Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Circuit-breakers: optical technologies for probing neural signals and systems

A Corrigendum to this article was published on 01 September 2007

Abstract

Neuropsychiatric disorders, which arise from a combination of genetic, epigenetic and environmental influences, epitomize the challenges faced in understanding the mammalian brain. Elucidation and treatment of these diseases will benefit from understanding how specific brain cell types are interconnected and signal in neural circuits. Newly developed neuroengineering tools based on two microbial opsins, channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), enable the investigation of neural circuit function with cell-type-specific, temporally accurate and reversible neuromodulation. These tools could lead to the development of precise neuromodulation technologies for animal models of disease and clinical neuropsychiatry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optogenetic tools: ChR2 and NpHR.
Figure 2: In vivo optical neuromodulation in animal models of neuropsychiatric disease.

Similar content being viewed by others

References

  1. Beal, M. F. Experimental models of Parkinson's disease. Nature Rev. Neurosci. 2, 325–334 (2001).

    Article  CAS  Google Scholar 

  2. Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioural effects of antidepressants. Science 301, 805–809 (2003).

    Article  CAS  Google Scholar 

  3. Lewis, D. A. GABAergic local circuit neurons and prefrontal cortical dysfunction in schizophrenia. Brain Res. Brain Res. Rev. 31, 270–276 (2000).

    Article  CAS  Google Scholar 

  4. Hashimoto, T., et al. Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia. J. Neurosci. 23, 6315–6326 (2003).

    Article  CAS  Google Scholar 

  5. Volk, D., Austin, M., Pierri, J., Sampson, A. & Lewis, D. GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am. J. Psychiatry 158, 256–265 (2001).

    Article  CAS  Google Scholar 

  6. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    Article  CAS  Google Scholar 

  7. Lima, S. Q. & Miesenbock, G. Remote control of behaviour through genetically targeted photostimulation of neurons. Cell 121, 141–152 (2005).

    Article  CAS  Google Scholar 

  8. Karpova, A.Y., Tervo, D.G., Gray, N.W. & Svoboda, K. Rapid and reversible chemical inactivation of synaptic transmission in genetically targeted neurons. Neuron 48, 727–735 (2005).

    Article  CAS  Google Scholar 

  9. Tan, E.M., et al. Selective and quickly reversible inactivation of mammalian neurons in vivo using the Drosophila allatostatin receptor. Neuron 51, 157–170 (2006).

    Article  CAS  Google Scholar 

  10. Lerchner, W., et al. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl– channel. Neuron 54, 35–49 (2007).

    Article  CAS  Google Scholar 

  11. Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).

    Article  CAS  Google Scholar 

  12. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  13. Zhang, F., Wang, L. P., Boyden, E. S. & Deisseroth, K. Channelrhodopsin-2 and optical control of excitable cells. Nature Methods 3, 785–792 (2006).

    Article  CAS  Google Scholar 

  14. Wang, H., et al. High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc. Natl Acad. Sci. USA 104, 8143–8148 (2007).

    Article  CAS  Google Scholar 

  15. Arenkiel, B. R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218 (2007).

    Article  CAS  Google Scholar 

  16. Aravanis, A. M. et al. An optical neural inteface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    Article  Google Scholar 

  17. Han, X. & Boyden, E. S. Multiple-color optical activation, silencing and desynchronization of neural activity with single-spike temporal resolution. PLoS ONE 2, e299 (2007).

    Article  Google Scholar 

  18. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nature Neurosci. 10, 663–668 (2007).

    Article  CAS  Google Scholar 

  19. Li, X., et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl Acad. Sci. USA 102, 17816–17821 (2005).

    Article  CAS  Google Scholar 

  20. Nagel, G., et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).

    Article  CAS  Google Scholar 

  21. Ishizuka, T., Kakuda, M., Araki, R. & Yawo, H. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res. 54, 85–94 (2006).

    Article  CAS  Google Scholar 

  22. Schroll, C., et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16, 1741–1747 (2006).

    Article  CAS  Google Scholar 

  23. Nagel, G., et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  24. Soliman, G. S. H. & Truper, H. G. Halobacterium pharaonis: a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene erste Abteilung Originale C, Allgemeine, angewandte und ökologische Mikrobiologie 3, 318–329 (1982).

    Article  CAS  Google Scholar 

  25. Bi, A. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33 (2006).

    Article  CAS  Google Scholar 

  26. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2007).

    Article  CAS  Google Scholar 

  27. Shimada, M., Tritos, N. A., Lowell, B. B., Flier, J. S. & Maratos-Flier, E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature 396, 670–674 (1998).

    Article  CAS  Google Scholar 

  28. Tecott, L. H. & Wehner, J. M. Mouse molecular genetic technologies: promise for psychiatric research. Arch. Gen. Psychiatry 58, 995–1004 (2001).

    Article  CAS  Google Scholar 

  29. Miyoshi, G. & Fishell, G. Directing neuron-specific transgene expression in the mouse CNS. Curr. Opin Neurobiol. 16, 577–584 (2006).

    Article  CAS  Google Scholar 

  30. Cetin, A., Komai, S., Eliava, M., Seeburg, P. H. & Osten, P. Stereotaxic gene delivery in the rodent brain. Nature Protoc. 1, 3166–3173 (2006).

    Article  CAS  Google Scholar 

  31. Davidson, B. L. & Breakefield, X. O. Viral vectors for gene delivery to the nervous system. Nature Rev. Neurosci. 4, 353–364 (2003).

    Article  CAS  Google Scholar 

  32. Kaplitt, M. G., et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 369, 2097–2105 (2007).

    Article  CAS  Google Scholar 

  33. de Boer, A. G. & Gaillard, P. J. Drug targeting to the brain. Annu. Rev. Pharmacol. Toxicol. 47, 323–355 (2007).

    Article  CAS  Google Scholar 

  34. Chhatwal, J. P., Hammack, S. E., Jasnow, A. M., Rainnie, D. G. & Ressler, K. J. Identification of cell-type-specific promoters within the brain using lentiviral vectors. Gene Ther. 14, 575–583 (2007).

    Article  CAS  Google Scholar 

  35. Osten, P., Grinevich, V. & Cetin, A. Viral vectors: a wide range of choices and high levels of service. Handb. Exp. Pharmacol., 177–202 (2007).

  36. van den Pol, A. N., Acuna-Goycolea, C., Clark, K. R. & Ghosh, P. K. Physiological properties of hypothalamic MCH neurons identified with selective expression of reporter gene after recombinant virus infection. Neuron 42, 635–652 (2004).

    Article  CAS  Google Scholar 

  37. Taymans, J. M., et al. Comparative analysis of adeno-associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum. Gene Ther. 18, 195–206 (2007).

    Article  CAS  Google Scholar 

  38. Wickersham, I. R., Finke, S., Conzelmann, K. K. & Callaway, E. M. Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods 4, 47–49 (2007).

    Article  CAS  Google Scholar 

  39. Barth, A. L., Gerkin, R. C. & Dean, K. L. Alteration of neuronal firing properties after in vivo experience in a FosGFP transgenic mouse. J. Neurosci. 24, 6466–6475 (2004).

    Article  CAS  Google Scholar 

  40. Wang, K. H., et al. In vivo two-photon imaging reveals a role of arc in enhancing orientation specificity in visual cortex. Cell 126, 389–402 (2006).

    Article  CAS  Google Scholar 

  41. Wickersham, I. R., et al. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53, 639–647 (2007).

    Article  CAS  Google Scholar 

  42. Ferezou, I., Bolea, S. & Petersen, C. C. Visualizing the cortical representation of whisker touch: voltage-sensitive dye imaging in freely moving mice. Neuron 50, 617–629 (2006).

    Article  CAS  Google Scholar 

  43. Piyawattanametha, W., et al. Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror. Opt. Lett. 31, 2018–2020 (2006).

    Article  Google Scholar 

  44. Miesenbock, G. & Kevrekidis, I. G. Optical imaging and control of genetically designated neurons in functioning circuits. Annu. Rev. Neurosci. 28, 533–563 (2005).

    Article  Google Scholar 

  45. Kotlikoff, M. I. Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology. J. Physiol. 578, 55–67 (2007).

    Article  CAS  Google Scholar 

  46. Airan R. D. et al. High-speed imaging reveals neurophysiological links to behaviour in an animal model of depression. Science 5 July 2007 (doi: 10.1126/science.1144400).

  47. Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    Article  CAS  Google Scholar 

  48. Schlaepfer, T. E. et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology (2007).

  49. Rauch, S. L. et al. A functional neuroimaging investigation of deep brain stimulation in patients with obsessive-compulsive disorder. J. Neurosurg. 104, 558–565 (2006).

    Article  Google Scholar 

  50. Machado, A., Ogrin, M., Rosenow, J. M. & Henderson, J. M. A 12-month prospective study of gasserian ganglion stimulation for trigeminal neuropathic pain. Stereotact. Funct. Neurosurg. 85, 216–224 (2007).

    Article  CAS  Google Scholar 

  51. Rasche, D., Ruppolt, M., Stippich, C., Unterberg, A. & Tronnier, V. M. Motor cortex stimulation for long-term relief of chronic neuropathic pain: a 10 year experience. Pain 121, 43–52 (2006).

    Article  Google Scholar 

  52. Hausser, M. & Smith, S. L. Neuroscience: controlling neural circuits with light. Nature 446, 617–619 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the collective effort of the entire Deisseroth laboratory over the years and our many outstanding co-authors, including R.D. Airan, G.J. Augustine, E. Bamberg, E.S. Boyden, M. Ehlers, G. Feng, A. Gottschalk, V. Gradinaru, J. Henderson, L.A. Meltzer, M. Mogri, G. Nagel, M. Roy, M.B. Schneider and L.-P. Wang. We also acknowledge our colleagues and mentors including R. Altman, P.S. Buckmaster, S. Delp, J. Huguenard, R.C. Malenka, S. Quake, M. Scott, R.W. Tsien and P. Yock. F.Z. is supported by a Ruth L. Kirschstein NRSA. A.M.A. is supported by the Walter and Idun Berry Foundation. A.A. is supported by the Belgian American Educational Foundation and the Fondation Leon Fredericq. L.L. is supported by the NIMH and NIDA. K.D. is supported by NARSAD, APIRE and the Snyder, Culpeper, Coulter, Klingenstein, Whitehall, McKnight, and Albert Yu and Mary Bechmann Foundations, as well as by NIMH, NIDA and the NIH Director's Pioneer Award Program. We apologize to those authors whose work we could not cite or discuss due to space limitations. The materials and methods described herein are freely distributed and supported by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Deisseroth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Karl Deisseroth's homepage

Glossary

Deep brain stimulation

(DBS). A surgical procedure involving the implantation of electrodes to deliver electrical pulses to specific brain regions; used to treat neuropsychiatric disorders such as Parkinson's disease, and currently under evaluation for other disorders, including clinical depression and Tourette's syndrome.

Retrograde label

A method used to examine neuronal connectivity in which an injected label travels within neurons in the opposite direction of neural information flow, thereby labelling the cell bodies that project to the injected location. An anterograde label will track axons projecting from the injection site.

Transcranial magnetic stimulation

(TMS). A non-invasive method for exciting neurons by inducing electrical currents in the brain with rapidly changing external magnetic fields; currently under evaluation for diagnostic and therapeutic use in diseases, including depression and Parkinson's disease.

Vagus nerve stimulation

(VNS). A device-based neural stimulation method that uses an electrical lead to stimulate the vagus nerve in the neck, which may then influence central neurons. It is used to treat intractable epilepsy and has recently been applied to clinical depression.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Aravanis, A., Adamantidis, A. et al. Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 8, 577–581 (2007). https://doi.org/10.1038/nrn2192

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2192

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing