Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Attention and awareness in stage magic: turning tricks into research

Abstract

Just as vision scientists study visual art and illusions to elucidate the workings of the visual system, so too can cognitive scientists study cognitive illusions to elucidate the underpinnings of cognition. Magic shows are a manifestation of accomplished magic performers' deep intuition for and understanding of human attention and awareness. By studying magicians and their techniques, neuroscientists can learn powerful methods to manipulate attention and awareness in the laboratory. Such methods could be exploited to directly study the behavioural and neural basis of consciousness itself, for instance through the use of brain imaging and other neural recording techniques.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Conjurer, by Hieronymus Bosch.

References

  1. Christopher, M. & Christopher, M. The Illustrated History of Magic (Carroll & Graf, New York, 2006).

    Google Scholar 

  2. Troncoso, X. G., Macknik, S. L. & Martinez-Conde, S. Novel visual illusions related to Vasarely's “nested squares” show that corner salience varies with corner angle. Perception 34, 409–420 (2005).

    Article  PubMed  Google Scholar 

  3. Troncoso, X. G. et al. BOLD activation varies parametrically with corner angle throughout human retinotopic cortex. Perception 36, 808–820 (2007).

    Article  PubMed  Google Scholar 

  4. Troncoso, X., Macknik, S. L. & Martinez-Conde, S. Corner salience varies linearly with corner angle during flicker-augmented contrast: a general principle of corner perception based on Vasarely's artworks. Spat. Vis. (in the press).

  5. Macknik, S. L. & Martinez-Conde, S. The spatial and temporal effects of lateral inhibitory networks and their relevance to the visibility of spatiotemporal edges. Neurocomputing 58–60, 775–782 (2004).

    Article  Google Scholar 

  6. Macknik, S. L. Visual masking approaches to visual awareness. Prog. Brain Res. 155, 177–215 (2006).

    Article  PubMed  Google Scholar 

  7. Lamont, P. & Wiseman, R. Magic in Theory (Hermetic, Seattle, 1999).

    Google Scholar 

  8. Tse, P. U. & Hsieh, P. J. Component and intrinsic motion integrate in 'dancing bar' illusion. Biol. Cybern. 96, 1–8 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Pack, C. C. & Born, R. T. Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain. Nature 409, 1040–1042 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Pack, C. C., Livingstone, M. S., Duffy, K. R. & Born, R. T. End-stopping and the aperture problem: two-dimensional motion signals in macaque V1. Neuron 39, 671–680 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Pack, C. C., Gartland, A. J. & Born, R. T. Integration of contour and terminator signals in visual area MT of alert macaque. J. Neurosci. 24, 3268–3280 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roget, P. M. Explanation of an optical deception in the appearance of the spokes of a wheel seen through vertical apertures. Philos. Trans. R. Soc. Lond. B Biol. Sci. 115, 131–140 (1825).

    Google Scholar 

  13. Munsterberg, H. The Photoplay. A Psychological study (Appelton and Co., New York and London, 1916).

    Google Scholar 

  14. Wertheimer, M. Drei Abhandlungen zur Gestalttheorie (Philosophische Akademie, Erlangen, 1925).

    Google Scholar 

  15. Macknik, S. L. & Martinez-Conde, S. Dichoptic visual masking reveals that early binocular neurons exhibit weak interocular suppression: implications for binocular vision and visual awareness. J. Cogn. Neurosci. 16, 1049–1059 (2004).

    Article  PubMed  Google Scholar 

  16. Yarbus, A. L. Eye Movements and Vision (Plenum, New York, 1967).

    Book  Google Scholar 

  17. Macknik, S. L. & Livingstone, M. S. Neuronal correlates of visibility and invisibility in the primate visual system. Nature Neurosci. 1, 144–149 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Macknik, S. L., Martinez-Conde, S. & Haglund, M. M. The role of spatiotemporal edges in visibility and visual masking. Proc. Natl Acad. Sci. USA 97, 7556–7560 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tse, P. U. Voluntary attention modulates the brightness of overlapping transparent surfaces. Vision Res. 45, 1095–1098 (2005).

    Article  PubMed  Google Scholar 

  20. Carrasco, M. Covert attention increases contrast sensitivity: psychophysical, neurophysiological and neuroimaging studies. Prog. Brain Res. 154, 33–70 (2006).

    Article  PubMed  Google Scholar 

  21. Pestilli, F. & Carrasco, M. Attention enhances contrast sensitivity at cued and impairs it at uncued locations. Vision Res. 45, 1867–1875 (2005).

    Article  PubMed  Google Scholar 

  22. Carrasco, M., Penpeci-Talgar, C. & Eckstein, M. Spatial covert attention increases contrast sensitivity across the CSF: support for signal enhancement. Vision Res. 40, 1203–1215 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Robbins, A. The Magic of Consciousness symposium. 11th Annual Meeting of the Association for the Scientific Study of Consciousness (Las Vegas, 2007).

    Google Scholar 

  25. Rensink, R. A. Change detection. Annu. Rev. Psychol. 53, 245–277 (2002).

    Article  PubMed  Google Scholar 

  26. O'Regan, J. K., Deubel, H., Clark, J. J. & Rensink, R. A. Picture changes during blinks: looking without seeing and seeing without looking. Vis. Cogn. 7, 191–211 (2000).

    Article  Google Scholar 

  27. Grimes, J. in Perception: Vancouver Studies in Cogntive Science (ed. Atkins, K.) 89–110 (Oxford Univ. Press, New York, 1996).

    Google Scholar 

  28. Rensink, R. A., O'Regan, J. K. & Clark, J. J. Image flicker is as good as saccades in making large scene changes invisible. Perception 24 (Suppl.), 26–27 (1995).

    Google Scholar 

  29. Rensink, R. A., O'Regan, J. K. & Clark, J. J. To see or not to see: the need for attention to perceive changes in scenes. Psychol. Sci. 8, 368–373 (1997).

    Article  Google Scholar 

  30. O'Regan, J. K., Rensink, R. A. & Clark, J. J. Change-blindness as a result of 'mudsplashes'. Nature 398, 34 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Rensink, R. A., O'Regan, J. K. & Clark, J. J. On the failure to detect changes in scenes across brief interruptions. Vis. Cogn. 7, 127–149 (2000).

    Article  Google Scholar 

  32. Simons, D. J., Franconeri, S. L. & Reimer, R. L. Change blindness in the absence of a visual disruption. Perception 29, 1143–1154 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Simons, D. J. & Chabris, C. F. Gorillas in our midst: sustained inattentional blindness for dynamic events. Perception 28, 1059–1074 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Memmert, D. The effects of eye movements, age, and expertise on inattentional blindness. Conscious Cogn. 15, 620–627 (2006).

    Article  PubMed  Google Scholar 

  35. Kuhn, G. & Tatler, B. W. Magic and fixation: now you don't see it, now you do. Perception 34, 1155–1161 (2005).

    Article  PubMed  Google Scholar 

  36. Kuhn, G., Tatler, B. W., Findlay, J. M. & Cole, G. G. Misdirection in magic: implications for the relationship between eye gaze and attention. Vis. Cogn. 16, 391–405 (2008).

    Article  Google Scholar 

  37. Martinez-Conde, S. & Macknik, S. L. Windows on the mind. Sci. Am. 297, 56–63 (2007).

    Article  PubMed  Google Scholar 

  38. Engbert, R. & Kliegl, R. Microsaccades uncover the orientation of covert attention. Vision Res. 43, 1035–1045 (2003).

    Article  PubMed  Google Scholar 

  39. Hafed, Z. M. & Clark, J. J. Microsaccades as an overt measure of covert attention shifts. Vision Res. 42, 2533–2545 (2002).

    Article  PubMed  Google Scholar 

  40. Kuhn, G. & Land, M. F. There's more to magic than meets the eye. Curr. Biol. 16, R950–R951 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Milner, A. D. & Goodale, M. A. Two visual systems re-viewed. Neuropsychologia 46, 774–785 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. James, T. W., Culham, J., Humphrey, G. K., Milner, A. D. & Goodale, M. A. Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126, 2463–2475 (2003).

    Article  PubMed  Google Scholar 

  43. Milner, A. D. & Goodale, M. A. Visual pathways to perception and action. Prog. Brain Res. 95, 317–337 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Goodale, M. A. & Milner, A. D. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Haffenden, A. M., Schiff, K. C. & Goodale, M. A. The dissociation between perception and action in the Ebbinghaus illusion: nonillusory effects of pictorial cues on grasp. Curr. Biol. 11, 177–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Goodale, M. A. & Haffenden, A. Frames of reference for perception and action in the human visual system. Neurosci. Biobehav. Rev. 22, 161–172 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Aglioti, S., DeSouza, J. F. & Goodale, M. A. Size-contrast illusions deceive the eye but not the hand. Curr. Biol. 5, 679–685 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Milner, A. D. & Goodale, M. The Visual Brain in Action (Oxford Univ. Press, Oxford, 1995).

    Google Scholar 

  49. Bridgeman, B., Lewis, S., Heit, G. & Nagle, M. Relation between cognitive and motor-oriented systems of visual position perception. J. Exp. Psychol. Hum. Percept. Perform. 5, 692–700 (1979).

    Article  CAS  PubMed  Google Scholar 

  50. Poppel, E., Held, R. & Frost, D. Residual visual function after brain wounds involving the central visual pathways in man. Nature 243, 295–296 (1973).

    Article  CAS  PubMed  Google Scholar 

  51. Weiskrantz, L., Warrington, E. K., Sanders, M. D. & Marshall, J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97, 709–728 (1974).

    Article  CAS  PubMed  Google Scholar 

  52. Freyd, J. J. & Finke, R. A. Representational momentum. J. Exp. Psychol. Learn. Mem. Cogn. 10, 126–132 (1984).

    Article  Google Scholar 

  53. Assad, J. A. & Maunsell, J. H. R. Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature 373, 518–521 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Krekelberg, B., Dannenberg, S., Hoffmann, K. P., Bremmer, F. & Ross, J. Neural correlates of implied motion. Nature 424, 674–677 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Krekelberg, B., Vatakis, A. & Kourtzi, Z. Implied motion from form in the human visual cortex. J. Neurophysiol. 94, 4373–4386 (2005).

    Article  PubMed  Google Scholar 

  56. Sharpe, S. Conjurers Psychological Secrets (Hades, Alberta, 1988).

    Google Scholar 

  57. Bex, P. J., Mareschal, I. & Dakin, S. C. Contrast gain control in natural scenes. J. Vis. 7, 12.1–12 (2007).

    Article  PubMed  Google Scholar 

  58. Maattanen, L. M. & Koenderink, J. J. Contrast adaptation and contrast gain control. Exp. Brain Res. 87, 205–212 (1991).

    Article  CAS  PubMed  Google Scholar 

  59. Li, L., Miller, E. K. & Desimone, R. The representation of stimulus familiarity in anterior inferior temporal cortex. J. Neurophysiol. 69, 1918–1929 (1993).

    Article  CAS  PubMed  Google Scholar 

  60. Brown, M. W. & Bashir, Z. I. Evidence concerning how neurons of the perirhinal cortex may effect familiarity discrimination. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357, 1083–1095 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lanyon, L. J. & Denham, S. L. A biased competition computational model of spatial and object-based attention mediating active visual search. Neurocomputing 58–60, 655–662 (2004).

    Article  Google Scholar 

  62. Desimone, R. Neural mechanisms for visual memory and their role in attention. Proc. Natl Acad. Sci. USA 93, 13494–13499 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Miller, E. K. The prefrontal cortex and cognitive control. Nature Rev. Neurosci. 1, 59–65 (2000).

    Article  CAS  Google Scholar 

  64. Macknik, S. L. & Martinez-Conde, S. The role of feedback in visual masking and visual processing. Adv. Cognit. Psychol. 3, 125–152 (2007).

    Article  Google Scholar 

  65. Chen, Y. et al. Task difficulty modulates the activity of specific neuronal populations in primary visual cortex. Nature Neurosci. 6 Jul 2008 (doi:10.1038/nn.2147).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Joseph, E. How to Pick Pockets for Fun and Profit (Piccadilly Books,, Colorado Springs, 1992).

    Google Scholar 

  67. Ascanio, A. The Psychology of Palming (Ascanio, Madrid, 1982).

    Google Scholar 

  68. Thompson, J. The Magic of Consciousness symposium. 11th Annual Meeting of the Association for the Scientific Study of Consciousness (Las Vegas, 2007).

    Google Scholar 

  69. Pickrell, J. E., Bernstein, D. M. & Loftus, E. F. in Cognitive Illusions (ed. Pohl, R. F.) 345–361 (Psychology Press, New York, 2004).

    Google Scholar 

  70. Randi, J. The Magic of Consciousness symposium. 11th Annual Meeting of the Association for the Scientific Study of Consciousness (Las Vegas, 2007).

    Google Scholar 

  71. Wiseman, R. & Lamont, P. Unravelling the Indian rope-trick. Nature 383, 212–213 (1996).

    Article  CAS  Google Scholar 

  72. Lamont, P. The Rise of the Indian Rope Trick (Abacus, 2005).

    Google Scholar 

  73. Dennett, D. Explaining the “magic” of consciousness. J. Cult. Evol. Psychol. 1, 7–19 (2003).

    Article  Google Scholar 

  74. Teller. The Magic of Consciousness symposium. 11th Annual Meeting of the Association for the Scientific Study of Consciousness (Las Vegas, 2007).

    Google Scholar 

  75. Martinez-Conde, S. & Macknik, S. L. Mind tricks. Nature 448, 414 (2007).

    Article  CAS  Google Scholar 

  76. Fiedler, K. in Cognitive Illusions (ed. Pohl, R. F.) 97–114 (Psychology Press, New York, 2004).

    Google Scholar 

  77. Parris, B. A., Kuhn, G. & Hodgson, T. L. Imaging the impossible: a neuroimaging study of cause and effect violations in magic tricks. Abstr. 262.21, 35th annual meeting of the Society for Neuroscience (Atlanta, 2006).

    Google Scholar 

  78. Krueger, F. et al. Neural correlates of trust. Proc. Natl Acad. Sci. USA 104, 20084–20089 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Andreasen, N. C. et al. Positive and negative symptoms of schizophrenia: past, present, and future. Acta Psychiatr. Scand. Suppl. 384, 51–59 (1994).

    Article  CAS  PubMed  Google Scholar 

  80. Fiorillo, C. D., Tobler, P. N. & Schultz, W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–1902 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Moll, J. et al. Human fronto-mesolimbic networks guide decisions about charitable donation. Proc. Natl Acad. Sci. USA 103, 15623–15628 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bartels, A. & Zeki, S. The neural correlates of maternal and romantic love. Neuroimage 21, 1155–1166 (2004).

    Article  PubMed  Google Scholar 

  83. Aron, A. et al. Reward, motivation, and emotion systems associated with early-stage intense romantic love. J. Neurophysiol. 94, 327–337 (2005).

    Article  PubMed  Google Scholar 

  84. Kolb, B. & Whishaw, I. Q. Fundamentals of Human Neuropsychology (Worth, 2008).

    Google Scholar 

  85. Kuhn, G. 11th Annual Meeting of the Association for the Scientific Study of Consciousness (Las Vegas, 2007).

  86. Tamariz, J. The Magic Way (Frakson Books, Madrid, 1988).

    Google Scholar 

  87. King, M. 11th Annual Meeting of the Association for the Scientific Study of Consciousness (Las Vegas, 2007).

  88. Tatler, B. W. & Kuhn, G. in Eye Movements: A Window on Mind and Brain (ed. van Gompel, R. P. G., Fischer, M. H., Murray, W. S. & Hill, R. L.) 697–714 (Elsevier, Oxford, 2007).

    Book  Google Scholar 

  89. Johansson, P., Hall, L., Sikstrom, S., Tarning, B. & Lind, A. How something can be said about telling more than we can know: on choice blindness and introspection. Conscious. Cogn. 15, 673–692 (2006).

    Article  PubMed  Google Scholar 

  90. Johansson, P., Hall, L., Sikstrom, S. & Olsson, A. Failure to detect mismatches between intention and outcome in a simple decision task. Science 310, 116–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  91. Macknik, S. L., Fisher, B. D. & Bridgeman, B. Flicker distorts visual space constancy. Vision Res. 31, 2057–2064 (1991).

    Article  CAS  PubMed  Google Scholar 

  92. Bridgeman, B. B. & Macknik, S. L. Saccadic suppression relies on luminance information. Psychol. Res. 58, 163–168 (1995).

    Article  CAS  PubMed  Google Scholar 

  93. Holt, E. B. Eye movements and central anaesthesia. Psychol. Rev. 4, 3–45 (1903).

    Google Scholar 

  94. Johnson, G. Sleights of Mind. The New York Times D1, D4 (21 Aug 2007).

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Mind Science Foundation (MSF) and its Executive Director, J. Dial, for sponsoring the filming of the Magic of Consciousness symposium and for kindly producing the supplementary movies for this paper. We thank M. Stewart for technical assistance and J. Otero-Millan for programming assistance. We are grateful to the Barrow Neurological Foundation for funding this study (S.L.M. and S.M.C.), in addition to grants from the Science Foundation Arizona to S.L.M. (CAA 0091-07), the National Science Foundation to S.L.M. (0726113) and S.M.C. (0643306), the Arizona Biomedical Research Commission to S.L.M. (06-083) and S.M.C. (07-102), and the Dana Foundation to S.M.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana Martinez-Conde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (movie)

Johnny Thompson (aka The Great Tomsoni). “Closing all the doors.” The Magic of Consciousness Symposium. Courtesy of the Mind Science Foundation and the Association for the Scientific Study of Consciousness. (MOV 9847 kb)

Supplementary information S2 (movie)

James Randi (aka The Amaz!ng Randi). “Accepting assumptions not assertions.” The Magic of Consciousness Symposium. Courtesy of the Mind Science Foundation and the Association for the Scientific Study of Consciousness. (MOV 14787 kb)

Supplementary information S3 (movie)

Apollo Robbins. “Misdirection is the story that you make them remember.” The Magic of Consciousness Symposium. Courtesy of the Mind Science Foundation and the Association for the Scientific Study of Consciousness. (MOV 12145 kb)

Supplementary information S4 (movie)

Teller. “Disguising an action as another.” The Magic of Consciousness Symposium. Courtesy of the Mind Science Foundation and the Association for the Scientific Study of Consciousness. (MOV 10442 kb)

Supplementary information S5 (movie)

Mac King. “It's a bad idea to do the same trick twice.” The Magic of Consciousness Symposium. Courtesy of the Mind Science Foundation and the Association for the Scientific Study of Consciousness. (MOV 10278 kb)

Supplementary information S6 (movie)

James Randi (aka The Amaz!ng Randi). “The Amaz!ing Randi pulls a “fast one” on philosopher Dan Dennett.” The Magic of Consciousness Symposium. Courtesy of the Mind Science Foundation and the Association for the Scientific Study of Consciousness. (MOV 8404 kb)

Related links

Related links

FURTHER INFORMATION

Susana Martinez-Conde's homepage

Stephen Macknik's homepage

Mack King's homepage

James Randi's homepage

Apollo Robbins' hompage

Teller's homepage

John Thompson's homepage

Association for the Scientific Study of Consciousness

Mind Science Foundation

Colour-Changing Card Trick

Glossary

After-discharge

A sensory neuron's response to the turning off of a stimulus.

Blindsight

A neurological condition in which a patient with damage in the primary visual cortex is unaware of visual events that occur in the corresponding portion of the visual field, despite exhibiting good performance on visual tasks conducted in that region.

Change blindness

The failure to notice changes in an object or scene over a period of time.

Inattentional blindness

The failure to notice a salient object or visible feature in a scene owing to misdirected attention or attention that is not engaged at a level sufficient to achieve awareness of the object.

Magic palming technique

The technique used by magicians to hide items in the palms of their hands (which are turned away from the observer), so as to make it look like the hands are empty.

Microsaccades

Small, involuntary saccades that are produced when subjects attempt to fixate their gaze on a visual target.

Saccade

A fast, jerky eye movement that transports the fovea from one visual target to another in a straight-line trajectory.

Smooth pursuit movement

A type of eye movement in which the retinal fovea smoothly tracks the position of a moving object.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macknik, S., King, M., Randi, J. et al. Attention and awareness in stage magic: turning tricks into research. Nat Rev Neurosci 9, 871–879 (2008). https://doi.org/10.1038/nrn2473

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2473

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing