Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fluid management for the prevention and attenuation of acute kidney injury

Key Points

  • In patients who are critically ill, adequate resuscitation of shock and the need to mitigate the harmful effects of fluid overload must both be considered

  • Patients developing acute kidney injury (AKI) are at particular risk of fluid overload

  • Fluid overload is associated with adverse clinical outcomes and might also directly contribute to the persistence of AKI

  • Optimal fluid management in critical illness and AKI might involve early, targeted resuscitation, followed by active management of an even fluid balance and, finally, an appropriate rate of fluid removal

  • In AKI, renal replacement therapy might be indicated for fluid balance management before conventional indications

  • To obtain best clinical outcomes, serial fluid status assessment and careful definition of cardiovascular and renal targets will be required throughout critical illness

Abstract

In patients with acute kidney injury (AKI), optimization of systemic haemodynamics is central to the clinical management. However, considerable debate exists regarding the efficacy, nature, extent and duration of fluid resuscitation, particularly when the patient has undergone major surgery or is in septic shock. Crucially, volume resuscitation might be required to maintain or restore cardiac output. However, resultant fluid accumulation and tissue oedema can substantially contribute to ongoing organ dysfunction and, particularly in patients developing AKI, serious clinical consequences. In this Review, we discuss the conflict between the desire to achieve adequate resuscitation of shock and the need to mitigate the harmful effects of fluid overload. In patients with AKI, limiting and resolving fluid overload might prompt earlier use of renal replacement therapy. However, rapid or early excessive fluid removal with diuretics or extracorporeal therapy might lead to hypovolaemia and recurrent renal injury. Optimal management might involve a period of guided fluid resuscitation, followed by management of an even fluid balance and, finally, an appropriate rate of fluid removal. To obtain best clinical outcomes, serial fluid status assessment and careful definition of cardiovascular and renal targets will be required during fluid resuscitation and removal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fluid overload and interstitial oedema can contribute to the maintenance of AKI.
Figure 2: Systemic inflammation leads to increased capillary permeability and loss of colloid osmotic gradient, exacerbated by hypoalbuminaemia of acute illness.
Figure 3: Fluid and haemodynamic management after the initial phase of critical illness.

Similar content being viewed by others

References

  1. Venkatachalam, M. A. & Weinberg, J. M. The tubule pathology of septic acute kidney injury: a neglected area of research comes of age. Kidney Int. 81, 338–340 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lipcsey, M. & Bellomo, R. Septic acute kidney injury: hemodynamic syndrome, inflammatory disorder, or both? Crit. Care 15, 1008 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. Wang, Z. et al. Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am. J. Pathol. 180, 505–516 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Jacobs, R. et al. Septic acute kidney injury: the culprit is inflammatory apoptosis rather than ischemic necrosis. Blood Purif. 32, 262–265 (2011).

    CAS  PubMed  Google Scholar 

  5. Saotome, T., Ishikawa, K., May, C. N., Birchall, I. E. & Bellomo, R. The impact of experimental hypoperfusion on subsequent kidney function. Intensive Care Med. 36, 533–540 (2010).

    PubMed  Google Scholar 

  6. Langenberg, C., Wan, L., Egi, M., May, C. N. & Bellomo, R. Renal blood flow in experimental septic acute renal failure. Kidney Int. 69, 1996–2002 (2006).

    CAS  PubMed  Google Scholar 

  7. Prowle, J. R., Molan, M. P., Hornsey, E. & Bellomo, R. Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation. Crit. Care Med. 40, 1768–1776 (2012).

    PubMed  Google Scholar 

  8. Alejandro, V. et al. Mechanisms of filtration failure during postischemic injury of the human kidney. A study of the reperfused renal allograft. J. Clin. Invest. 95, 820–831 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. LeDoux, D., Astiz, M. E., Carpati, C. M. & Rackow, E. C. Effects of perfusion pressure on tissue perfusion in septic shock. Crit. Care Med. 28, 2729–2732 (2000).

    CAS  PubMed  Google Scholar 

  10. Marik, P. E., Baram, M. & Vahid, B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134, 172–178 (2008).

    PubMed  Google Scholar 

  11. Michard, F. & Teboul, J. L. Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121, 2000–2008 (2002).

    PubMed  Google Scholar 

  12. Bouhemad, B. Isolated and reversible impairment of ventricular relaxation in patients with septic shock. Crit. Care Med. 36, 766–774 (2008).

    PubMed  Google Scholar 

  13. Bouhemad, B. Acute left ventricular dilatation and shock-induced myocardial dysfunction. Crit. Care Med. 37, 441–447 (2009).

    PubMed  Google Scholar 

  14. Rudiger, A. & Singer, M. Mechanisms of sepsis-induced cardiac dysfunction. Crit. Care Med. 35, 1599–1608 (2007).

    PubMed  Google Scholar 

  15. Di Giantomasso, D., May, C. N. & Bellomo, R. Vital organ blood flow during hyperdynamic sepsis. Chest 124, 1053–1059 (2003).

    PubMed  Google Scholar 

  16. Ruokonen, E. Regional blood flow and oxygen transport in septic shock. Crit. Care Med. 21, 1296–1303 (1993).

    CAS  PubMed  Google Scholar 

  17. Fleck, A. Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet 325, 781–784 (1985).

    Google Scholar 

  18. Marik, P. E. & Cavallazzi, R. Does the central venous pressure predict fluid responsiveness? An updated meta-analysis and a plea for some common sense. Crit. Care Med. 41, 1774–1781 (2013).

    PubMed  Google Scholar 

  19. Jones, A. E. Point: should lactate clearance be substituted for central venous oxygen saturation as goals of early severe sepsis and septic shock therapy? Yes. Chest 140, 1406–1408 (2011).

    PubMed  PubMed Central  Google Scholar 

  20. Nguyen, H. B. et al. Outcome effectiveness of the severe sepsis resuscitation bundle with addition of lactate clearance as a bundle item: a multi-national evaluation. Crit. Care 15, R229 (2011).

    PubMed  PubMed Central  Google Scholar 

  21. Marik, P. E., Bellomo, R. & Demla, V. Lactate clearance as a target of therapy in sepsis: a flawed paradigm. OA Critical Care 1, 3 (2013).

    Google Scholar 

  22. Wan, L., Bellomo, R. & May, C. N. A comparison of 4% succinylated gelatin solution versus normal saline in stable normovolaemic sheep: global haemodynamic, regional blood flow and oxygen delivery effects. Anaesth. Intensive Care 35, 924–931 (2007).

    CAS  PubMed  Google Scholar 

  23. Legrand, M. et al. Fluid resuscitation does not improve renal oxygenation during hemorrhagic shock in rats. Anesthesiology 112, 119–127 (2010).

    PubMed  Google Scholar 

  24. Wan, L., Bellomo, R. & May, C. N. The effect of normal saline resuscitation on vital organ blood flow in septic sheep. Intensive Care Med. 32, 1238–1242 (2006).

    CAS  PubMed  Google Scholar 

  25. Cecconi, M. et al. Clinical review: goal-directed therapy—what is the evidence in surgical patients? The effect on different risk groups. Crit. Care 17, 209 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Dalfino, L., Giglio, M. T., Puntillo, F., Marucci, M. & Brienza, N. Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Crit. Care 15, R154 (2011).

    PubMed  PubMed Central  Google Scholar 

  27. Giglio, M. T., Marucci, M., Testini, M. & Brienza, N. Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br. J. Anaesth. 103, 637–646 (2009).

    CAS  PubMed  Google Scholar 

  28. Rahbari, N. N. et al. Meta-analysis of standard, restrictive and supplemental fluid administration in colorectal surgery. Br. J. Surg. 96, 331–341 (2009).

    CAS  PubMed  Google Scholar 

  29. Brienza, N., Giglio, M. T., Marucci, M. & Fiore, T. Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit. Care Med. 37, 2079–2090 (2009).

    PubMed  Google Scholar 

  30. Rivers, E. et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N. Engl. J. Med. 345, 1368–1377 (2001).

    CAS  PubMed  Google Scholar 

  31. de Oliveira, C. F. et al. ACCM/PALS haemodynamic support guidelines for paediatric septic shock: an outcomes comparison with and without monitoring central venous oxygen saturation. Intensive Care Med. 34, 1065–1075 (2008).

    PubMed  Google Scholar 

  32. Lin, S. M. et al. A modified goal-directed protocol improves clinical outcomes in intensive care unit patients with septic shock: a randomized controlled trial. Shock 26, 551–557 (2006).

    PubMed  Google Scholar 

  33. Pearse, R. M., Belsey, J. D., Cole, J. N. & Bennett, E. D. Effect of dopexamine infusion on mortality following major surgery: individual patient data meta-regression analysis of published clinical trials. Crit. Care Med. 36, 1323–1329 (2008).

    CAS  PubMed  Google Scholar 

  34. Hamilton, M. A., Cecconi, M. & Rhodes, A. A systematic review and meta-analysis on the use of preemptive hemodynamic intervention to improve postoperative outcomes in moderate and high-risk surgical patients. Anesth. Analg. 112, 1392–1402 (2011).

    PubMed  Google Scholar 

  35. Gattinoni, L. et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N. Engl. J. Med. 333, 1025–1032 (1995).

    CAS  PubMed  Google Scholar 

  36. Hayes, M. A. et al. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N. Engl. J. Med. 330, 1717–1722 (1994).

    CAS  PubMed  Google Scholar 

  37. Prowle, J. R., Chua, H. R., Bagshaw, S. M. & Bellomo, R. Clinical review: volume of fluid resuscitation and the incidence of acute kidney injury - a systematic review. Crit. Care 16, 230 (2012).

    PubMed  PubMed Central  Google Scholar 

  38. Firth, J. D., Raine, A. E. & Ledingham, J. G. Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet 331, 1033–1035 (1988).

    Google Scholar 

  39. Mohmand, H. & Goldfarb, S. Renal dysfunction associated with intra-abdominal hypertension and the abdominal compartment syndrome. J. Am. Soc. Nephrol. 22, 615–621 (2011).

    PubMed  Google Scholar 

  40. Wauters, J. et al. Pathophysiology of renal hemodynamics and renal cortical microcirculation in a porcine model of elevated intra-abdominal pressure. J. Trauma 66, 713–719 (2009).

    CAS  PubMed  Google Scholar 

  41. Dalfino, L., Tullo, L., Donadio, I., Malcangi, V. & Brienza, N. Intra-abdominal hypertension and acute renal failure in critically ill patients. Intensive Care Med. 34, 707–713 (2008).

    PubMed  Google Scholar 

  42. Vidal, M. G. et al. Incidence and clinical effects of intra-abdominal hypertension in critically ill patients. Crit. Care Med. 36, 1823–1831 (2008).

    PubMed  Google Scholar 

  43. Malbrain, M. L. Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit. Care Med. 33, 315–322 (2005).

    PubMed  Google Scholar 

  44. Damman, K. et al. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J. Am. Coll. Cardiol. 53, 582–588 (2009).

    PubMed  Google Scholar 

  45. Mullens, W. et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J. Am. Coll. Cardiol. 53, 589–596 (2009).

    PubMed  PubMed Central  Google Scholar 

  46. Doty, J. M. et al. Effect of increased renal venous pressure on renal function. J. Trauma 47, 1000–1003 (1999).

    CAS  PubMed  Google Scholar 

  47. Li, X. et al. Acute renal venous obstruction is more detrimental to the kidney than arterial occlusion: implication for murine models of acute kidney injury. Am. J. Physiol. Renal Physiol. 302, F519–F525 (2012).

    CAS  PubMed  Google Scholar 

  48. Herrler, T. et al. The intrinsic renal compartment syndrome: new perspectives in kidney transplantation. Transplantation 89, 40–46 (2010).

    PubMed  Google Scholar 

  49. Chowdhury, A. H., Cox, E. F., Francis, S. T. & Lobo, D. N. A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and Plasma-Lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann. Surg. 256, 18–24 (2012).

    PubMed  Google Scholar 

  50. Payen, D. et al. A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit. Care 12, R74 (2008).

    PubMed  PubMed Central  Google Scholar 

  51. Bouchard, J. et al. Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int. 76, 422–427 (2009).

    PubMed  Google Scholar 

  52. Teixeira, C. et al. Fluid balance and urine volume are independent predictors of mortality in acute kidney injury. Crit. Care 17, R14 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Basu, R. K. et al. Acute kidney injury based on corrected serum creatinine is associated with increased morbidity in children following the arterial switch operation. Pediatr. Crit. Care Med. 14, e218–e224 (2013).

    PubMed  Google Scholar 

  54. Fülöp, T. et al. Volume-related weight gain and subsequent mortality in acute renal failure patients treated with continuous renal replacement therapy. ASAIO J. 56, 333–337 (2010).

    PubMed  PubMed Central  Google Scholar 

  55. Grams, M. E. et al. Fluid balance, diuretic use, and mortality in acute kidney injury. Clin. J. Am. Soc. Nephrol. 6, 966–973 (2011).

    PubMed  PubMed Central  Google Scholar 

  56. Sutherland, S. M. et al. Fluid overload and mortality in children receiving continuous renal replacement therapy: the prospective pediatric continuous renal replacement therapy registry. Am. J. Kidney Dis. 55, 316–325 (2010).

    PubMed  Google Scholar 

  57. Vaara, S. T. et al. Fluid overload is associated with an increased risk for 90-day mortality in critically ill patients with renal replacement therapy: data from the prospective FINNAKI study. Crit. Care 16, R197 (2012).

    PubMed  PubMed Central  Google Scholar 

  58. Dass, B. et al. Fluid balance as an early indicator of acute kidney injury in CV surgery. Clin. Nephrol. 77, 438–444 (2012).

    PubMed  Google Scholar 

  59. Kambhampati, G. et al. Perioperative fluid balance and acute kidney injury. Clin. Exp. Nephrol. 16, 730–738 (2012).

    PubMed  Google Scholar 

  60. Goldstein, S. L. et al. Pediatric patients with multi-organ dysfunction syndrome receiving continuous renal replacement therapy. Kidney Int. 67, 653–658 (2005).

    PubMed  Google Scholar 

  61. Heung, M. et al. Fluid overload at initiation of renal replacement therapy is associated with lack of renal recovery in patients with acute kidney injury. Nephrol. Dial. Transplant. 27, 956–961 (2012).

    CAS  PubMed  Google Scholar 

  62. Bellomo, R. et al. An observational study fluid balance and patient outcomes in the Randomized Evaluation of Normal vs. Augmented Level of Replacement Therapy trial. Crit. Care Med. 40, 1753–1760 (2012).

    PubMed  Google Scholar 

  63. Prowle, J. R., Echeverri, J. E., Ligabo, E. V., Ronco, C. & Bellomo, R. Fluid balance and acute kidney injury. Nat. Rev. Nephrol. 6, 107–115 (2010).

    PubMed  Google Scholar 

  64. Wiedemann, H. P. et al. Comparison of two fluid-management strategies in acute lung injury. N. Engl. J. Med. 354, 2564–2575 (2006).

    CAS  PubMed  Google Scholar 

  65. Liu, K. D. et al. Acute kidney injury in patients with acute lung injury: impact of fluid accumulation on classification of acute kidney injury and associated outcomes. Crit. Care Med. 39, 2665–2671 (2011).

    PubMed  PubMed Central  Google Scholar 

  66. Myburgh, J. A. & Mythen, M. G. Resuscitation fluids. N. Engl. J. Med. 369, 1243–1251 (2013).

    CAS  PubMed  Google Scholar 

  67. Jungheinrich, C. & Neff, T. A. Pharmacokinetics of hydroxyethyl starch. Clin. Pharmacokinet. 44, 681–699 (2005).

    CAS  PubMed  Google Scholar 

  68. Berson, S. A., Yalow, R. S., Schrieber, S. S. & Post, J. Tracer experiments with I131 labelled human serum albumin: distribution and degradation studies. J. Clin. Invest. 32, 746–768 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Finfer, S. et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N. Engl. J. Med. 350, 2247–2256 (2004).

    CAS  PubMed  Google Scholar 

  70. Myburgh, J. A. et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N. Engl. J. Med. 367, 1901–1911 (2012).

    CAS  PubMed  Google Scholar 

  71. Perner, A. et al. Hydroxyethyl starch 130/0.42 versus Ringer's acetate in severe sepsis. N. Engl. J. Med. 367, 124–134 (2012).

    CAS  PubMed  Google Scholar 

  72. Guidet, B. et al. Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 vs. 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit. Care 16, R94 (2012).

    PubMed  PubMed Central  Google Scholar 

  73. Bayer, O. et al. Effects of fluid resuscitation with synthetic colloids or crystalloids alone on shock reversal, fluid balance, and patient outcomes in patients with severe sepsis: a prospective sequential analysis. Crit. Care Med. 40, 2543–2551 (2012).

    CAS  PubMed  Google Scholar 

  74. Haase, N. et al. Hydroxyethyl starch 130/0.38–045 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. BMJ 346, f839 (2013).

    PubMed  PubMed Central  Google Scholar 

  75. Zarychanski, R. et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA 309, 678–688 (2013).

    CAS  PubMed  Google Scholar 

  76. Perel, P., Roberts, I. & Ker, K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database of Systematic Reviews, Issue 2, Art. No.: CD000567. http://dx.doi.org/10.1002/14651858.CD000567.pub6.

  77. Saw, M. M., Chandler, B. & Ho, K. M. Benefits and risks of using gelatin solution as a plasma expander for perioperative and critically ill patients: a meta-analysis. Anaesth. Intensive Care 40, 17–32 (2012).

    PubMed  Google Scholar 

  78. Thomas-Rueddel, D. O. et al. Safety of gelatin for volume resuscitation—a systematic review and meta-analysis. Intensive Care Med. 38, 1134–1142 (2012).

    CAS  PubMed  Google Scholar 

  79. Yunos, N. M., Bellomo, R., Story, D. & Kellum, J. Bench-to-bedside review: chloride in critical illness. Crit. Care 14, 226 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. Reid, F., Lobo, D. N., Williams, R. N., Rowlands, B. J. & Allison, S. P. (Ab)normal saline and physiological Hartmann's solution: a randomized double-blind crossover study. Clin. Sci. (Lond.) 104, 17–24 (2003).

    CAS  Google Scholar 

  81. Shaw, A. D. et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann. Surg. 255, 821–829 (2012).

    PubMed  Google Scholar 

  82. Bullivant, E. M., Wilcox, C. S. & Welch, W. J. Intrarenal vasoconstriction during hyperchloremia: role of thromboxane. Am. J. Physiol. 256, F152–F157 (1989).

    CAS  PubMed  Google Scholar 

  83. Yunos, N. M. et al. The biochemical effects of restricting chloride-rich fluids in intensive care. Crit. Care Med. 39, 2419–2424 (2011).

    CAS  PubMed  Google Scholar 

  84. Yunos, N. M. et al. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308, 1566–1572 (2012).

    CAS  PubMed  Google Scholar 

  85. Bellomo, R., Kellum, J. A., Wisniewski, S. R. & Pinsky, M. R. Effects of norepinephrine on the renal vasculature in normal and endotoxemic dogs. Am. J. Respir. Crit. Care Med. 159, 1186–1192 (1999).

    CAS  PubMed  Google Scholar 

  86. Anderson, W. P., Korner, P. I. & Selig, S. E. Mechanisms involved in the renal responses to intravenous and renal artery infusions of noradrenaline in conscious dogs. J. Physiol. 321, 21–30 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Martin, C., Papazian, L., Perrin, G., Saux, P. & Gouin, F. Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest 103, 1826–1831 (1993).

    CAS  PubMed  Google Scholar 

  88. Redfors, B., Bragadottir, G., Sellgren, J., Sward, K. & Ricksten, S. E. Effects of norepinephrine on renal perfusion, filtration and oxygenation in vasodilatory shock and acute kidney injury. Intensive Care Med. 37, 60–67 (2011).

    CAS  PubMed  Google Scholar 

  89. Badin, J. et al. Relation between mean arterial pressure and renal function in the early phase of shock: a prospective, explorative cohort study. Crit. Care 15, R135 (2011).

    PubMed  PubMed Central  Google Scholar 

  90. Liu, Y. L., Prowle, J., Licari, E., Uchino, S. & Bellomo, R. Changes in blood pressure before the development of nosocomial acute kidney injury. Nephrol. Dial. Transplant. 24, 504–511 (2009).

    PubMed  Google Scholar 

  91. Schmid, S. & Jungwirth, B. Anaesthesia for renal transplant surgery: an update. Eur. J. Anaesthesiol. 29, 552–558 (2012).

    PubMed  Google Scholar 

  92. Siedlecki, A., Irish, W. & Brennan, D. C. Delayed graft function in the kidney transplant. Am. J. Transplant. 11, 2279–2296 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Othman, M. M., Ismael, A. Z. & Hammouda, G. E. The impact of timing of maximal crystalloid hydration on early graft function during kidney transplantation. Anesth. Analg. 110, 1440–1446 (2010).

    PubMed  Google Scholar 

  94. Campos, L. et al. Do intraoperative hemodynamic factors of the recipient influence renal graft function? Transplant. Proc. 44, 1800–1803 (2012).

    CAS  PubMed  Google Scholar 

  95. De Gasperi, A. et al. Perioperative fluid management in kidney transplantation: is volume overload still mandatory for graft function? Transplant. Proc. 38, 807–809 (2006).

    CAS  PubMed  Google Scholar 

  96. Gingell-Littlejohn, M. et al. Below-target postoperative arterial blood pressure but not central venous pressure is associated with delayed graft function. Transplant. Proc. 45, 46–50 (2013).

    CAS  PubMed  Google Scholar 

  97. Shannon, J. L. et al. Studies on the innervation of human renal allografts. J. Pathol. 186, 109–115 (1998).

    CAS  PubMed  Google Scholar 

  98. Morita, K. et al. Changes in renal blood flow in response to sympathomimetics in the rat transplanted and denervated kidney. Int. J. Urol. 6, 24–32 (1999).

    CAS  PubMed  Google Scholar 

  99. Hansen, J. M. et al. The transplanted human kidney does not achieve functional reinnervation. Clin. Sci. (Lond.) 87, 13–20 (1994).

    CAS  Google Scholar 

  100. Dal Canton, A. et al. Mechanism of increased plasma urea after diuretic therapy in uraemic patients. Clin. Sci. (Lond.) 68, 255–261 (1985).

    CAS  Google Scholar 

  101. Karajala, V., Mansour, W. & Kellum, J. A. Diuretics in acute kidney injury. Minerva Anestesiol. 75, 251–257 (2009).

    CAS  PubMed  Google Scholar 

  102. van der Voort, P. H. Furosemide does not improve renal recovery after hemofiltration for acute renal failure in critically ill patients: a double blind randomized controlled trial. Crit. Care Med. 37, 533–538 (2009).

    CAS  PubMed  Google Scholar 

  103. Bouchard, J. & Mehta, R. L. Volume management in continuous renal replacement therapy. Semin. Dial. 22, 146–150 (2009).

    PubMed  Google Scholar 

  104. Conger, J. D. Does hemodialysis delay recovery from acute renal failure? Semin. Dial. 3, 146–148 (1990).

    Google Scholar 

  105. Manns, M., Sigler, M. H. & Teehan, B. P. Intradialytic renal haemodynamics—potential consequences for the management of the patient with acute renal failure. Nephrol. Dial. Transplant. 12, 870–872 (1997).

    CAS  PubMed  Google Scholar 

  106. Schneider, A. G. et al. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 39, 987–997 (2013).

    CAS  Google Scholar 

  107. Prowle, J. R. & Bellomo, R. Continuous renal replacement therapy: recent advances and future research. Nat. Rev. Nephrol. 6, 521–529 (2010).

    PubMed  Google Scholar 

  108. Schwenger, V. et al. Sustained low efficiency dialysis using a single-pass batch system in acute kidney injury—a randomized interventional trial: the REnal Replacement Therapy Study in Intensive Care Unit PatiEnts. Crit. Care 16, R140 (2012).

    PubMed  PubMed Central  Google Scholar 

  109. Marshall, M. R. et al. Mortality rate comparison after switching from continuous to prolonged intermittent renal replacement for acute kidney injury in three intensive care units from different countries. Nephrol. Dial. Transplant. 26, 2169–2175 (2011).

    PubMed  Google Scholar 

  110. VA/NIH Acute Renal Failure Trail Network. Intensity of renal support in critically ill patients with acute kidney injury. N. Engl. J. Med. 359, 7–20 (2008).

  111. RENAL Replacement Therapy Study Investigators. Intensity of continuous renal-replacement therapy in critically ill patients. N. Engl. J. Med. 361, 1627–1638 (2009).

  112. Chawla, L. S. & Kimmel, P. L. Acute kidney injury and chronic kidney disease: an integrated clinical syndrome. Kidney Int. 82, 516–524 (2012).

    PubMed  Google Scholar 

  113. Clark, W. R., Mueller, B. A., Kraus, M. A. & Macias, W. L. Quantification of creatinine kinetic parameters in patients with acute renal failure. Kidney Int. 54, 554–560 (1998).

    CAS  PubMed  Google Scholar 

  114. Doi, K., Suzuki, Y., Nakao, A., Fujita, T. & Noiri, E. Radical scavenger edaravone developed for clinical use ameliorates ischemia/reperfusion injury in rat kidney. Kidney Int. 65, 1714–1723 (2004).

    CAS  PubMed  Google Scholar 

  115. Wilson, F. P., Sheehan, J. M., Mariani, L. H. & Berns, J. S. Creatinine generation is reduced in patients requiring continuous venovenous hemodialysis and independently predicts mortality. Nephrol. Dial. Transplant. 27, 4088–4094 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Chawla, L. S. & Kellum, J. A. Acute kidney injury in 2011: biomarkers are transforming our understanding of AKI. Nat. Rev. Nephrol. 8, 68–70 (2012).

    CAS  PubMed  Google Scholar 

  117. Srisawat, N. et al. Plasma neutrophil gelatinase-associated lipocalin predicts recovery from acute kidney injury following community-acquired pneumonia. Kidney Int. 80, 545–552 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Srisawat, N. et al. Urinary biomarkers and renal recovery in critically ill patients with renal support. Clin. J. Am. Soc. Nephrol. 6, 1815–1823 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Dasselaar, J. J., van der Sande, F. M. & Franssen, C. F. Critical evaluation of blood volume measurements during hemodialysis. Blood Purif. 33, 177–182 (2012).

    PubMed  Google Scholar 

  120. Tonelli, M. et al. Blood volume monitoring in intermittent hemodialysis for acute renal failure. Kidney Int. 62, 1075–1080 (2002).

    PubMed  Google Scholar 

  121. Wabel, P., Chamney, P., Moissl, U. & Jirka, T. Importance of whole-body bioimpedance spectroscopy for the management of fluid balance. Blood Purif. 27, 75–80 (2009).

    PubMed  PubMed Central  Google Scholar 

  122. Hur, E. et al. Effect of fluid management guided by bioimpedance spectroscopy on cardiovascular parameters in hemodialysis patients: a randomized controlled trial. Am. J. Kidney Dis. 61, 957–965 (2013).

    PubMed  Google Scholar 

  123. Savalle, M. et al. Assessment of body cell mass at bedside in critically ill patients. Am. J. Physiol. Endocrinol. Metab. 303, E389–E396 (2012).

    CAS  PubMed  Google Scholar 

  124. Koziolek, M. J. et al. Bioimpedance analysis and intradialytic hypotension in intermittent hemodialysis. Clin. Nephrol. 66, 39–50 (2006).

    CAS  PubMed  Google Scholar 

  125. Goldstein, S. L. & Chawla, L. S. Renal angina. Clin. J. Am. Soc. Nephrol. 5, 943–949 (2010).

    PubMed  Google Scholar 

  126. US National Library of Medicine. ClinicalTrials.gov [online], (2012).

  127. ISRCTN Register. A multicentre, randomised controlled trial of the clinical and cost-effectiveness of early, goal-directed, protocolised resuscitation for emerging septic shock (ProMISe) [online], (2013).

  128. US National Library of Medicine. ClinicalTrials.gov [online], (2013).

  129. ISRCTN Register. Optimisation of peri-operative cardiovascular management to improve surgical outcome (OPTIMISE) [online], (2013).

  130. Askenazi, D. J. et al. Fluid overload and mortality are associated with acute kidney injury in sick near-term/term neonate. Pediatr. Nephrol. 28, 661–666 (2013).

    PubMed  Google Scholar 

  131. Hazle, M. A., Gajarski, R. J., Yu, S., Donohue, J. & Blatt, N. B. Fluid overload in infants following congenital heart surgery. Pediatr. Crit. Care Med. 14, 44–49 (2013).

    PubMed  PubMed Central  Google Scholar 

  132. Selewski, D. T. et al. Fluid overload and fluid removal in pediatric patients on extracorporeal membrane oxygenation requiring continuous renal replacement therapy. Crit. Care Med. 40, 2694–2699 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Selewski, D. T. et al. Weight-based determination of fluid overload status and mortality in pediatric intensive care unit patients requiring continuous renal replacement therapy. Intensive Care Med. 37, 1166–1173 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Zoccali, C. et al. Pulmonary congestion predicts cardiac events and mortality in ESRD. J. Am. Soc. Nephrol. 24, 639–646 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to researching data for the article, made substantial contribution to discussion of the content, wrote, reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Rinaldo Bellomo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prowle, J., Kirwan, C. & Bellomo, R. Fluid management for the prevention and attenuation of acute kidney injury. Nat Rev Nephrol 10, 37–47 (2014). https://doi.org/10.1038/nrneph.2013.232

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2013.232

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing