussberger, J., Brunner, H. R. & Burnier, M. Angiotensin II receptor blockade: is there truly a benefit of adding an ACE inhibitor? Hypertension 41, 31–36 (2003).

    CAS  PubMed  Google Scholar 

  53. Kunz, R., Friedrich, C., Wolbers, M. & Mann, J. F. Meta-analysis: effect of monotherapy and combination therapy with inhibitors of the renin angiotensin system on proteinuria in renal disease. Ann. Intern. Med. 148, 30–48 (2008).

    PubMed  Google Scholar 

  54. Mann, J. F. et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372, 547–553 (2008).

    CAS  PubMed  Google Scholar 

  55. Bomback, A. S. & Klemmer, P. J. The incidence and implications of aldosterone breakthrough. Nat. Clin. Pract. Nephrol. 3, 486–492 (2007).

    CAS  PubMed  Google Scholar 

  56. Epstein, M. Aldosterone as a mediator of progressive renal disease: pathogenetic and clinical implications. Am. J. Kidney Dis. 37, 677–688 (2001).

    CAS  PubMed  Google Scholar 

  57. Gilbert, K. C. & Brown, N. J. Aldosterone and inflammation. Curr. Opin. Endocrinol. Diabetes Obes. 17, 199–204 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Waanders, F. et al. Aldosterone, from (patho)physiology to treatment in cardiovascular and renal damage. Curr. Vasc. Pharmacol. 9, 594–605 (2011).

    CAS  PubMed  Google Scholar 

  59. Schjoedt, K. J., Andersen, S., Rossing, P., Tarnow, L. & Parving, H. H. Aldosterone escape during blockade of the renin–angiotensin–aldosterone system in diabetic nephropathy is associated with enhanced decline in glomerular filtration rate. Diabetologia 47, 1936–1939 (2004).

    CAS  PubMed  Google Scholar 

  60. Bianchi, S., Bigazzi, R. & Campese, V. M. Antagonists of aldosterone and proteinuria in patients with CKD: an uncontrolled pilot study. Am. J. Kidney Dis. 46, 45–51 (2005).

    CAS  PubMed  Google Scholar 

  61. Epstein, M. et al. Selective aldosterone blockade with eplerenone reduces albuminuria in patients with type 2 diabetes. Clin. J. Am. Soc. Nephrol. 1, 940–951 (2006).

    CAS  PubMed  Google Scholar 

  62. Roscioni, S. S., de Zeeuw, D., Bakker, S. J. & Lambers Heerspink, H. J. Management of hyperkalaemia consequent to mineralocorticoid-receptor antagonist therapy. Nat. Rev. Nephrol. 8, 691–699 (2012).

    CAS  PubMed  Google Scholar 

  63. van den Meiracker, A. H. et al. Spironolactone in type 2 diabetic nephropathy: effects on proteinuria, blood pressure and renal function. J. Hypertens. 24, 2285–2292 (2006).

    CAS  PubMed  Google Scholar 

  64. Morales, E. et al. Renoprotective effects of mineralocorticoid receptor blockers in patients with proteinuric kidney diseases. Nephrol. Dial. Transplant. 28, 405–412 (2013).

    CAS  PubMed  Google Scholar 

  65. Mehdi, U. F., Adams-Huet, B., Raskin, P., Vega, G. L. & Toto, R. D. Addition of angiotensin receptor blockade or mineralocorticoid antagonism to maximal angiotensin-converting enzyme inhibition in diabetic nephropathy. J. Am. Soc. Nephrol. 20, 2641–2650 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Pitt, B. et al. Evaluation of the efficacy and safety of RLY5016, a polymeric potassium binder, in a double-blind, placebo-controlled study in patients with chronic heart failure (the PEARL-HF) trial. Eur. Heart J. 32, 820–828 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pitt, B. et al. Safety and tolerability of the novel non-steroidal mineralocorticoid receptor antagonist BAY 94–8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: a randomized, double-blind trial. Eur. Heart J. 34, 2453–2463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nariai, T. et al. SM-368229, a novel selective and potent non-steroidal mineralocorticoid receptor antagonist with strong urinary Na+ excretion activity. J. Pharmacol. Sci. 115, 346–353 (2011).

    CAS  PubMed  Google Scholar 

  69. Nariai, T. et al. SM-368229, a novel promising mineralocorticoid receptor antagonist, shows antihypertensive efficacy with minimal effect on serum potassium level in rats. J. Cardiovasc. Pharmacol. 59, 458–464 (2012).

    CAS  PubMed  Google Scholar 

  70. Bassett, M. H., White, P. C. & Rainey, W. E. The regulation of aldosterone synthase expression. Mol. Cell Endocrinol. 217, 67–74 (2004).

    CAS  PubMed  Google Scholar 

  71. Amar, L. et al. Aldosterone synthase inhibition with LCI699: a proof-of-concept study in patients with primary aldosteronism. Hypertension 56, 831–838 (2010).

    CAS  PubMed  Google Scholar 

  72. Lea, W. B. et al. Aldosterone antagonism or synthase inhibition reduces end-organ damage induced by treatment with angiotensin and high salt. Kidney Int. 75, 936–944 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Calhoun, D. A. et al. Effects of a novel aldosterone synthase inhibitor for treatment of primary hypertension: results of a randomized, double-blind, placebo- and active-controlled phase 2 trial. Circulation 124, 1945–1955 (2011).

    CAS  PubMed  Google Scholar 

  74. Nguyen, G. & Muller, D. N. The biology of the (pro)renin receptor. J. Am. Soc. Nephrol. 21, 18–23 (2010).

    CAS  PubMed  Google Scholar 

  75. van Paassen, P., de Zeeuw, D., Navis, G. & de Jong, P. E. Renal and systemic effects of continued treatment with renin inhibitor remikiren in hypertensive patients with normal and impaired renal function. Nephrol. Dial. Transplant. 15, 637–643 (2000).

    CAS  PubMed  Google Scholar 

  76. Kelly, D. J., Zhang, Y., Moe, G., Naik, G. & Gilbert, R. E. Aliskiren, a novel renin inhibitor, is renoprotective in a model of advanced diabetic nephropathy in rats. Diabetologia 50, 2398–2404 (2007).

    CAS  PubMed  Google Scholar 

  77. Persson, F. et al. Time course of the antiproteinuric and antihypertensive effects of direct renin inhibition in type 2 diabetes. Kidney Int. 73, 1419–1425 (2008).

    CAS  PubMed  Google Scholar 

  78. Persson, F. et al. Aliskiren in combination with losartan reduces albuminuria independent of baseline blood pressure in patients with type 2 diabetes and nephropathy. Clin. J. Am. Soc. Nephrol. 6, 1025–1031 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Persson, F. et al. Renal effects of aliskiren compared with and in combination with irbesartan in patients with type 2 diabetes, hypertension, and albuminuria. Diabetes Care 32, 1873–1879 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Parving, H. H. et al. Aliskiren combined with losartan in type 2 diabetes and nephropathy. N. Engl. J. Med. 358, 2433–2446 (2008).

    CAS  PubMed  Google Scholar 

  81. Parving, H. H. et al. Dual renin-angiotensin system blockade and kidney disease. J. Am. Coll. Cardiol. 54, 278–279 (2009).

    PubMed  Google Scholar 

  82. Ruggenenti, P. & Remuzzi, G. Proteinuria: is the ONTARGET renal substudy actually off target? Nat. Rev. Nephrol. 5, 436–437 (2009).

    PubMed  Google Scholar 

  83. Parving, H. H. et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N. Engl. J. Med. 367, 2204–2213 (2012).

    CAS  PubMed  Google Scholar 

  84. Fried, L. F. et al. Design of combination angiotensin receptor blocker and angiotensin-converting enzyme inhibitor for treatment of diabetic nephropathy (VA NEPHRON-D). Clin. J. Am. Soc. Nephrol. 4, 361–368 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Imai, E. et al. Effects of dual blockade of the renin-angiotensin system on renal and cardiovascular outcomes in type 2 diabetes with overt nephropathy and hypertension in the ORIENT: a post-hoc analysis (ORIENT-Hypertension). Hypertens. Res. http://dx.doi.org/10.1038/hr.2013.86.

  86. Ruggenenti, P. & Remuzzi, G. Dual RAS blockade—controversy resolved. Nat. Rev. Nephrol. 9, 640 (2013).

    PubMed  Google Scholar 

  87. Miao, Y. et al. Increased serum potassium affects renal outcomes: a post hoc analysis of the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) trial. Diabetologia 54, 44–50 (2011).

    CAS  PubMed  Google Scholar 

  88. Mohanram, A., Zhang, Z., Shahinfar, S., Lyle, P. A. & Toto, R. D. The effect of losartan on hemoglobin concentration and renal outcome in diabetic nephropathy of type 2 diabetes. Kidney Int. 73, 630–636 (2008).

    CAS  PubMed  Google Scholar 

  89. Slagman, M. C. et al. Erythropoietin is reduced by combination of diuretic therapy and RAAS blockade in proteinuric renal patients with preserved renal function. Nephrol. Dial. Transplant. 25, 3256–3260 (2010).

    CAS  PubMed  Google Scholar 

  90. Miao, Y. et al. Effect of a reduction in uric acid on renal outcomes during losartan treatment: a post hoc analysis of the reduction of endpoints in non-insulin-dependent diabetes mellitus with the Angiotensin II Antagonist Losartan Trial. Hypertension 58, 2–7 (2011).

    CAS  PubMed  Google Scholar 

  91. Di Raimondo, D. et al. Effects of ACE-inhibitors and angiotensin receptor blockers on inflammation. Curr. Pharm. Des. 18, 4385–4413 (2012).

    CAS  PubMed  Google Scholar 

  92. Onuigbo, M. A. & Onuigbo, N. T. Worsening renal failure in older chronic kidney disease patients with renal artery stenosis concurrently on renin angiotensin aldosterone system blockade: a prospective 50-month Mayo-Health-System clinic analysis. QJM 101, 519–527 (2008).

    CAS  PubMed  Google Scholar 

  93. Onuigbo, M. A. Radiographic contrast-induced nephropathy and patient mortality. Mayo Clin. Proc. 83, 1412–1413 (2008).

    PubMed  Google Scholar 

  94. Onuigbo, M. A. Syndrome of rapid-onset end-stage renal disease: a new unrecognized pattern of CKD progression to ESRD. Ren. Fail. 32, 954–958 (2010).

    PubMed  Google Scholar 

  95. Onuigbo, M. A. Evidence of the syndrome of rapid onset end-stage renal disease (SORO-ESRD) in the acute kidney injury (AKI) literature—preventable causes of AKI and SORO-ESRD—a call for re-engineering of nephrology practice paradigms. Ren. Fail. 35, 796–800 (2013).

    CAS  PubMed  Google Scholar 

  96. Richer-Giudicelli, C. et al. Haemodynamic effects of dual blockade of the renin-angiotensin system in spontaneously hypertensive rats: influence of salt. J. Hypertens. 22, 619–627 (2004).

    CAS  PubMed  Google Scholar 

  97. Lambers Heerspink, H. J. et al. Moderation of dietary sodium potentiates the renal and cardiovascular protective effects of angiotensin receptor blockers. Kidney Int. 82, 330–337 (2012).

    PubMed  Google Scholar 

  98. Mark, A. L. The Bezold-Jarisch reflex revisited: clinical implications of inhibitory reflexes originating in the heart. J. Am. Coll. Cardiol. 1, 90–102 (1983).

    CAS  PubMed  Google Scholar 

  99. Sever, P. Hypotension and ischaemic stroke associated with aliskiren in the ALTITUDE trial: sensitisation of the Bezold-Jarisch reflex? J. Renin Angiotensin Aldosterone Syst. 14, 1–2 (2013).

    PubMed  Google Scholar 

  100. Lambers Heerspink, H. J., de Borst, M. H., Bakker, S. J. & Navis, G. J. Improving the efficacy of RAAS blockade in patients with chronic kidney disease. Nat. Rev. Nephrol. 9, 112–121 (2013).

    PubMed  Google Scholar 

  101. Slagman, M. C. et al. Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial. BMJ 343, d4366 (2011).

    PubMed  PubMed Central  Google Scholar 

  102. Vogt, L., Waanders, F., Boomsma, F., de Zeeuw, D. & Navis, G. Effects of dietary sodium and hydrochlorothiazide on the antiproteinuric efficacy of losartan. J. Am. Soc. Nephrol. 19, 999–1007 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Bader, M. ACE2, angiotensin-(1–7), and Mas: the other side of the coin. Pflugers Arch. 465, 79–85 (2013).

    CAS  PubMed  Google Scholar 

  104. Ye, M. et al. Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. J. Am. Soc. Nephrol. 17, 3067–3075 (2006).

    CAS  PubMed  Google Scholar 

  105. Su, Z., Zimpelmann, J. & Burns, K. D. Angiotensin-(1–7) inhibits angiotensin II-stimulated phosphorylation of MAP kinases in proximal tubular cells. Kidney Int. 69, 2212–2218 (2006).

    CAS  PubMed  Google Scholar 

  106. de Gasparo, M., Catt, K. J., Inagami, T., Wright, J. W. & Unger, T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev. 52, 415–472 (2000).

    CAS  PubMed  Google Scholar 

  107. PRIORITY Consortium. EU Priority [online] (2013).

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. S. Roscioni and H. J. Lambers Heerspink contributed equally to researching the data for the article and writing the manuscript. D. de Zeeuw reviewed and/or edited the manuscript before submission. All authors made a substantial contribution to discussions of the content.

Corresponding author

Correspondence to Dick de Zeeuw.

Ethics declarations

Competing interests

S. S. Roscioni declares no competing interests. H. J. Lambers Heerspink has consulted for AbbVie, Astellas, Johnson & Johnson, Reata Pharmaceuticals, and Vitae. D. de Zeeuw has consulted for AbbVie, Astellas, Chemocentryx, Johnson & Johnson, Novartis, Reata Pharmaceutical, Takeda, and VITAE.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roscioni, S., Heerspink, H. & de Zeeuw, D. The effect of RAAS blockade on the progression of diabetic nephropathy. Nat Rev Nephrol 10, 77–87 (2014). https://doi.org/10.1038/nrneph.2013.251

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing