Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Patterning and axon guidance of cranial motor neurons

Key Points

  • Anatomically, in vertebrate embryos, cranial motor neurons develop in columns and eventually cluster to form nuclei in discrete regions of the midbrain and hindbrain (which together make up the brainstem). Motor neurons in the different cranial motor nuclei extend axons, forming the cranial nerves, to innervate muscles and parasympathetic ganglia in the head and neck.

  • The specification of the identity of cranial motor nuclei depends on transcription factors, such as those encoded by Hox and Nkx genes, which are expressed in rostrocaudal or dorsoventral domains in the neuroepithelium, respectively. These transcription factor 'codes' confer axon pathfinding behaviour, although the repertoires of receptors involved in this process remain to be characterized in many cases.

  • Diffusible axon guidance molecules, such as netrin 1, Slit proteins and Semaphorins, are involved in guiding cranial motor axons away from the midline and channelling them towards target muscles. Conversely, HGF derived from these muscles acts as a chemoattractant.

  • Several studies on congenital cranial dysinnervation disorders in humans have identified mutations in patterning and axon guidance and/or transport molecules.

Abstract

The cranial motor nerves control muscles involved in eye, head and neck movements, feeding, speech and facial expression. The generic and specific properties of cranial motor neurons depend on a matrix of rostrocaudal and dorsoventral patterning information. Repertoires of transcription factors, including Hox genes, confer generic and specific properties on motor neurons, and endow subpopulations at various axial levels with the ability to navigate to their targets. Cranial motor axon projections are guided by diffusible cues and aided by guideposts, such as nerve exit points, glial cells and muscle primordia. The recent identification of genes that are mutated in human cranial dysinnervation disorders is now shedding light on the functional consequences of perturbations of cranial motor neuron development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cranial nerves in the chick embryo.
Figure 2: Motor neuron organization in the vertebrate brainstem.
Figure 3: Expression patterns of Hox genes in the vertebrate hindbrain.
Figure 4: Patterns of neural crest migration and branchial arch Hox gene expression in chick and mouse embryos.
Figure 5: Dorsoventral patterning of cranial motor neurons.

Similar content being viewed by others

References

  1. Price, S. R. & Briscoe, J. The generation and diversification of spinal motor neurons: signals and responses. Mech. Dev. 121, 1103–1115 (2004).

    CAS  PubMed  Google Scholar 

  2. Briscoe, J. & Novitch, B. G. Regulatory pathways linking progenitor patterning, cell fates and neurogenesis in the ventral neural tube. Philos. Trans. R. Soc. Lond. B Biol. Sci. 5 Feb 2007 (doi:10.1098/rstb.2006.2012).

    CAS  Google Scholar 

  3. Kuratani, S. & Tanaka, S. Peripheral development of avian trigeminal nerves. Am. J. Anat. 187, 65–80 (1990).

    CAS  PubMed  Google Scholar 

  4. Cordes, S. P. Molecular genetics of cranial nerve development in mouse. Nature Rev. Neurosci. 2, 611–623 (2001).

    CAS  Google Scholar 

  5. Chandrasekhar, A. Turning heads: development of vertebrate branchiomotor neurons. Dev. Dyn. 229, 143–161 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Engle, E. C. The genetic basis of complex strabismus. Pediatr. Res. 59, 343–348 (2006).

    PubMed  Google Scholar 

  7. Lumsden, A. & Keynes, R. Segmental patterns of neuronal development in the chick hindbrain. Nature 337, 424–428 (1989). This landmark paper describes for the first time the segmental organization of the hindbrain into rhombomeres, including the segmental arrangement of cranial motor neurons.

    CAS  PubMed  Google Scholar 

  8. Clarke, J. D. & Lumsden, A. Segmental repetition of neuronal phenotype sets in the chick embryo hindbrain. Development 118, 151–162 (1993).

    CAS  PubMed  Google Scholar 

  9. Lumsden, A. Segmentation and compartition in the early avian hindbrain. Mech. Dev. 121, 1081–1088 (2004).

    CAS  PubMed  Google Scholar 

  10. Jacob, J., Hacker, A. & Guthrie, S. Mechanisms and molecules in motor neuron specification and axon pathfinding. Bioessays 23, 582–595 (2001).

    CAS  PubMed  Google Scholar 

  11. Gilland, E. & Baker, R. Conservation of neuroepithelial and mesodermal segments in the embryonic vertebrate head. Acta Anat. (Basel) 148, 110–123 (1993).

    CAS  Google Scholar 

  12. Jacob, J. & Guthrie, S. Facial visceral motor neurons display specific rhombomere origin and axon pathfinding behavior in the chick. J. Neurosci. 20, 7664–7671 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Moens, C. B. & Prince, V. E. Constructing the hindbrain: insights from the zebrafish. Dev. Dyn. 224, 1–17 (2002).

    PubMed  Google Scholar 

  14. Simon, H., Guthrie, S. & Lumsden, A. Regulation of SC1/DM-GRASP during the migration of motor neurons in the chick embryo brain stem. J. Neurobiol. 25, 1129–1143 (1994).

    CAS  PubMed  Google Scholar 

  15. Simon, H. & Lumsden, A. Rhombomere-specific origin of the contralateral vestibulo-acoustic efferent neurons and their migration across the embryonic midline. Neuron 11, 209–220 (1993).

    CAS  PubMed  Google Scholar 

  16. Agarwala, S., Sanders, T. A. & Ragsdale, C. W. Sonic hedgehog control of size and shape in midbrain pattern formation. Science 291, 2147–2150 (2001).

    CAS  PubMed  Google Scholar 

  17. Agarwala, S. & Ragsdale, C. W. A role for midbrain arcs in nucleogenesis. Development 129, 5779–5788 (2002).

    CAS  PubMed  Google Scholar 

  18. Sanders, T. A., Lumsden, A. & Ragsdale, C. W. Arcuate plan of chick midbrain development. J. Neurosci. 22, 10742–10750 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Pattyn, A., Morin, X., Cremer, H., Goridis, C. & Brunet, J. F. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124, 4065–4075 (1997).

    CAS  PubMed  Google Scholar 

  20. Lumsden, A. & Krumlauf, R. Patterning the vertebrate neuraxis. Science 274, 1109–1115 (1996).

    CAS  PubMed  Google Scholar 

  21. Wilkinson, D. G., Bhatt, S., Chavrier, P., Bravo, R. & Charnay, P. Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature 337, 461–464 (1989).

    CAS  PubMed  Google Scholar 

  22. Schneider-Maunoury, S., Seitanidou, T., Charnay, P. & Lumsden, A. Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants. Development 124, 1215–1226 (1997).

    CAS  PubMed  Google Scholar 

  23. Cordes, S. P. & Barsh, G. S. The mouse segmentation gene kr encodes a novel basic domain-leucine zipper transcription factor. Cell 79, 1025–1034 (1994).

    CAS  PubMed  Google Scholar 

  24. Moens, C. B., Cordes, S. P., Giorgianni, M. W., Barsh, G. S. & Kimmel, C. B. Equivalence in the genetic control of hindbrain segmentation in fish and mouse. Development 125, 381–391 (1998).

    CAS  PubMed  Google Scholar 

  25. McKay, I. J., Lewis, J. & Lumsden, A. Organization and development of facial motor neurons in the kreisler mutant mouse. Eur. J. Neurosci. 9, 1499–1506 (1997).

    CAS  PubMed  Google Scholar 

  26. McGinnis, W. & Krumlauf, R. Homeobox genes and axial patterning. Cell 68, 283–302 (1992).

    CAS  PubMed  Google Scholar 

  27. Greer, J. M., Puetz, J., Thomas, K. R. & Capecchi, M. R. Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 403, 661–665 (2000).

    CAS  PubMed  Google Scholar 

  28. Glover, J. C., Renaud, J. S. & Rijli, F. M. Retinoic acid and hindbrain patterning. J. Neurobiol. 66, 705–725 (2006).

    CAS  PubMed  Google Scholar 

  29. Rhinn, M., Picker, A. & Brand, M. Global and local mechanisms of forebrain and midbrain patterning. Curr. Opin. Neurobiol. 16, 5–12 (2006).

    CAS  PubMed  Google Scholar 

  30. Irving, C. & Mason, I. Signalling by FGF8 from the isthmus patterns anterior hindbrain and establishes the anterior limit of Hox gene expression. Development 127, 177–186 (2000).

    CAS  PubMed  Google Scholar 

  31. Niederreither, K., Vermot, J., Schuhbaur, B., Chambon, P. & Dolle, P. Retinoic acid synthesis and hindbrain patterning in the mouse embryo. Development 127, 75–85 (2000).

    CAS  PubMed  Google Scholar 

  32. Dupe, V. & Lumsden, A. Hindbrain patterning involves graded responses to retinoic acid signalling. Development 128, 2199–2208 (2001).

    CAS  PubMed  Google Scholar 

  33. Morrison, A., Ariza-McNaughton, L., Gould, A., Featherstone, M. & Krumlauf, R. HOXD4 and regulation of the group 4 paralog genes. Development 124, 3135–3146 (1997).

    CAS  PubMed  Google Scholar 

  34. Gould, A., Itasaki, N. & Krumlauf, R. Initiation of rhombomeric Hoxb4 expression requires induction by somites and a retinoid pathway. Neuron 21, 39–51 (1998).

    CAS  PubMed  Google Scholar 

  35. Sockanathan, S. & Jessell, T. M. Motor neuron-derived retinoid signaling specifies the subtype identity of spinal motor neurons. Cell 94, 503–514 (1998).

    CAS  PubMed  Google Scholar 

  36. Wilson, L., Gale, E., Chambers, D. & Maden, M. Retinoic acid and the control of dorsoventral patterning in the avian spinal cord. Dev. Biol. 269, 433–446 (2004).

    CAS  PubMed  Google Scholar 

  37. Guidato, S., Barrett, C. & Guthrie, S. Patterning of motor neurons by retinoic acid in the chick embryo hindbrain in vitro. Mol. Cell. Neurosci. 23, 81–95 (2003).

    CAS  PubMed  Google Scholar 

  38. Begemann, G., Marx, M., Mebus, K., Meyer, A. & Bastmeyer, M. Beyond the neckless phenotype: influence of reduced retinoic acid signaling on motor neuron development in the zebrafish hindbrain. Dev. Biol. 271, 119–129 (2004).

    CAS  PubMed  Google Scholar 

  39. Krumlauf, R. et al. Hox homeobox genes and regionalisation of the nervous system. J. Neurobiol. 24, 1328–1340 (1993).

    CAS  PubMed  Google Scholar 

  40. Hunt, P., Wilkinson, D. & Krumlauf, R. Patterning the vertebrate head: murine Hox 2 genes mark distinct subpopulations of premigratory and migrating cranial neural crest. Development 112, 43–50 (1991).

    CAS  PubMed  Google Scholar 

  41. Graham, A., Maden, M. & Krumlauf, R. The murine Hox-2 genes display dynamic dorsoventral patterns of expression during central nervous system development. Development 112, 255–264 (1991).

    CAS  PubMed  Google Scholar 

  42. Kontges, G. & Lumsden, A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122, 3229–3242 (1996).

    CAS  PubMed  Google Scholar 

  43. Prince, V. & Lumsden, A. Hoxa-2 expression in normal and transposed rhombomeres: independent regulation in the neural tube and neural crest. Development 120, 911–923 (1994).

    CAS  PubMed  Google Scholar 

  44. Gendron-Maguire, M., Mallo, M., Zhang, M. & Gridley, T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell 75, 1317–1331 (1993).

    CAS  PubMed  Google Scholar 

  45. Rijli, F. M. et al. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell 75, 1333–1349 (1993).

    CAS  PubMed  Google Scholar 

  46. Gavalas, A., Davenne, M., Lumsden, A., Chambon, P. & Rijli, F. M. Role of Hoxa-2 in axon pathfinding and rostral hindbrain patterning. Development 124, 3693–3702 (1997).

    CAS  PubMed  Google Scholar 

  47. Jungbluth, S., Bell, E. & Lumsden, A. Specification of distinct motor neuron identities by the singular activities of individual Hox genes. Development 126, 2751–2758 (1999).

    CAS  PubMed  Google Scholar 

  48. Davenne, M. et al. Hoxa2 and Hoxb2 control dorsoventral patterns of neuronal development in the rostral hindbrain. Neuron 22, 677–691 (1999).

    CAS  PubMed  Google Scholar 

  49. Carpenter, E. M., Goddard, J. M., Chisaka, O., Manley, N. R. & Capecchi, M. R. Loss of Hox-A1 (Hox-1.6) function results in the reorganization of the murine hindbrain. Development 118, 1063–1075 (1993).

    CAS  PubMed  Google Scholar 

  50. Mark, M. et al. Two rhombomeres are altered in Hoxa-1 mutant mice. Development 119, 319–338 (1993).

    CAS  PubMed  Google Scholar 

  51. Barrow, J. R., Stadler, H. S. & Capecchi, M. R. Roles of Hoxa1 and Hoxa2 in patterning the early hindbrain of the mouse. Development 127, 933–944 (2000).

    CAS  PubMed  Google Scholar 

  52. Goddard, J. M., Rossel, M., Manley, N. R. & Capecchi, M. R. Mice with targeted disruption of Hoxb-1 fail to form the motor nucleus of the VIIth nerve. Development 122, 3217–3228 (1996).

    CAS  PubMed  Google Scholar 

  53. Studer, M., Lumsden, A., Ariza-McNaughton, L., Bradley, A. & Krumlauf, R. Altered segmental identity and abnormal migration of motor neurons in mice lacking Hoxb-1. Nature 384, 630–634 (1996). This paper, together with reference 52, shows that facial branchiomotor (FBM) neurons in Hoxb1 -mutant mice fail to differente and migrate and eventually die.

    CAS  PubMed  Google Scholar 

  54. Bell, E., Wingate, R. J. & Lumsden, A. Homeotic transformation of rhombomere identity after localized Hoxb1 misexpression. Science 284, 2168–2171 (1999). This paper elegantly demonstrates that misexpression of Hoxb1 in presumptive trigeminal motor neurons converts them to an FBM fate.

    CAS  PubMed  Google Scholar 

  55. Arenkiel, B. R., Gaufo, G. O. & Capecchi, M. R. Hoxb1 neural crest preferentially form glia of the PNS. Dev. Dyn. 227, 379–386 (2003).

    CAS  PubMed  Google Scholar 

  56. Arenkiel, B. R., Tvrdik, P., Gaufo, G. O. & Capecchi, M. R. Hoxb1 functions in both motoneurons and in tissues of the periphery to establish and maintain the proper neuronal circuitry. Genes Dev. 18, 1539–1552 (2004). This intriguing paper uses conditional deletion of Hoxb1 in the neural crest to show that r4 neural-crest-derived Schwann cells have a role in the maintenance and branching of FBM neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gavalas, A., Ruhrberg, C., Livet, J., Henderson, C. E. & Krumlauf, R. Neuronal defects in the hindbrain of Hoxa1, Hoxb1 and Hoxb2 mutants reflect regulatory interactions among these Hox genes. Development 130, 5663–5679 (2003).

    CAS  PubMed  Google Scholar 

  58. Gavalas, A. et al. Hoxa1 and Hoxb1 synergize in patterning the hindbrain, cranial nerves and second pharyngeal arch. Development 125, 1123–1136 (1998).

    CAS  PubMed  Google Scholar 

  59. Rossel, M. & Capecchi, M. R. Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 126, 5027–5040 (1999).

    CAS  PubMed  Google Scholar 

  60. Maconochie, M. K. et al. Cross-regulation in the mouse HoxB complex: the expression of Hoxb2 in rhombomere 4 is regulated by Hoxb1. Genes Dev. 11, 1885–1895 (1997).

    CAS  PubMed  Google Scholar 

  61. Tumpel, S. et al. Expression of Hoxa2 in rhombomere 4 is regulated by a conserved cross-regulatory mechanism dependent upon Hoxb1. Dev. Biol. 302, 646–660 (2007).

    PubMed  Google Scholar 

  62. Pata, I. et al. The transcription factor GATA3 is a downstream effector of Hoxb1 specification in rhombomere 4. Development 126, 5523–5531 (1999).

    CAS  PubMed  Google Scholar 

  63. Song, M. R. et al. T-box transcription factor Tbx20 regulates a genetic program for cranial motor neuron cell body migration. Development 133, 4945–4955 (2006).

    CAS  PubMed  Google Scholar 

  64. Moens, C. B. & Selleri, L. Hox cofactors in vertebrate development. Dev. Biol. 291, 193–206 (2006).

    CAS  PubMed  Google Scholar 

  65. Cooper, K. L., Leisenring, W. M. & Moens, C. B. Autonomous and nonautonomous functions for Hox/Pbx in branchiomotor neuron development. Dev. Biol. 253, 200–213 (2003).

    CAS  PubMed  Google Scholar 

  66. McClintock, J. M., Kheirbek, M. A. & Prince, V. E. Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 129, 2339–2354 (2002).

    CAS  PubMed  Google Scholar 

  67. Waskiewicz, A. J., Rikhof, H. A. & Moens, C. B. Eliminating zebrafish pbx proteins reveals a hindbrain ground state. Dev. Cell 3, 723–733 (2002).

    CAS  PubMed  Google Scholar 

  68. Popperl, H. et al. Segmental expression of Hoxb-1 is controlled by a highly conserved autoregulatory loop dependent upon exd/pbx. Cell 81, 1031–1042 (1995).

    CAS  PubMed  Google Scholar 

  69. Manzanares, M. et al. Segmental regulation of Hoxb-3 by kreisler. Nature 387, 191–195 (1997).

    CAS  PubMed  Google Scholar 

  70. Manzanares, M. et al. Conserved and distinct roles of kreisler in regulation of the paralogous Hoxa3 and Hoxb3 genes. Development 126, 759–769 (1999).

    CAS  PubMed  Google Scholar 

  71. Gaufo, G. O., Thomas, K. R. & Capecchi, M. R. Hox3 genes coordinate mechanisms of genetic suppression and activation in the generation of branchial and somatic motoneurons. Development 130, 5191–5201 (2003).

    CAS  PubMed  Google Scholar 

  72. Guidato, S., Prin, F. & Guthrie, S. Somatic motoneurone specification in the hindbrain: the influence of somite-derived signals, retinoic acid and Hoxa3. Development 130, 2981–2996 (2003).

    CAS  PubMed  Google Scholar 

  73. Jessell, T. M. Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nature Rev. Genet. 1, 20–29 (2000).

    CAS  PubMed  Google Scholar 

  74. Litingtung, Y. & Chiang, C. Control of Shh activity and signaling in the neural tube. Dev. Dyn. 219, 143–154 (2000).

    CAS  PubMed  Google Scholar 

  75. Stamataki, D., Ulloa, F., Tsoni, S. V., Mynett, A. & Briscoe, J. A gradient of Gli activity mediates graded Sonic hedgehog signaling in the neural tube. Genes Dev. 19, 626–641 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Briscoe, J., Pierani, A., Jessell, T. M. & Ericson, J. A homeodomain protein code specifies progenitor cell identity and neuronal fate in the ventral neural tube. Cell 101, 435–445 (2000). This important study shows that progenitor domains along the dorsoventral axis of the spinal cord that express different combinations of homeodomain proteins are of key importance in generating different neuronal types in response to SHH signalling. This model provides a conceptual framework for understanding motor neuron differentiation in the hindbrain.

    CAS  PubMed  Google Scholar 

  77. Shirasaki, R. & Pfaff, S. L. Transcriptional codes and the control of neuronal identity. Annu. Rev. Neurosci. 25, 251–281 (2002).

    CAS  PubMed  Google Scholar 

  78. Briscoe, J. & Ericson, J. The specification of neuronal identity by graded Sonic hedgehog signalling. Semin. Cell Dev. Biol. 10, 353–362 (1999).

    CAS  PubMed  Google Scholar 

  79. Pattyn, A., Vallstedt, A., Dias, J. M., Sander, M. & Ericson, J. Complementary roles for Nkx6 and Nkx2 class proteins in the establishment of motoneuron identity in the hindbrain. Development 130, 4149–4159 (2003).

    CAS  PubMed  Google Scholar 

  80. Ericson, J. et al. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180 (1997).

    CAS  PubMed  Google Scholar 

  81. Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398, 622–627 (1999).

    CAS  PubMed  Google Scholar 

  82. Sander, M. et al. Ventral neural patterning by Nkx homeobox genes: Nkx6.1 controls somatic motor neuron and ventral interneuron fates. Genes Dev. 14, 2134–2139 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Vallstedt, A. et al. Different levels of repressor activity assign redundant and specific roles to Nkx6 genes in motor neuron and interneuron specification. Neuron 31, 743–755 (2001).

    CAS  PubMed  Google Scholar 

  84. Pabst, O., Rummelies, J., Winter, B. & Arnold, H. H. Targeted disruption of the homeobox gene Nkx2.9 reveals a role in development of the spinal accessory nerve. Development 130, 1193–1202 (2003).

    CAS  PubMed  Google Scholar 

  85. Muller, M., Jabs, N., Lorke, D. E., Fritzsch, B. & Sander, M. Nkx6.1 controls migration and axon pathfinding of cranial branchio-motoneurons. Development 130, 5815–5826 (2003).

    PubMed  Google Scholar 

  86. Osumi, N. et al. Pax-6 is involved in the specification of hindbrain motor neuron subtype. Development 124, 2961–2972 (1997).

    CAS  PubMed  Google Scholar 

  87. Novitch, B. G., Chen, A. I. & Jessell, T. M. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–789 (2001).

    CAS  PubMed  Google Scholar 

  88. Lu, Q. R. et al. Common developmental requirement for Olig function indicates a motor neuron/oligodendrocyte connection. Cell 109, 75–86 (2002).

    CAS  PubMed  Google Scholar 

  89. Tsuchida, T. et al. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970 (1994).

    CAS  PubMed  Google Scholar 

  90. Tanabe, Y., William, C. & Jessell, T. M. Specification of motor neuron identity by the MNR2 homeodomain protein. Cell 95, 67–80 (1998).

    CAS  PubMed  Google Scholar 

  91. Varela-Echavarria, A., Pfaff, S. L. & Guthrie, S. Differential expression of LIM homeobox genes among motor neuron subpopulations in the developing chick brain stem. Mol. Cell. Neurosci. 8, 242–257 (1996).

    CAS  PubMed  Google Scholar 

  92. William, C. M., Tanabe, Y. & Jessell, T. M. Regulation of motor neuron subtype identity by repressor activity of Mnx class homeodomain proteins. Development 130, 1523–1536 (2003).

    CAS  PubMed  Google Scholar 

  93. Thaler, J. et al. Active suppression of interneuron programs within developing motor neurons revealed by analysis of homeodomain factor HB9. Neuron 23, 675–687 (1999).

    CAS  PubMed  Google Scholar 

  94. Sharma, K. et al. LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95, 817–828 (1998).

    CAS  PubMed  Google Scholar 

  95. Kraus, F., Haenig, B. & Kispert, A. Cloning and expression analysis of the mouse T-box gene Tbx20. Mech. Dev. 100, 87–91 (2001).

    CAS  PubMed  Google Scholar 

  96. Brunet, J. F. & Pattyn, A. Phox2 genes - from patterning to connectivity. Curr. Opin. Genet. Dev. 12, 435–440 (2002).

    CAS  PubMed  Google Scholar 

  97. Pattyn, A., Hirsch, M., Goridis, C. & Brunet, J. F. Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127, 1349–1358 (2000). This paper uses knockout mice to show that PHOX2B has an important role in controlling the differentiation of BM and VM neuronal types in the hindbrain. In these mice, the neurons fail to differentiate and subsequently die.

    CAS  PubMed  Google Scholar 

  98. Coppola, E., Pattyn, A., Guthrie, S. C., Goridis, C. & Studer, M. Reciprocal gene replacements reveal unique functions for Phox2 genes during neural differentiation. EMBO J. 24, 4392–4403 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Pattyn, A. et al. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev. 17, 729–737 (2003). This important paper shows the sequential generation of BM, VM and serotonergic neurons from the V3 domain in the hindbrain, and the genetic control mechanisms that control this process at different axial levels.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Samad, O. A. et al. Integration of anteroposterior and dorsoventral regulation of Phox2b transcription in cranial motoneuron progenitors by homeodomain proteins. Development 131, 4071–4083 (2004). This is an important paper in which the genes that regulate the patterning of the dorsoventral and rostrocaudal axes are found to converge in regulating PHOX2B expression and BM and VM neuron differentiation in r4.

    CAS  PubMed  Google Scholar 

  101. Noden, D. M. Interactions and fates of avian craniofacial mesenchyme. Development 103 (Suppl.) 121–140 (1988).

    PubMed  Google Scholar 

  102. Noden, D. M. & Trainor, P. A. Relations and interactions between cranial mesoderm and neural crest populations. J. Anat. 207, 575–601 (2005).

    PubMed  PubMed Central  Google Scholar 

  103. Hacker, A. & Guthrie, S. A distinct developmental programme for the cranial paraxial mesoderm in the chick embryo. Development 125, 3461–3472 (1998).

    CAS  PubMed  Google Scholar 

  104. McClearn, D. & Noden, D. M. Ontogeny of architectural complexity in embryonic quail visceral arch muscles. Am. J. Anat. 183, 277–293 (1988).

    CAS  PubMed  Google Scholar 

  105. Guthrie, S. & Pini, A. Chemorepulsion of developing motor axons by the floor plate. Neuron 14, 1117–1130 (1995).

    CAS  PubMed  Google Scholar 

  106. Tucker, A., Lumsden, A. & Guthrie, S. Cranial motor axons respond differently to the floor plate and sensory ganglia in collagen gel co-cultures. Eur. J. Neurosci. 8, 906–916 (1996).

    CAS  PubMed  Google Scholar 

  107. Colamarino, S. A. & Tessier-Lavigne, M. The axonal chemoattractant netrin-1 is also a chemorepellent for trochlear motor axons. Cell 81, 621–629 (1995).

    CAS  PubMed  Google Scholar 

  108. Varela-Echavarria, A., Tucker, A., Puschel, A. W. & Guthrie, S. Motor axon subpopulations respond differentially to the chemorepellents netrin-1 and semaphorin D. Neuron 18, 193–207 (1997). This paper presents in vitro evidence for a differential effect of netrin 1 and SEMA3A, with netrin 1 repelling only BM and VM axons and SEMA3A repelling BM and VM and somatic cranial motor neuron axons.

    CAS  PubMed  Google Scholar 

  109. Hammond, R. et al. Slit-mediated repulsion is a key regulator of motor axon pathfinding in the hindbrain. Development 132, 4483–4495 (2005). This study uses a combination of electroporation in chicks, in vitro assays and, importantly, in vivo evidence, to demonstrate a role for Slit–ROBO signalling in the repulsion of BM and VM axons away from the midline and towards their exit points.

    CAS  PubMed  Google Scholar 

  110. Barrett, C. & Guthrie, S. Expression patterns of the netrin receptor UNC5H1 among developing motor neurons in the embryonic rat hindbrain. Mech. Dev. 106, 163–166 (2001).

    CAS  PubMed  Google Scholar 

  111. Chilton, J. K. & Guthrie, S. Cranial expression of class 3 secreted semaphorins and their neuropilin receptors. Dev. Dyn. 228, 726–733 (2003).

    CAS  PubMed  Google Scholar 

  112. Melendez-Herrera, E. & Varela-Echavarria, A. Expression of secreted semaphorins and their receptors in specific neuromeres, boundaries, and neuronal groups in the developing mouse and chick brain. Brain Res. 1067, 126–137 (2006).

    CAS  PubMed  Google Scholar 

  113. Kennedy, T. E., Serafini, T., de la Torre, J. R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994).

    CAS  PubMed  Google Scholar 

  114. Kennedy, T. E., Wang, H., Marshall, W. & Tessier-Lavigne, M. Axon guidance by diffusible chemoattractants: a gradient of netrin protein in the developing spinal cord. J. Neurosci. 26, 8866–8874 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Brose, K. et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96, 795–806 (1999).

    CAS  PubMed  Google Scholar 

  116. Sabatier, C. et al. The divergent Robo family protein rig-1/Robo3 is a negative regulator of slit responsiveness required for midline crossing by commissural axons. Cell 117, 157–169 (2004).

    CAS  PubMed  Google Scholar 

  117. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    CAS  PubMed  Google Scholar 

  118. Burgess, R. W., Jucius, T. J. & Ackerman, S. L. Motor axon guidance of the mammalian trochlear and phrenic nerves: dependence on the netrin receptor Unc5c and modifier loci. J. Neurosci. 26, 5756–5766 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Engelkamp, D. Cloning of three mouse Unc5 genes and their expression patterns at mid-gestation. Mech. Dev. 118, 191–197 (2002).

    CAS  PubMed  Google Scholar 

  120. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927–941 (1999).

    CAS  PubMed  Google Scholar 

  121. Keleman, K. & Dickson, B. J. Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32, 605–617 (2001).

    CAS  PubMed  Google Scholar 

  122. Labrador, J. P. et al. The homeobox transcription factor even-skipped regulates netrin-receptor expression to control dorsal motor-axon projections in Drosophila. Curr. Biol. 15, 1413–1419 (2005).

    CAS  PubMed  Google Scholar 

  123. Anderson, C. N. et al. Molecular analysis of axon repulsion by the notochord. Development 130, 1123–1133 (2003).

    CAS  PubMed  Google Scholar 

  124. Lieberam, I., Agalliu, D., Nagasawa, T., Ericson, J. & Jessell, T. M. A Cxcl12-Cxcr4 chemokine signaling pathway defines the initial trajectory of mammalian motor axons. Neuron 47, 667–679 (2005).

    CAS  PubMed  Google Scholar 

  125. Chalasani, S. H., Sabelko, K. A., Sunshine, M. J., Littman, D. R. & Raper, J. A. A chemokine, SDF-1, reduces the effectiveness of multiple axonal repellents and is required for normal axon pathfinding. J. Neurosci. 23, 1360–1371 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Moody, S. A. & Heaton, M. B. Developmental relationships between trigeminal ganglia and trigeminal motoneurons in chick embryos. II. Ganglion axon ingrowth guides motoneuron migration. J. Comp. Neurol. 213, 344–349 (1983).

    CAS  PubMed  Google Scholar 

  127. Niederlander, C. & Lumsden, A. Late emigrating neural crest cells migrate specifically to the exit points of cranial branchiomotor nerves. Development 122, 2367–2374 (1996).

    CAS  PubMed  Google Scholar 

  128. Ju, M. J., Aroca, P., Luo, J., Puelles, L. & Redies, C. Molecular profiling indicates avian branchiomotor nuclei invade the hindbrain alar plate. Neuroscience 128, 785–796 (2004).

    CAS  PubMed  Google Scholar 

  129. Guthrie, S. & Lumsden, A. Motor neuron pathfinding following rhombomere reversals in the chick embryo hindbrain. Development 114, 663–673 (1992).

    CAS  PubMed  Google Scholar 

  130. Caton, A. et al. The branchial arches and HGF are growth-promoting and chemoattractant for cranial motor axons. Development 127, 1751–1766 (2000).

    CAS  PubMed  Google Scholar 

  131. Vermeren, M. et al. Integrity of developing spinal motor columns is regulated by neural crest derivatives at motor exit points. Neuron 37, 403–415 (2003).

    CAS  PubMed  Google Scholar 

  132. Tosney, K. W. & Oakley, R. A. The perinotochordal mesenchyme acts as a barrier to axon advance in the chick embryo: implications for a general mechanism of axonal guidance. Exp. Neurol. 109, 75–89 (1990).

    CAS  PubMed  Google Scholar 

  133. Puschel, A. W., Adams, R. H. & Betz, H. Murine semaphorin D/collapsin is a member of a diverse gene family and creates domains inhibitory for axonal extension. Neuron 14, 941–948 (1995).

    CAS  PubMed  Google Scholar 

  134. Taniguchi, M. et al. Disruption of Semaphorin III/D gene causes severe abnormality in peripheral nerve projection. Neuron 19, 519–530 (1997). Together with reference 133, this paper describes the defects in cranial nerve fasciculation and pathfinding in SEMA3A and neuropilin 1 mutants, showing an important role for this ligand–receptor pair in peripheral nerve projections.

    CAS  PubMed  Google Scholar 

  135. Kitsukawa, T. et al. Neuropilin-semaphorin III/D-mediated chemorepulsive signals play a crucial role in peripheral nerve projection in mice. Neuron 19, 995–1005 (1997).

    CAS  PubMed  Google Scholar 

  136. Naeem, A., Abbas, L. & Guthrie, S. Comparison of the effects of HGF, BDNF, CT-1, CNTF, and the branchial arches on the growth of embryonic cranial motor neurons. J. Neurobiol. 51, 101–114 (2002).

    CAS  PubMed  Google Scholar 

  137. O'Connor, R. & Tessier-Lavigne, M. Identification of maxillary factor, a maxillary process-derived chemoattractant for developing trigeminal sensory axons. Neuron 24, 165–178 (1999).

    CAS  PubMed  Google Scholar 

  138. Jacob, J., Tiveron, M. C., Brunet, J. F. & Guthrie, S. Role of the target in the pathfinding of facial visceral motor axons. Mol. Cell. Neurosci. 16, 14–26 (2000).

    CAS  PubMed  Google Scholar 

  139. Young, H. M., Anderson, R. B. & Anderson, C. R. Guidance cues involved in the development of the peripheral autonomic nervous system. Auton. Neurosci. 112, 1–14 (2004).

    CAS  PubMed  Google Scholar 

  140. Tosney, K. W. & Landmesser, L. T. Pattern and specificity of axonal outgrowth following varying degrees of chick limb bud ablation. J. Neurosci. 4, 2518–2527 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Warrilow, J. & Guthrie, S. Rhombomere origin plays a role in the specificity of cranial motor axon projections in the chick. Eur. J. Neurosci. 11, 1403–1413 (1999).

    CAS  PubMed  Google Scholar 

  142. Higashijima, S., Hotta, Y. & Okamoto, H. Visualization of cranial motor neurons in live transgenic zebrafish expressing green fluorescent protein under the control of the Islet-1 promoter/enhancer. J. Neurosci. 20, 206–218 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Prin, F., Ng, K. E., Thaker, U., Drescher, U. & Guthrie, S. Ephrin-As play a rhombomere-specific role in trigeminal motor axon projections in the chick embryo. Dev. Biol. 279, 402–419 (2005).

    CAS  PubMed  Google Scholar 

  144. Kury, P., Gale, N., Connor, R., Pasquale, E. & Guthrie, S. Eph receptors and ephrin expression in cranial motor neurons and the branchial arches of the chick embryo. Mol. Cell. Neurosci. 15, 123–140 (2000).

    CAS  PubMed  Google Scholar 

  145. Noden, D. M., Marcucio, R., Borycki, A. G. & Emerson, C. P., Jr. Differentiation of avian craniofacial muscles. I. Patterns of early regulatory gene expression and myosin heavy chain synthesis. Dev. Dyn. 216, 96–112 (1999).

    CAS  PubMed  Google Scholar 

  146. Wahl, C. M., Noden, D. M. & Baker, R. Developmental relations between sixth nerve motor neurons and their targets in the chick embryo. Dev. Dyn. 201, 191–202 (1994).

    CAS  PubMed  Google Scholar 

  147. Chilton, J. K. & Guthrie, S. Development of oculomotor axon projections in the chick embryo. J. Comp. Neurol. 472, 308–317 (2004).

    PubMed  Google Scholar 

  148. Irving, C., Malhas, A., Guthrie, S. & Mason, I. Establishing the trochlear motor axon trajectory: role of the isthmic organiser and Fgf8. Development 129, 5389–5398 (2002).

    CAS  PubMed  Google Scholar 

  149. Giger, R. J. et al. Neuropilin-2 is required in vivo for selective axon guidance responses to secreted semaphorins. Neuron 25, 29–41 (2000). Together with references 150–152, this paper establishes a role for SEMA3F–neuropilin 2 interactions in the initial guidance of the oculomotor and trochlear nerves, in this case using neuropilin 2 mouse mutants.

    CAS  PubMed  Google Scholar 

  150. Chen, H. et al. Neuropilin-2 regulates the development of selective cranial and sensory nerves and hippocampal mossy fiber projections. Neuron 25, 43–56 (2000).

    PubMed  Google Scholar 

  151. Sahay, A., Molliver, M. E., Ginty, D. D. & Kolodkin, A. L. Semaphorin 3F is critical for development of limbic system circuitry and is required in neurons for selective CNS axon guidance events. J. Neurosci. 23, 6671–6680 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Watanabe, Y., Toyoda, R. & Nakamura, H. Navigation of trochlear motor axons along the midbrain-hindbrain boundary by neuropilin 2. Development 131, 681–692 (2004).

    CAS  PubMed  Google Scholar 

  153. Gutowski, N. J. Duane's syndrome. Eur. J. Neurol. 7, 145–149 (2000).

    CAS  PubMed  Google Scholar 

  154. Tischfield, M. A. et al. Homozygous HOXA1 mutations disrupt human brainstem, inner ear, cardiovascular and cognitive development. Nature Genet. 37, 1035–1037 (2005).

    CAS  PubMed  Google Scholar 

  155. Nakano, M. et al. Homozygous mutations in ARIX (PHOX2A) result in congenital fibrosis of the extraocular muscles type 2. Nature Genet. 29, 315–320 (2001).

    CAS  PubMed  Google Scholar 

  156. Al-Baradie, R. et al. Duane radial ray syndrome (Okihiro syndrome) maps to 20q13 and results from mutations in SALL4, a new member of the SAL family. Am. J. Hum. Genet. 71, 1195–1199 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Yamada, K. et al. Heterozygous mutations of the kinesin KIF21A in congenital fibrosis of the extraocular muscles type 1 (CFEOM1). Nature Genet. 35, 318–321 (2003).

    CAS  PubMed  Google Scholar 

  158. Jen, J. C. et al. Mutations in a human ROBO gene disrupt hindbrain axon pathway crossing and morphogenesis. Science 304, 1509–1513 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Bosley, T. M. et al. Clinical characterization of the HOXA1 syndrome BSAS variant. Neurology 69, 1245–1253 (2007).

    CAS  PubMed  Google Scholar 

  160. Demer, J. L., Ortube, M. C., Engle, E. C. & Thacker, N. High-resolution magnetic resonance imaging demonstrates abnormalities of motor nerves and extraocular muscles in patients with neuropathic strabismus. J. Aapos 10, 135–142 (2006).

    PubMed  PubMed Central  Google Scholar 

  161. Demer, J. L., Clark, R. A., Lim, K. H. & Engle, E. C. Magnetic resonance imaging evidence for widespread orbital dysinnervation in dominant Duane's retraction syndrome linked to the DURS2 locus. Invest. Ophthalmol. Vis. Sci. 48, 194–202 (2007).

    PubMed  Google Scholar 

  162. Bosley, T. M. et al. Neurological features of congenital fibrosis of the extraocular muscles type 2 with mutations in PHOX2A. Brain 129, 2363–2374 (2006).

    PubMed  Google Scholar 

  163. Demer, J. L., Clark, R. A. & Engle, E. C. Magnetic resonance imaging evidence for widespread orbital dysinnervation in congenital fibrosis of extraocular muscles due to mutations in KIF21A. Invest. Ophthalmol. Vis. Sci. 46, 530–539 (2005).

    PubMed  Google Scholar 

  164. Marszalek, J. R., Weiner, J. A., Farlow, S. J., Chun, J. & Goldstein, L. S. Novel dendritic kinesin sorting identified by different process targeting of two related kinesins: KIF21A and KIF21B. J. Cell Biol. 145, 469–479 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Miller, M. T. et al. Autism associated with conditions characterized by developmental errors in early embryogenesis: a mini review. Int. J. Dev. Neurosci. 23, 201–219 (2005).

    PubMed  Google Scholar 

  166. Bothe, I. & Dietrich, S. The molecular setup of the avian head mesoderm and its implication for craniofacial myogenesis. Dev. Dyn. 235, 2845–2860 (2006).

    CAS  PubMed  Google Scholar 

  167. Porter, J. D. et al. Distinctive morphological and gene/protein expression signatures during myogenesis in novel cell lines from extraocular and hindlimb muscle. Physiol. Genomics 24, 264–275 (2006).

    CAS  PubMed  Google Scholar 

  168. Trainor, P. A. & Krumlauf, R. Patterning the cranial neural crest: hindbrain segmentation and Hox gene plasticity. Nature Rev. Neurosci. 1, 116–124 (2000).

    CAS  Google Scholar 

  169. Lumsden, A., Sprawson, N. & Graham, A. Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113, 1281–1291 (1991).

    CAS  PubMed  Google Scholar 

  170. Santagati, F. & Rijli, F. M. Cranial neural crest and the building of the vertebrate head. Nature Rev. Neurosci. 4, 806–818 (2003).

    CAS  Google Scholar 

Download references

Acknowledgements

Thanks to A. Lumsden and R. Knight for critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Glossary

Neural tube

The primordium of the nervous system.

Floor plate

The ventral midline structure of the CNS. It has a role in patterning and axon guidance.

Branchial arches

Repeated bars of mesenchymal tissue that contribute to the lower jaw and neck; each contains a cartilaginous component, a muscular component, a nerve and an artery.

Basal plate

The ventral half of the neuroepithelium.

Alar plate

The dorsal half of the neuroepithelium.

Neuroepithelium

A part of the early nervous system that consists of dividing progenitors arranged in a columnar epithelium.

Homeobox

A conserved 180 base pair sequence that encodes homeodomain regions of proteins that are involved in binding to DNA and regulating transcription.

Cranial paraxial mesoderm

The population of mesoderm cells that originates adjacent to the brainstem and gives rise to many head muscles.

Sphenopalatine ganglion

A parasympathetic ganglion that is innervated by VM neurons of the facial nerve.

Rhombic lip

The structure at the dorsal extreme of the hindbrain.

Congenital fibromatosis of the extraocular muscles

(CFEOM). A group of congenital syndromes that involve cranial nerve miswiring and paralysis or paresis of the extraocular muscles, often associated with drooping of the upper eyelid.

Duane syndrome

A congenital eye movement disorder characterized by impeded horizontal eye movements that resut from miswiring of the eye muscles.

Horizontal gaze palsy with progressive scoliosis

(HGPPS). A rare congenital syndrome that is characterized by the absence of conjugate horizontal eye movements and by deformities in the spine.

Möbius syndrome

A rare congenital disorder caused by abnormal development of the cranial nerves, which results in paresis or paralysis of the facial muscles and, in some cases, other abnormalities.

Marcus Gunn syndrome

Also known as jaw-winking syndrome. It consists of an elevation or depression of the eyelid on chewing and/or suckling, and is thought to be caused by aberrant innervation of branches of the trigeminal and oculomotor nerves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guthrie, S. Patterning and axon guidance of cranial motor neurons. Nat Rev Neurosci 8, 859–871 (2007). https://doi.org/10.1038/nrn2254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing