Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Molecular mechanisms of memory reconsolidation

Key Points

  • Reconsolidation has been conceptualized as a post-retrieval process that stabilizes memory made labile by retrieval. This theory remains controversial, and one major question is whether post-retrieval disruptions of memory are permanent, suggesting erasure and therefore a storage mechanism, or transient, suggesting that the memory trace remains intact.

  • Molecular mechanisms of memory reconsolidation have been shown to have substantial but incomplete overlap with those of initial consolidation, supporting the assertion that reconsolidation may be a storage process.

  • Studies utilizing inhibition and activation of intracellular signalling proteins have shown that transcription factors including CREB, C/EBPβ and ZIF268, as well as upstream protein kinases including PKA and ERK, are required for memory reconsolidation,

  • Additional molecular cascades, including transcription factor ELK1, immediate early genes c-Fos and Sgk3, and the protein kinase ERK are activated after memory reactivation, indicating a role for these pathways in reconsolidation.

  • Disruption of memory reconsolidation may be useful for intervention in psychiatric disorders involving abnormally strong or intrusive memories, such as post-traumatic stress disorder.

  • Abnormal reconsolidation processes might contribute to the development of psychiatric disorders such as drug addiction, where long-term adaptation of cell signalling pathways can contribute to ongoing enhancements of reconsolidation, thereby strengthening the maladaptive memory and leading to long-lasting, relapsing behavioural changes.

  • In order to move forward and answer some of the ongoing controversies, research in reconsolidation needs to diverge from purely behavioural models to demonstrate electrophysiological and structural correlates of post-retrieval manipulations of memory.

Abstract

Memory reconsolidation has been argued to be a distinct process that serves to maintain, strengthen or modify memories. Specifically, the retrieval of a previously consolidated memory has been hypothesized to induce an additional activity-dependent labile period during which the memory can be modified. Understanding the molecular mechanisms of reconsolidation could provide crucial insights into the dynamic aspects of normal mnemonic function and psychiatric disorders that are characterized by exceptionally strong and salient emotional memories.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design for reconsolidation experiments.
Figure 2: Key molecular mechanisms of memory reconsolidation.
Figure 3: Bidirectional plasticity after memory retrieval modulated by PKA.

References

  1. McGaugh, J. L. Memory — a century of consolidation. Science 287, 248–251 (2000).

    CAS  PubMed  Google Scholar 

  2. Misanin, J. R., Miller, R. R. & Lewis, D. J. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science 160, 554–555 (1968). The first demonstration of a post-retrieval memory disruption; this set the basis for the thinking about reconsolidation that continues today.

    CAS  PubMed  Google Scholar 

  3. Nader, K. Memory traces unbound. Trends Neurosci. 26, 65–72 (2003).

    CAS  PubMed  Google Scholar 

  4. Dudai, Y. Reconsolidation: the advantage of being refocused. Curr. Opin. Neurobiol. 16, 174–178 (2006). An important reassessment of what reconsolidation might mean and how it should be examined.

    CAS  PubMed  Google Scholar 

  5. Nader, K., Schafe, G. E. & LeDoux, J. E. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406, 722–726 (2000). Landmark study that re-introduced reconsolidation into the mainstream dialogue on memory. The authors demonstrated that intra-amygdala inhibition of protein synthesis after retrieval of a previously consolidated memory resulted in amnesia for the retrieved memory, but not for consolidated memories that were not retrieved.

    CAS  PubMed  Google Scholar 

  6. Tronson, N. C., Wiseman, S. L., Olausson, P. & Taylor, J. R. Bidirectional behavioral plasticity of memory reconsolidation depends on amygdalar protein kinase A. Nature Neurosci. 9, 167–169 (2006).

    CAS  PubMed  Google Scholar 

  7. Gordon, W. C. in Information Processing in Animals: Memory Mechanisms (eds Spear, N. E. & Miller, R. R.) 319–343 (Erlbaum, Hillsdale, New Jersey,1981).

    Google Scholar 

  8. Segal, M. Dendritic spines and long-term plasticity. Nature Rev. Neurosci. 6, 277–284 (2005).

    CAS  Google Scholar 

  9. Pedreira, M. E., Perez-Cuesta, L. M. & Maldonado, H. Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: protein synthesis requirement and mediation by NMDA-type glutamatergic receptors. J. Neurosci. 22, 8305–8311 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Anokhin, K. V., Tiunova, A. A. & Rose, S. P. Reminder effects — reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur. J. Neurosci. 15, 1759–1765 (2002).

    PubMed  Google Scholar 

  11. Dacher, M., Lagarrigue, A. & Gauthier, M. Antennal tactile learning in the honeybee: effect of nicotinic antagonists on memory dynamics. Neuroscience 130, 37–50 (2005).

    CAS  PubMed  Google Scholar 

  12. Eisenberg, M., Kobilo, T., Berman, D. E. & Dudai, Y. Stability of retrieved memory: inverse correlation with trace dominance. Science 301, 1102–1104 (2003).

    CAS  PubMed  Google Scholar 

  13. Sangha, S., Scheibenstock, A. & Lukowiak, K. Reconsolidation of a long-term memory in Lymnaea requires new protein and RNA synthesis and the soma of right pedal dorsal 1. J. Neurosci. 23, 8034–8040 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Walker, M. P., Brakefield, T., Hobson, J. A. & Stickgold, R. Dissociable stages of human memory consolidation and reconsolidation. Nature 425, 616–620 (2003). This important study demonstrates reconsolidation of memory in human individuals using a novel motor sequence learning task.

    CAS  PubMed  Google Scholar 

  15. Kida, S. et al. CREB required for the stability of new and reactivated fear memories. Nature Neurosci. 5, 348–355 (2001).

    Google Scholar 

  16. Cammarota, M., Bevilaqua, L. R., Medina, J. H. & Izquierdo, I. Retrieval does not induce reconsolidation of inhibitory avoidance memory. Learn. Mem. 11, 572–578 (2004).

    PubMed  PubMed Central  Google Scholar 

  17. Thompson, C. I. & Grossman, L. B. Loss and recovery of long-term memories after ECS in rats: evidence for state-dependent recall. J. Comp. Physiol. Psychol. 78, 248–254 (1972).

    CAS  PubMed  Google Scholar 

  18. Mactutus, C. F., Riccio, D. C. & Ferek, J. M. Retrograde amnesia for old (reactivated) memory: some anomalous characteristics. Science 204, 1319–1320 (1979).

    CAS  PubMed  Google Scholar 

  19. Riccio, D. C. & Richardson, R. The status of experimentally induced amnesias: gone, but not forgotten. Physiol. Psychol. 12, 59–72 (1984).

    Google Scholar 

  20. Lattal, K. M. & Abel T. Behavioral impairments caused by injections of the protein synthesis inhibitor anisomycin after contextual retrieval reverse with time. Proc. Natl Acad. Sci. USA 101, 4667–4672 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Prado-Alcala, R. A. et al. Amygdala or hippocampus inactivation after retrieval induces temporary memory deficit. Neurobiol. Learn. Mem. 86, 144–149 (2006).

    PubMed  Google Scholar 

  22. Suzuki, A. et al. Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J. Neurosci. 24, 4787–4795 (2004). This important study began to disambiguate molecular mechanisms of reconsolidation from those of extinction.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Morris, R. G. et al. Memory reconsolidation: sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval. Neuron 50, 479–489 (2006). An elegant study showing specific conditions under which reconsolidation of spatial memories does and does not occur, and an important contribution to the theoretical debate on reconsolidation.

    CAS  PubMed  Google Scholar 

  24. Pedreira, M. E. & Maldonado, H. Protein synthesis subserves reconsolidation or extinction depending on reminder duration. Neuron 38, 863–869 (2003). The first study to demonstrate that reconsolidation can be dissociated from extinction using reactivation session length.

    CAS  PubMed  Google Scholar 

  25. Rossato, J. I., Bevilaqua, L. R., Medina, J. H., Izquierdo, I. & Cammarota, M. Retrieval induces hippocampal-dependent reconsolidation of spatial memory. Learn. Mem. 13, 431–440 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Judge, M. E. & Quartermain, D. Characteristics of retrograde amnesia following reactivation of memory in mice. Physiol. Behav. 28, 585–590 (1982).

    CAS  PubMed  Google Scholar 

  27. Riccio D. C., Hodges L. A. & Randall P. K. Retrograde amnesia produced by hypothermia in rats. J. Comp. Physiol. Psychol. 66, 618–622 (1968).

    CAS  PubMed  Google Scholar 

  28. Dudai, Y. & Eisenberg, M. Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron 44, 93–100 (2004).

    CAS  PubMed  Google Scholar 

  29. Duvarci, S, Mamou, C. B. & Nader, K. Extinction is not a sufficient condition to prevent fear memories from undergoing reconsolidation in the basolateral amygdala. Eur. J. Neurosci. 24, 249–260 (2006).

    PubMed  Google Scholar 

  30. Taubenfeld, S. M., Milekic, M. H., Monti, B. & Alberini, C. M. The consolidation of new but not reactivated memory requires hippocampal C/EBPβ. Nature Neurosci. 4, 813–818 (2001).

    CAS  PubMed  Google Scholar 

  31. Power, A. E., Berlau, D. J., McGaugh, J. L. & Steward, O. Anisomycin infused into the hippocampus fails to block 'reconsolidation' but impairs extinction: the role of re-exposure duration. Learn. Mem. 13, 27–34 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hernandez, P. J., Sadeghian, K. & Kelley, A. E. Early consolidation of instrumental learning requires protein synthesis in the nucleus accumbens. Nature Neurosci. 5, 1327–1331 (2002).

    CAS  PubMed  Google Scholar 

  33. Hernandez, P. J. & Kelley, A. E. Long-term memory for instrumental responses does not undergo protein synthesis-dependent reconsolidation upon retrieval. Learn. Mem. 11, 748–754 (2004).

    PubMed  PubMed Central  Google Scholar 

  34. Tronel, S., Milekic, M. H. & Alberini, C. M. Linking new information to a reactivated memory requires consolidation and not reconsolidation mechanisms. PLoS Biol. 3, e293 (2005).

    PubMed  PubMed Central  Google Scholar 

  35. Milekic, M. H., Brown, S. D., Castellini, C. & Alberini, C. M., Persistent disruption of an established morphine conditioned place preference. J. Neurosci. 26, 3010–3020 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Routtenberg, A. & Rekart, J. L. Post-translational protein modification as the substrate for long-lasting memory. Trends Neurosci. 28, 12–19 (2005).

    CAS  PubMed  Google Scholar 

  37. Hall, J., Thomas, K. L. & Everitt, B. J. Fear memory retrieval induces CREB phosphorylation and Fos expression within the amygdala. Eur. J. Neurosci. 13, 1453–1458 (2001).

    CAS  PubMed  Google Scholar 

  38. Miller, C. A. & Marshall, J. F. Molecular substrates for retrieval and reconsolidation of cocaine-associated contextual memory. Neuron 47, 873–884 (2005).

    CAS  PubMed  Google Scholar 

  39. Merlo, E., Freudenthal, R., Maldonado, H. & Romano, A. Activation of the transcription factor NF-kappaB by retrieval is required for long-term memory reconsolidation. Learn. Mem. 12, 23–29 (2005).

    PubMed  PubMed Central  Google Scholar 

  40. Lin, C. H., Yeh, S. H., Lu, H. Y. & Gean, P. W., The similarities and diversities of signal pathways leading to consolidation of conditioning and consolidation of extinction of fear memory. J. Neurosci. 23, 8310–8317 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee, J. L., Everitt, B. J. & Thomas, K. L. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science 304, 839–843 (2004). This landmark study demonstrated a double dissociation between mechanisms of consolidation (BDNF) and reconsolidation (ZIF268) within the hippocampus.

    CAS  PubMed  Google Scholar 

  42. Bozon, B., Davis, S. & Laroche, S. A requirement for the immediate early gene zif268 in reconsolidation of recognition memory after retrieval. Neuron 40, 695–701 (2003).

    CAS  PubMed  Google Scholar 

  43. Lee, J. L., Di Ciano, P., Thomas, K. L. & Everitt, B. J. Disrupting reconsolidation of drug memories reduces cocaine-seeking behavior. Neuron 47, 795–801 (2005). Novel demonstration of reconsolidation of an appetitive, Pavlovian, drug-associated memory.

    CAS  PubMed  Google Scholar 

  44. Lee, J. L., Milton, A. L. & Everitt, B. J. Cue-induced cocaine seeking and relapse are reduced by disruption of drug memory reconsolidation. J. Neurosci. 26, 5881–5887 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hellemans, K. G., Everitt, B. J. & Lee, J. L. Disrupting reconsolidation of conditioned withdrawal memories in the basolateral amygdala reduces suppression of heroin seeking in rats. J. Neurosci. 26, 12694–12699 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Duvarci, S., Nader, K. & LeDoux, J. E. Activation of extracellular signal-regulated kinase- mitogen-activated protein kinase cascade in the amygdala is required for memory reconsolidation of auditory fear conditioning. Eur. J. Neurosci. 21, 283–289 (2005).

    PubMed  Google Scholar 

  47. Kelly, A., Laroche, S. & Davis, S. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory. J. Neurosci. 23, 5354–5360 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Valjent, E., Corbille, A. G., Bertran-Gonzalez, J., Herve, D. & Girault, J. A. Inhibition of ERK pathway or protein synthesis during reexposure to drugs of abuse erases previously learned place preference. Proc. Natl Acad. Sci. USA 103, 2932–2937 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Koh, M. T. & Bernstein, I. L. Inhibition of protein kinase A activity during conditioned taste aversion retrieval: interference with extinction or reconsolidation of a memory? Neuroreport 14, 405–407 (2003).

    CAS  PubMed  Google Scholar 

  50. Kemenes, G., Kemenes, I., Michel, M., Papp, A. & Muller, U. Phase-dependent molecular requirements for memory reconsolidation: differential roles for protein synthesis and protein kinase A activity. J. Neurosci. 26, 6298–6302 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hall, J., Thomas, K. L. & Everitt, B. J. Cellular imaging of zif268 expression in the hippocampus and amygdala during contextual and cued fear memory retrieval: selective activation of hippocampal CA1 neurons during the recall of contextual memories. J. Neurosci. 21, 2186–2193 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Thomas, K. L., Hall, J. & Everitt, B. J. Cellular imaging with zif268 expression in the rat nucleus accumbens and frontal cortex further dissociates the neural pathways activated following the retrieval of contextual and cued fear memory. Eur. J. Neurosci. 16, 1789–1796 (2002).

    PubMed  Google Scholar 

  53. Strekalova, T. et al. Memory retrieval after contextual fear conditioning induces c-Fos and JunB expression in CA1 hippocampus. Genes Brain Behav. 2, 3–10 (2003).

    CAS  PubMed  Google Scholar 

  54. Tronel, S. & Sara S. J. Mapping of olfactory memory circuits: region-specific c-fos activation after odor-reward associative learning or after its retrieval. Learn. Mem. 9, 105–111 (2002).

    PubMed  PubMed Central  Google Scholar 

  55. von Hertzen, L. S. & Giese, K. P. Memory reconsolidation engages only a subset of immediate-early genes induced during consolidation. J. Neurosci. 25, 1935–1942 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rohrbaugh, M. & Riccio, D. C. Paradoxical enhancement of learned fear. J. Abnorm. Psychol. 75, 210–216 (1970).

    CAS  PubMed  Google Scholar 

  57. Gordon, W. C. & Spear N. E., The effects of strychnine on recently acquired and reactivated passive avoidance memories. Physiol. Behav. 10, 1071–1075 (1973).

    CAS  PubMed  Google Scholar 

  58. Frenkel, L., Maldonado, H. & Delorenz, A. Memory strengthening by a real-life episode during reconsolidation: an outcome of water deprivation via brain angiotensin II. Eur. J. Neurosci. 22, 1757–1766 (2005).

    PubMed  Google Scholar 

  59. Blaiss, C. A. & Janak, P. H. Post-training and post-reactivation administration of amphetamine enhances morphine conditioned place preference. Behav. Brain. Res. 171, 329–337 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee, J. L. C., Milton, A. L. & Everitt, B. J. Reconsolidation and extinction of conditioned fear: inhibition and potentiation. J. Neurosci. 26, 10051–10056 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rodriguez-Ortiz, C. J., De la Cruz, V., Gutierrez, R. & Bermidez-Rattoni, F. Protein synthesis underlies post-retrieval memory consolidation to a restricted degree only when updated information is obtained. Learn. Mem. 12, 533–537 (2005).

    PubMed  PubMed Central  Google Scholar 

  62. Hupbach, A., Gomez, R., Hardt, O. & Nadel, L. Reconsolidation of episodic memories: a subtle reminder triggers integration of new information. Learn. Mem. 14, 47–53 (2007). This important article demonstrates retrieval-initiated updating of memory in a traditional human memory task.

    PubMed  PubMed Central  Google Scholar 

  63. Debiec, J., Doyere, V., Nader, K. & Le Doux, J. E. Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala. Proc. Natl Acad. Sci. USA 103, 3428–3433 (2006). An important demonstration of the specificity of reconsolidation of fear memories.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Duvarci, S. & Nader, K. Characterization of fear memory reconsolidation. J. Neurosci. 24, 9269–9275 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Fonseca, R., Nagerl, U. V. & Bonhoeffer, T. Neuronal activity determines the protein synthesis dependence of long-term potentiation. Nature Neurosci. 9, 478–480 (2006). This seminal study is the first study to suggest a reconsolidation-like process in slice electrophysiology. Development of this model will contribute to the progress of research into mechanisms of memory reconsolidation.

    CAS  PubMed  Google Scholar 

  66. Squire, L. R., Slater, P. C. & Chace, P. M. Reactivation of recent or remote memory before electroconvulsive therapy does not produce retrograde amnesia. Behav. Biol. 18, 335–343 (1976).

    CAS  PubMed  Google Scholar 

  67. McCleery, J. M. & Harvey, A. G. Integration of psychological and biological approaches to trauma memory: implications for pharmacological prevention of PTSD. J. Trauma. Stress 17, 485–496 (2004).

    PubMed  Google Scholar 

  68. Centonze, D., Siracusana, A., Calabresi, P. & Bernardi, G. Removing pathogenic memories: a neurobiology of psychotherapy. Mol. Neurobiol. 32, 123–132 (2005).

    CAS  PubMed  Google Scholar 

  69. Pitman, R. K. et al. Pilot study of secondary prevention of posttraumatic stress disorder with propranolol. Biol. Psychiatry 51, 189–192 (2002).

    CAS  PubMed  Google Scholar 

  70. Miller, M. M., Altemus, M., Debiec, J., LeDoux, J. E. & Phelps, E. A. Propranolol impairs reconsolidation of conditioned fear in humans. Soc. Neurosci. Abstr. 208.2 (2004).

  71. Debiec, J. & LeDoux, J. E. Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129, 267–272 (2004).

    CAS  PubMed  Google Scholar 

  72. Bustos, S. G., Maldonado, H. & Molina, V. A. Midazolam disrupts fear memory reconsolidation. Neuroscience 139, 831–842 (2006).

    CAS  PubMed  Google Scholar 

  73. Walker, D. L., Ressler, K. J., Lu, K. T. & Davis, M. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J. Neurosci. 22, 2343–2351 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Quartermain, D., Mower, J., Rafferty, M. F., Hertng, R. L. & Lanthorn, T. H. Acute but not chronic activation of the NMDA-coupled glycine receptor with D-cycloserine facilitates learning and retention. Eur. J. Pharmacol. 257, 7–12 (1994).

    CAS  PubMed  Google Scholar 

  75. McClung, C. A. & Nestler, E. J. Regulation of gene expression and cocaine reward by CREB and ΔFosB. Nature Neurosci. 6, 1208–1215 (2003).

    CAS  PubMed  Google Scholar 

  76. Nestler, E. J. Molecular basis of long-term plasticity underlying addiction. Nature Rev. Neurosci. 2, 119–128 (2001).

    CAS  Google Scholar 

  77. Terwilliger, R. Z., Beitner-Johnson, D., Sevarino, K. A., Crain, S. M. & Nestler, E. J. A general role for adaptations in G-proteins and the cyclic AMP system in mediating the chronic actions of morphine and cocaine on neuronal function. Brain Res. 548, 100–110 (1991).

    CAS  PubMed  Google Scholar 

  78. Rose, J. K. & Rankin, C. H. Blocking memory reconsolidation reverses memory-associated changes in glutamate receptor expression. J. Neurosci. 26, 1582–1587 (2006). Important study showing that glutamate receptor removal from synapses coincides with behavioural measures of memory disruption after retrieval. The use of this novel dependent variable provides strong evidence for cellular changes that correlate with a reversal of learning-related changes, and therefore a role for reconsolidation in the maintenance of stored memories.

    Google Scholar 

  79. Eisenberg, M. & Dudai, Y. Reconsolidation of fresh, remote, and extinguished fear memory in Medaka: old fears don't die. Eur. J. Neurosci. 20, 3397–3403 (2004).

    PubMed  Google Scholar 

  80. Milekic, M. H. & Alberini, C. M. Temporally graded requirement for protein synthesis following memory reactivation. Neuron 36, 521–525 (2002).

    CAS  PubMed  Google Scholar 

  81. Frankland, P. W. et al. Stability of recent and remote contextual fear memory. Learn. Mem. 13, 451–457 (2006).

    PubMed  PubMed Central  Google Scholar 

  82. Pedreira, M. E., Perez-Cuesta, L. M. & Maldonado, H. Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction. Learn. Mem. 11, 579–585 (2004).

    PubMed  PubMed Central  Google Scholar 

  83. Biedenkapp, J. C. & Rudy, J. W. Context memories and reactivation: constraints on the reconsolidation hypothesis. Behav. Neurosci. 118, 956–964 (2004).

    PubMed  Google Scholar 

  84. Wang, S., Marin, M. & Nader, K. Memory strength as a transient boundary condition on reconsolidation of auditory fear memories and its molecular correlates. Soc. Neurosci. Abstr. 650.2 (2005).

  85. Mamiya, N., Suzuki, A. & Kida, S. Analyses of brain regions showing CREB activation in reconsolidation and extinction phases of contextual fear memory. Soc. Neurosci. Abstr. 208.2 (2006).

  86. Bouton, M. E. Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psychol. Bull. 114, 80–99 (1993).

    CAS  PubMed  Google Scholar 

  87. Przybyslawski, J. Roullet, P. & Sara, S. J. Attenuation of emotional and nonemotional memories after their reactivation: role of β adrenergic receptors. J. Neurosci. 19, 6623–6628 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Roullet, P. & Sara, S. Consolidation of memory after its reactivation: involvement of β noradrenergic receptors in the late phase. Neural Plast. 6, 63–68 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Bernadi, R. E., Lattal, K. M. & Berger, S. P. Postretrieval propranolol disrupts a cocaine conditioned place preference. Neuroreport 17, 1443–1447 (2006).

    Google Scholar 

  90. Diergaarde, L., Schoffelmeer, A. N. & De Vries, T. J. β-adrenoceptor mediated inhibition of long-term reward-related memory reconsolidation. Behav. Brain. Res. 170, 333–336 (2006).

    CAS  PubMed  Google Scholar 

  91. Przybyslawski, J., Roullet, P. & Sara, S. J. Reconsolidation of memory after its reactivation. Behav. Brain. Res. 84, 241–246 (1997).

    CAS  PubMed  Google Scholar 

  92. Mamou, C. B., Gamache, K. & Nader, K. NMDA receptors are critical for unleashing consolidated auditory fear memories. Nat. Neurosci. 9, 1237–1239 (2006).

    PubMed  Google Scholar 

  93. Torras-Garcia, M., Lelong, J., Tronel, S. & Sara, S. Reconsolidation after remembering an odor-reward association requires NMDA receptors. Learn. Mem. 12, 18–22 (2005).

    PubMed  PubMed Central  Google Scholar 

  94. Cestari, V., Costanzi, M., Castellano, C. & Rossi-Arnaud, C. A role for ERK2 in reconsolidation of fear memories in mice. Neurobiol. Learn. Mem. 86, 133–143 (2006).

    CAS  PubMed  Google Scholar 

  95. Parsons, R. G., Gafford, G. M., Baruch, D. E., Riedner, B. A. & Helmstetter, F. J. Long-term stability of fear memory depends on the synthesis of protein but not mRNA in the amygdala. Eur. J. Neurosci. 23, 1853–1859 (2006).

    PubMed  PubMed Central  Google Scholar 

  96. Debiec, J., LeDoux, J. E. & Nader, K. Cellular and systems reconsolidation in the hippocampus. Neuron 36, 527–538 (2002).

    CAS  PubMed  Google Scholar 

  97. Gainutdinova, T. H. et al. Reconsolidation of a context long-term memory in the terrestrial snail requires protein synthesis. Learn. Mem. 12, 620–625 (2005).

    PubMed  PubMed Central  Google Scholar 

  98. Runyan, J. D. & Dash, P. K. Inhibition of hippocampal protein synthesis following recall disrupts expression of episodic-like memory in trace conditioning. Hippocampus 15, 333–339 (2005).

    PubMed  Google Scholar 

  99. Blum, S., Runyan, J. D. & Dash, P. K. Inhibition of prefrontal protein synthesis following recall does not disrupt memory for trace fear conditioning. BMC Neurosci. 7, 67 (2006).

    PubMed  PubMed Central  Google Scholar 

  100. Litvin, O. O. & Anokhin, K. V., Mechanisms of memory reorganization during retrieval of acquired behavioral experience in chicks: the effects of protein synthesis inhibition in the brain. Neurosci. Behav. Physiol. 30, 671–678 (2000).

    CAS  PubMed  Google Scholar 

  101. Bahar, A., Dorfman, N. & Dudai, Y. Amygdalar circuits required for either consolidation or extinction of taste aversion memory are not required for reconsolidation. Eur. J. Neurosci. 19, 1115–1118 (2004).

    PubMed  Google Scholar 

  102. Gruest, N., Richer, P. & Hars, B. Memory consolidation and reconsolidation in the rat pup require protein synthesis. J. Neurosci. 24, 10488–10492 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang, S. H., Ostlund, S. B., Nader, K. & Balleine, B. W. Consolidation and reconsolidation of incentive learning in the amygdala. J. Neurosci. 25, 830–835 (2005).

    PubMed  PubMed Central  Google Scholar 

  104. Lattal, K. M., Honarvar, S. & Abel, T. Effects of post-session injections of anisomycin on the extinction of a spatial preference and on the acquisition of a spatial reversal preference. Behav. Brain. Res. 153, 327–339 (2004).

    CAS  PubMed  Google Scholar 

  105. Akirav, I. & Maroun, M. Ventromedial prefrontal cortex is obligatory for consolidation and reconsolidation of object recognition memory. Cereb. Cortex 16, 1739–1769 (2006).

    Google Scholar 

  106. Rossato, J. I et al. On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn. Mem. 14, 36–46 (2007).

    PubMed  PubMed Central  Google Scholar 

  107. Inda, M. C., Delgado-Garcia, J. M. & Carrion, A. M. Acquisition, consolidation, reconsolidation, and extinction of eyelid conditioning responses require de novo protein synthesis. J. Neurosci. 25, 2070–2080 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Yim, A. J., Moraes, C. R., Ferriera, T. L. & Oliveira, M. G. Protein synthesis inhibition in the basolateral amygdala following retrieval does not impair expression of morphine-associated conditioned place preference. Behav. Brain. Res. 171, 162–169 (2006).

    CAS  PubMed  Google Scholar 

  109. Sangha, S., Scheibenstock, A. & Lukowiak, K. Reconsolidation of a long-term memory in Lymnaea requires new protein and RNA synthesis and the soma of right pedal dorsal 1. J. Neurosci. 3, 8034–8040 (2003).

    Google Scholar 

  110. Child, F. M., Epstein, H. T., Kuzirian, A. M. & Alkon, D. L. Memory reconsolidation in Hermissenda. Biol. Bull. 205, 218–219 (2003).

    CAS  PubMed  Google Scholar 

  111. Kraus, M. et al. Memory consolidation for the discrimination of frequency-modulated tones in mongolian gerbils is sensitive to protein-synthesis inhibitors applied to the auditory cortex. Learn. Mem. 9, 293–303 (2002).

    PubMed  PubMed Central  Google Scholar 

  112. Salinska, E. The role of group I metabotropic glutamate receptors in memory consolidation and reconsolidation in the passive avoidance task in 1-day-old chicks. Neurochem. Int. 48, 447–452 (2006).

    CAS  PubMed  Google Scholar 

  113. Sherry, J. M., Hale, M. W. & Crowe, S. F. The effects of the dopamine D1 receptor antagonist SCH23390 on memory reconsolidation following reminder-activated retrieval in day-old chicks. Neurobiol. Learn. Mem. 83, 104–112 (2005).

    CAS  PubMed  Google Scholar 

  114. Bucherelli, C., Baldi, E., Mariottini, C., Passani, M. B. & Blandina, P. Aversive memory reactivation engages in the amygdala only some neurotransmitters involved in consolidation. Learn. Mem. 13, 426–430 (2006).

    CAS  PubMed  Google Scholar 

  115. Boccia, M. M., Acosta, G. B., Blake, M. G. & Baratti, C. M. Memory consolidation and reconsolidation of an inhibitory avoidance response in mice: effects of i.c.v. injections of hemicholinium-3. Neuroscience 124, 735–741 (2004).

    CAS  PubMed  Google Scholar 

  116. Doyere, V., Debiec, J., Monfils, M.-H., Schafe, G. E. & LeDoux, J. E. Synapse-specific reconsolidation of distinct fear memories in the lateral amygdala. Nature Neurosci. (in the press).

Download references

Acknowledgements

We would like to thank J. J. Quinn and G. E. Schafe for helpful comments and discussion on this manuscript and topic. We would also like to sincerely thank the reviewers for their insight and helpful criticisms and comments on this review. This work was supported by United States Public Health Service grants to J.R.T. and by the Abraham Ribicoff Research Facilities of the Connecticut Mental Health Center, State of Connecticut, Department of Mental Health and Addiction Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane R. Taylor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Taylor's homepage

Glossary

Consolidation

The process by which new memories are stored after a novel learning experience.

Retrieval

Return of a previously established memory into consciousness, resulting in lability of the memory.

Memory trace

Refers to the memory, stored as a result of the modification of synapses.

Lability

Instability of a previously consolidated memory, as identified by its susceptibility to manipulation.

Reconsolidation

The process by which previously consolidated memories are stabilized after retrieval.

Plasticity

Physical changes in neuronal connections or morphology as a result of external stimulation that results in long-lasting functional changes in excitability in a system of neurons. These physical changes at synapses underlie experience-dependent long-lasting changes in behaviour and memory.

Pavlovian conditioning

Procedure in which a stimulus (conditioned stimulus) — such as a tone — that elicits no response on its own, is paired with a biologically relevant stimulus (unconditioned stimulus) — such as footshock — during training. After consolidation, the conditioned stimulus elicits a conditioned response.

Reactivation

Cued retrieval of a memory under experimental conditions. In experiments on reconsolidation, reactivations are usually presentations of the previously conditioned stimulus or context. The length of the reactivation can be modified by changing the length of exposure to the conditioned stimulus or context.

Extinction

Refers either to the learning process by which a cue (or action) previously associated with a reinforcer becomes newly associated with no outcome, leading to a decrease in the previously established conditioned response or to the procedure by which a cue or action previously paired with a reinforcer is now paired with no reinforcer.

Spontaneous recovery

Retrieval of a previously extinguished memory, usually after a long period of time (weeks) after extinction, in the absence of experimental manipulation, retraining or changes in context.

Reinstatement

Retrieval of an extinguished memory after unpaired exposure to the unconditioned stimulus.

Inactive avoidance

(IA). A fear conditioning procedure in which an animal has to learn to inhibit a naturally occurring response (for example moving from a light area to a dark area) in order to avoid an aversive event (such as footshock).

Conditioned place preference

(CPP). Behavioural test in which an unconditioned stimulus is paired with one distinctive context, and a neutral event is paired with a different context. Preference is determined by allowing the animal to move between the two contexts, and measuring the amount of time spent in each context.

Double dissociation

Situation in which one experimental manipulation affects process A but not process B, and a second manipulation affects process B but not process A. Meeting both of these criteria for a double dissociation is considered strong evidence for two separable processes.

Second-order conditioning

Procedure in which a previously conditioned stimulus is used as the reinforcer for conditioning a second stimulus.

Long-term potentiation

(LTP). The prolonged strengthening of synaptic communication, which is induced by patterned input and is thought to be involved in learning and memory formation.

Long-term depression

(LTD) A persistent reduction of synaptic transmission in response to weak, poorly-correlated input.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tronson, N., Taylor, J. Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 8, 262–275 (2007). https://doi.org/10.1038/nrn2090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2090

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing