Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genomic imprinting effects on brain development and function

Key Points

  • In a small fraction of mammalian genes, one of the two alleles is partially or completely switched off. The decision as to which one is silenced depends on which allele was inherited from the mother and which from the father.

  • Imprinted genes have a key role in growth regulation, and maternally and paternally expressed genes have antagonistic actions in this process. This has led to the view that imprinted genes might arise from differing interests of the male and female genomes in the physiology and behaviour of offspring, resulting in a form of intragenomic conflict.

  • Early work with mouse chimaeras indicated that imprinted genes have important effects on brain size and development, and raised the possibility that maternal and paternal genomes could have dissociable effects on the organization of functionally distinct brain systems.

  • Recent evidence suggests that brain-expressed imprinted gene products interact with molecular signalling pathways that coordinate the patterning, pruning and differentiation of brain cells.

  • The actions of imprinted genes in the brain have functional consequences, for example, for behaviours that mediate mother–infant interactions.

  • The persistent expression of imprinted genes in the brain has enduring effects that last into adulthood.

  • Some imprinted genes might be associated with a risk of neuropsychiatric disorders, notably autism spectrum disorders and the phenotypically overlapping conditions Angelman syndrome and Rett syndrome.

  • Many issues remain controversial, including the extent to which genomic-imprinting effects on the brain and on behaviour can be accommodated within existing evolutionary theories.

Abstract

In a small fraction of mammalian genes — at present estimated at less than 1% of the total — one of the two alleles that is inherited by the offspring is partially or completely switched off. The decision as to which one is silenced depends on which allele was inherited from the mother and which from the father. These idiosyncratic loci are known as imprinted genes, and their existence is an evolutionary enigma, as they effectively nullify the advantages of diploidy. Although they are small in number, these genes have important effects on physiology and behaviour, and many are expressed in the brain. There is increasing evidence that imprinted genes influence brain function and behaviour by affecting neurodevelopmental processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cycle of genomic imprinting.
Figure 2: Molecular interactions of imprinted-gene products.

Similar content being viewed by others

References

  1. Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet. 2, 21–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Davies, W., Isles, A. R. & Wilkinson, L. S. Imprinted gene expression in the brain. Neurosci. Biobehav. Rev. 29, 421–430 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Fowden, A. L., Sibley, C., Reik, W. & Constancia, M. Imprinted genes, placental development and fetal growth. Horm. Res. 65 (Suppl. 3), 50–58 (2006).

    CAS  PubMed  Google Scholar 

  4. Wilkins, J. F. & Haig, D. What good is genomic imprinting: the function of parent-specific gene expression. Nature Rev. Genet. 4, 359–368 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Barton, S. C., Surani, M. A. & Norris, M. L. Role of paternal and maternal genomes in mouse development. Nature 311, 374–376 (1984). Together with this reference 6, this study provided the first indication that both parental genomes are essential for normal development in mammals, suggesting that the maternal and paternal genomes are not functionally equivalent. It thus presaged the existence of imprinted genes.

    Article  CAS  PubMed  Google Scholar 

  6. McGrath, J. & Solter, D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37, 179–183 (1984).

    Article  CAS  PubMed  Google Scholar 

  7. DeChiara, T. M., Robertson, E. J. & Efstratiadis, A. Parental imprinting of the mouse insulin-like growth factor II gene. Cell 64, 849–859 (1991). Together with reference 8, this study identified the first confirmed imprinted genes, namely, paternally expressed Igf2 and maternally expressed Igf2r . The discovery of these genes and of the fact that they were reciprocally imprinted confirmed earlier theoretical predictions, and the genes' antagonistic actions on growth provided strong initial evidence in favour of the general idea of intragenomic conflict.

    CAS  PubMed  Google Scholar 

  8. Barlow, D. P., Stoger, R., Herrmann, B. G., Saito, K. & Schweifer, N. The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349, 84–87 (1991).

    CAS  PubMed  Google Scholar 

  9. Moore, T. & Haig, D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7, 45–49 (1991). This paper provided the first detailed discussion of intragenomic conflict as it relates to imprinted genes and mother–offspring resource allocation.

    Article  CAS  PubMed  Google Scholar 

  10. Constancia, M., Kelsey, G. & Reik, W. Resourceful imprinting. Nature 432, 53–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Allen, N. D. et al. Distribution of parthenogenetic cells in the mouse brain and their influence on brain development and behavior. Proc. Natl Acad. Sci. USA 92, 10782–10786 (1995). Together with reference 12, this study provided the first indication that the paternally and maternally inherited genomes might contribute differentially to brain development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keverne, E. B., Fundele, R., Narasimha, M., Barton, S. C. & Surani, M. A. Genomic imprinting and the differential roles of parental genomes in brain development. Brain Res. Dev. Brain Res. 92, 91–100 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Keverne, E. B., Martel, F. L. & Nevison, C. M. Primate brain evolution: genetic and functional considerations. Proc. Biol. Sci. 263, 689–696 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Kono, T. et al. Birth of parthenogenetic mice that can develop to adulthood. Nature 428, 860–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Albrecht, U. et al. Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nature Genet. 17, 75–78 (1997). This and reference 16 were key papers that showed that the Angelman syndrome candidate gene, UBE3A , is imprinted specifically in brain in both humans and mice.

    Article  CAS  PubMed  Google Scholar 

  16. Rougeulle, C., Glatt, H. & Lalande, M. The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nature Genet. 17, 14–15 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Wang, Y. et al. The mouse Murr1 gene is imprinted in the adult brain, presumably due to transcriptional interference by the antisense-oriented U2af1-rs1 gene. Mol. Cell Biol. 24, 270–279 (2004).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Davies, W. et al. Xlr3b is a new imprinted candidate for X-linked parent-of-origin effects on cognitive function in mice. Nature Genet. 37, 625–629 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Kuroiwa, Y. et al. Peg3 imprinted gene on proximal chromosome 7 encodes for a zinc finger protein. Nature Genet. 12, 186–190 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Li, L. et al. Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science 284, 330–333 (1999). This animal study linked a specific imprinted gene with specific behaviours and underlying changes in neurodevelopment.

    Article  CAS  PubMed  Google Scholar 

  21. Relaix, F. et al. Pw1/Peg3 is a potential cell death mediator and cooperates with Siah1a in p53-mediated apoptosis. Proc. Natl Acad. Sci. USA 97, 2105–2110 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamaguchi, A. et al. Peg3/Pw1 is involved in p53-mediated cell death pathway in brain ischemia/hypoxia. J. Biol. Chem. 277, 623–629 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Johnson, M. D., Wu, X., Aithmitti, N. & Morrison, R. S. Peg3/Pw1 is a mediator between p53 and Bax in DNA damage-induced neuronal death. J. Biol. Chem. 277, 23000–23007 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Relaix, F., Wei, X. J., Wu, X. & Sassoon, D. A. Peg3/Pw1 is an imprinted gene involved in the TNF–NFκB signal transduction pathway. Nature Genet. 18, 287–291 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Van Antwerp, D. J., Martin, S. J., Kafri, T., Green, D. R. & Verma, I. M. Suppression of TNF-α-induced apoptosis by NF-κB. Science 274, 787–789 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Ledgerwood, E. C., O'Rahilly, S. & Surani, M. A. The imprinted gene Peg3 is not essential for tumor necrosis factor α signaling. Lab. Invest. 80, 1509–1511 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Hatakeyama, S., Jensen, J. P. & Weissman, A. M. Subcellular localization and ubiquitin-conjugating enzyme (E2) interactions of mammalian HECT family ubiquitin protein ligases. J. Biol. Chem. 272, 15085–15092 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Nawaz, Z. et al. The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol. Cell Biol. 19, 1182–1189 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Kumar, S., Talis, A. L. & Howley, P. M. Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination. J. Biol. Chem. 274, 18785–18792 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Srivenugopal, K. S. & Ali-Osman, F. The DNA repair protein, O6-methylguanine-DNA methyltransferase is a proteolytic target for the E6 human papillomavirus oncoprotein. Oncogene 21, 5940–5945 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Reiter, L. T., Seagroves, T. N., Bowers, M. & Bier, E. Expression of the Rho-GEF Pbl/ECT2 is regulated by the UBE3A E3 ubiquitin ligase. Hum. Mol. Genet. 15, 2825–2835 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Khan, O. Y. et al. Multifunction steroid receptor coactivator, E6-associated protein, is involved in development of the prostate gland. Mol. Endocrinol. 20, 544–559 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Verma, S. et al. The ubiquitin-conjugating enzyme UBCH7 acts as a coactivator for steroid hormone receptors. Mol. Cell Biol. 24, 8716–8726 (2004).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Li, L., Li, Z., Howley, P. M. & Sacks, D. B. E6AP and calmodulin reciprocally regulate estrogen receptor stability. J. Biol. Chem. 281, 1978–1985 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Cheron, G., Servais, L., Wagstaff, J. & Dan, B. Fast cerebellar oscillation associated with ataxia in a mouse model of Angelman syndrome. Neuroscience 130, 631–637 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Jiang, Y. H. et al. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21, 799–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Miura, K. et al. Neurobehavioral and electroencephalographic abnormalities in Ube3a maternal-deficient mice. Neurobiol. Dis. 9, 149–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. van Woerden, G. M. et al. Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation. Nature Neurosci. 10, 280–282 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Weeber, E. J. et al. Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J. Neurosci. 23, 2634–2644 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cooper, E. M., Hudson, A. W., Amos, J., Wagstaff, J. & Howley, P. M. Biochemical analysis of Angelman syndrome-associated mutations in the E3 ubiquitin ligase E6-associated protein. J. Biol. Chem. 279, 41208–41217 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Kuwako, K. et al. Disruption of the paternal necdin gene diminishes TrkA signaling for sensory neuron survival. J. Neurosci. 25, 7090–7099 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tcherpakov, M. et al. The p75 neurotrophin receptor interacts with multiple MAGE proteins. J. Biol. Chem. 277, 49101–49104 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Frade, J. M. Nuclear translocation of the p75 neurotrophin receptor cytoplasmic domain in response to neurotrophin binding. J. Neurosci. 25, 1407–1411 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taniura, H., Taniguchi, N., Hara, M. & Yoshikawa, K. Necdin, a postmitotic neuron-specific growth suppressor, interacts with viral transforming proteins and cellular transcription factor E2F1. J. Biol. Chem. 273, 720–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Taniura, H., Matsumoto, K. & Yoshikawa, K. Physical and functional interactions of neuronal growth suppressor necdin with p53. J. Biol. Chem. 274, 16242–16248 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Kuwajima, T., Taniura, H., Nishimura, I. & Yoshikawa, K. Necdin interacts with the Msx2 homeodomain protein via MAGE-D1 to promote myogenic differentiation of C2C12 cells. J. Biol. Chem. 279, 40484–40493 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Salehi, A. H. et al. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron 27, 279–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Kurita, M., Kuwajima, T., Nishimura, I. & Yoshikawa, K. Necdin downregulates CDC2 expression to attenuate neuronal apoptosis. J. Neurosci. 26, 12003–12013 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kimura, M. I. et al. Dlx5, the mouse homologue of the human-imprinted DLX5 gene, is biallelically expressed in the mouse brain. J. Hum. Genet. 49, 273–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Kuwajima, T., Nishimura, I. & Yoshikawa, K. Necdin promotes GABAergic neuron differentiation in cooperation with Dlx homeodomain proteins. J. Neurosci. 26, 5383–5392 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lee, S. et al. Essential role for the Prader-Willi syndrome protein necdin in axonal outgrowth. Hum. Mol. Genet. 14, 627–637 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Muscatelli, F. et al. Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader-Willi syndrome. Hum. Mol. Genet. 9, 3101–3110 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Pagliardini, S., Ren, J., Wevrick, R. & Greer, J. J. Developmental abnormalities of neuronal structure and function in prenatal mice lacking the Prader-Willi syndrome gene necdin. Am. J. Pathol. 167, 175–191 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Dimitropoulos, A. et al. Appetitive behavior, compulsivity, and neurochemistry in Prader-Willi syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 6, 125–130 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arnaud, P. et al. Conserved methylation imprints in the human and mouse GRB10 genes with divergent allelic expression suggests differential reading of the same mark. Hum. Mol. Genet. 12, 1005–1019 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. He, W., Rose, D. W., Olefsky, J. M. & Gustafson, T. A. Grb10 interacts differentially with the insulin receptor, insulin-like growth factor I receptor, and epidermal growth factor receptor via the Grb10 Src homology 2 (SH2) domain and a second novel domain located between the pleckstrin homology and SH2 domains. J. Biol. Chem. 273, 6860–6867 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Mano, H. et al. Grb10/GrbIR as an in vivo substrate of Tec tyrosine kinase. Genes Cells 3, 431–441 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Nantel, A., Huber, M. & Thomas, D. Y. Localization of endogenous Grb10 to the mitochondria and its interaction with the mitochondrial-associated Raf-1 pool. J. Biol. Chem. 274, 35719–35724 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Baladron, V. et al. dlk acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats. Exp. Cell Res. 303, 343–359 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Jensen, C. H. et al. Neurons in the monoaminergic nuclei of the rat and human central nervous system express FA1/dlk. Neuroreport 12, 3959–3963 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Christophersen, N. S. et al. Midbrain expression of Delta-like 1 homologue is regulated by GDNF and is associated with dopaminergic differentiation. Exp. Neurol. 204, 791–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Tseng, Y. H. et al. Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin. Nature Cell. Biol. 7, 601–611 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Yin, D. et al. DLK1: increased expression in gliomas and associated with oncogenic activities. Oncogene 25, 1852–1861 (2006).

    Article  CAS  PubMed  Google Scholar 

  65. Parrish, J. R., Gulyas, K. D. & Finley, R. L. Jr. Yeast two-hybrid contributions to interactome mapping. Curr. Opin. Biotechnol. 17, 387–393 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Plagge, A. et al. The imprinted signaling protein XLαs is required for postnatal adaptation to feeding. Nature Genet. 36, 818–826 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Curley, J. P., Barton, S., Surani, A. & Keverne, E. B. Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc. Biol. Sci. 271, 1303–1309 (2004).

    Article  PubMed Central  PubMed  Google Scholar 

  68. Hurst, L. D., Pomiankowski, A. & McVean, G. T. Peg3 and the Conflict Hypothesis. Science 287, 1167 (2000).

    Article  Google Scholar 

  69. Cassidy, S. B., Dykens, E. & Williams, C. A. Prader-Willi and Angelman syndromes: sister imprinted disorders. Am. J. Med. Genet. 97, 136–146 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Summers, J. A. & Feldman, M. A. Distinctive pattern of behavioral functioning in Angelman syndrome. Am. J. Ment. Retard. 104, 376–384 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Cassidy, S. B. Prader-Willi syndrome. J. Med. Genet. 34, 917–923 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Williams, C. A. Neurological aspects of the Angelman syndrome. Brain Dev. 27, 88–94 (2005).

    Article  PubMed  Google Scholar 

  73. Yamada, K., Matsuzawa, H., Uchiyama, M., Kwee, I. L. & Nakada, T. Brain developmental abnormalities in Prader-Willi syndrome detected by diffusion tensor imaging. Pediatrics 118, 442–448 (2006).

    Article  Google Scholar 

  74. Peters, S. U. et al. Cognitive and adaptive behavior profiles of children with Angelman syndrome. Am. J. Med. Genet. A 128, 110–113 (2004).

    Article  Google Scholar 

  75. Hinton, E. C. et al. Neural representations of hunger and satiety in Prader-Willi syndrome. Int. J. Obes.(Lond.) 30, 313–321 (2006).

    Article  CAS  Google Scholar 

  76. Sinkkonen, S. T., Homanics, G. E. & Korpi, E. R. Mouse models of Angelman syndrome, a neurodevelopmental disorder, display different brain regional GABAA receptor alterations. Neurosci. Lett. 340, 205–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Brown, W. M. & Consedine, N. S. Just how happy is the happy puppet? An emotion signaling and kinship theory perspective on the behavioral phenotype of children with Angelman syndrome. Med. Hypotheses 63, 377–385 (2004).

    Article  PubMed  Google Scholar 

  78. Horsler, K. & Oliver, C. Environmental influences on the behavioral phenotype of Angelman syndrome. Am. J. Ment. Retard. 111, 311–321 (2006).

    Article  PubMed  Google Scholar 

  79. Plagge, A. et al. Imprinted Nesp55 influences behavioral reactivity to novel environments. Mol. Cell Biol. 25, 3019–3026 (2005).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Weaver, I. C. et al. Epigenetic programming by maternal behavior. Nature Neurosci. 7, 847–854 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Isles, A. R., Davies, W. & Wilkinson, L. S. Genomic imprinting and the social brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 2229–2237 (2006). This paper provided an overview of the evolutionary issues that underlie the persistence of imprinting effects in the adult brain, discussing them in the context of intragenomic conflict and extending imprinting effects into the domains of complex social behaviours.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Davies, W., Isles, A. R. & Wilkinson, L. S. Imprinted genes and mental dysfunction. Ann. Med. 33, 428–436 (2001).

    Article  CAS  PubMed  Google Scholar 

  83. Ebers, G. C. et al. Parent-of-origin effect in multiple sclerosis: observations in half-siblings. Lancet 363, 1773–1774 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Schulze, T. G. et al. Loci on chromosomes 6q and 6p interact to increase susceptibility to bipolar affective disorder in the national institute of mental health genetics initiative pedigrees. Biol. Psychiatry 56, 18–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Francks, C. et al. Parent-of-origin effects on handedness and schizophrenia susceptibility on chromosome 2p12–q11. Hum. Mol. Genet. 12, 3225–3230 (2003).

    Article  CAS  PubMed  Google Scholar 

  86. Skuse, D. H. et al. Evidence from Turner's syndrome of an imprinted X-linked locus affecting cognitive function. Nature 387, 705–708 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Schanen, N. C. Epigenetics of autism spectrum disorders. Hum. Mol. Genet. 15, R138–R150 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Cook, E. H. Jr et al. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am. J. Hum. Genet. 60, 928–934 (1997). This paper provided evidence that suggested that imprinted genes in the chromosomal region that causes Angelman syndrome and PWS might also contribute to vulnerability to ASD.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Jiang, Y. H. et al. A mixed epigenetic/genetic model for oligogenic inheritance of autism with a limited role for UBE3A. Am. J. Med. Genet. A. 131, 1–10 (2004).

    Article  PubMed  Google Scholar 

  90. Meguro, M. et al. A novel maternally expressed gene, ATP10C, encodes a putative aminophospholipid translocase associated with Angelman syndrome. Nature Genet. 28, 19–20 (2001).

    CAS  PubMed  Google Scholar 

  91. Nurmi, E. L. et al. Dense linkage disequilibrium mapping in the 15q11–q13 maternal expression domain yields evidence for association in autism. Mol. Psychiatry 8, 624–634 (2003).

    Article  CAS  PubMed  Google Scholar 

  92. Hogart, A., Nagarajan, R. P., Patzel, K. A., Yasui, D. H. & Lasalle, J. M. 15q11–13 GABAA receptor genes are normally biallelically expressed in brain yet are subject to epigenetic dysregulation in autism-spectrum disorders. Hum. Mol. Genet. 16, 691–703 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Samaco, R. C., Hogart, A. & LaSalle, J. M. Epigenetic overlap in autism-spectrum neurodevelopmental disorders: MECP2 deficiency causes reduced expression of UBE3A and GABRB3. Hum. Mol. Genet. 14, 483–492 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Zoghbi, H. Y. Postnatal neurodevelopmental disorders: meeting at the synapse? Science 302, 826–830 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Hu, Y. Q., Zhou, J. Y. & Fung, W. K. An extension of the transmission disequilibrium test incorporating imprinting. Genetics 175, 1489–1504 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  96. Shete, S., Elston, R. C. & Lu, Y. A novel approach to detect parent-of-origin effects from pedigree data with application to Beckwith-Wiedemann syndrome. Ann. Hum. Genet. 18 June 2007 (doi:10.1111/j.1469-1809.2007.00378.x).

    Article  PubMed  Google Scholar 

  97. Petronis, A. Human morbid genetics revisited: relevance of epigenetics. Trends Genet. 17, 142–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  98. Tsankova, N., Renthal, W., Kumar, A. & Nestler, E. J. Epigenetic regulation in psychiatric disorders. Nature Rev. Neurosci. 8, 355–367 (2007).

    Article  CAS  Google Scholar 

  99. Varmuza, S. & Mann, M. Genomic imprinting — defusing the ovarian time bomb. Trends Genet. 10, 118–123 (1994).

    Article  CAS  PubMed  Google Scholar 

  100. Beaudet, A. L. & Jiang, Y. H. A rheostat model for a rapid and reversible form of imprinting-dependent evolution. Am. J. Hum. Genet. 70, 1389–1397 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Wolf, J. B. & Hager, R. A maternal–offspring coadaptation theory for the evolution of genomic imprinting. PLoS Biol. 4, e380 (2006).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Dawkins, R. The Selfish Gene (Oxford Univ. Press, Oxford, 1989).

    Google Scholar 

  103. Haig, D. Parental antagonism, relatedness asymmetries, and genomic imprinting. Proc. R. Soc. Lond. B Biol. Sci. 264, 1657–1662 (1997).

    Article  CAS  Google Scholar 

  104. Harvey, P. H. & Krebs, J. R. Comparing brains. Science 249, 140–146 (1990).

    Article  CAS  PubMed  Google Scholar 

  105. Holopainen, I. E. et al. Decreased binding of 11Cflumazenil in Angelman syndrome patients with GABAA receptor β3 subunit deletions. Ann. Neurol. 49, 110–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  106. Lucignani, G. et al. GABAA receptor abnormalities in Prader-Willi syndrome assessed with positron emission tomography and 11Cflumazenil. Neuroimage 22, 22–28 (2004).

    Article  PubMed  Google Scholar 

  107. Clayton-Smith, J. & Laan, L. Angelman syndrome: a review of the clinical and genetic aspects. J. Med. Genet. 40, 87–95 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Oliver, C., Demetriades, L. & Hall, S. Effects of environmental events on smiling and laughing behavior in Angelman syndrome. Am. J. Ment. Retard. 107, 194–200 (2002).

    Article  PubMed  Google Scholar 

  109. Oliver, C. et al. Genomic imprinting and the expression of affect in Angelman syndrome: what's in the smile? J. Child Psychol. Psychiatry 48, 571–579 (2007).

    Article  PubMed  Google Scholar 

  110. Yamada, K. A. & Volpe, J. J. Angelman's syndrome in infancy. Dev. Med. Child Neurol. 32, 1005–1011 (1990).

    Article  CAS  PubMed  Google Scholar 

  111. Soni, S. et al. The course and outcome of psychiatric illness in people with Prader-Willi syndrome: implications for management and treatment. J. Intellect. Disabil. Res. 51, 32–42 (2007).

    Article  CAS  PubMed  Google Scholar 

  112. Vogels, A., Matthijs, G., Legius, E., Devriendt, K. & Fryns, J. P. Chromosome 15 maternal uniparental disomy and psychosis in Prader-Willi syndrome. J. Med. Genet. 40, 72–73 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Boer, H. et al. Psychotic illness in people with Prader Willi syndrome due to chromosome 15 maternal uniparental disomy. Lancet 359, 135–136 (2002).

    Article  PubMed  Google Scholar 

  114. Delaval, K. & Feil, R. Epigenetic regulation of mammalian genomic imprinting. Curr. Opin. Genet. Dev. 14, 188–195 (2004).

    Article  CAS  PubMed  Google Scholar 

  115. Aizawa, T., Maruyama, K., Kondo, H. & Yoshikawa, K. Expression of necdin, an embryonal carcinoma-derived nuclear protein, in developing mouse brain. Brain Res. Dev. Brain Res. 68, 265–274 (1992).

    Article  CAS  PubMed  Google Scholar 

  116. McLaughlin, D., Vidaki, M., Renieri, E. & Karagogeos, D. Expression pattern of the maternally imprinted gene Gtl2 in the forebrain during embryonic development and adulthood. Gene Expr. Patterns 6, 394–399 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Pham, N. V., Nguyen, M. T., Hu, J. F., Vu, T. H. & Hoffman, A. R. Dissociation of IGF2 and H19 imprinting in human brain. Brain Res. 810, 1–8 (1998).

    Article  CAS  PubMed  Google Scholar 

  118. Runte, M. et al. SNURF-SNRPN and UBE3A transcript levels in patients with Angelman syndrome. Hum. Genet. 114, 553–561 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Yamasaki, K. et al. Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Hum. Mol. Genet. 12, 837–847 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Kim, J., Lu, X. & Stubbs, L. Zim1, a maternally expressed mouse Kruppel-type zinc-finger gene located in proximal chromosome 7. Hum. Mol. Genet. 8, 847–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, Z. et al. Comparative analyses of genomic imprinting and CpG island-methylation in mouse Murr1 and human MURR1 loci revealed a putative imprinting control region in mice. Gene 366, 77–86 (2006).

    Article  CAS  PubMed  Google Scholar 

  122. Okita, C. et al. A new imprinted cluster on the human chromosome 7q21–q31, identified by human–mouse monochromosomal hybrids. Genomics 81, 556–559 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Bunzel, R. et al. Polymorphic imprinting of the serotonin-2A (5-HT2A) receptor gene in human adult brain. Brain Res. Mol. Brain Res. 59, 90–92 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our work is funded by a Cardiff University link chair, the Biotechnology and Biological Sciences Research Council UK, the Medical Research Council (MRC) UK, GlaxoSmithKline plc, Lilly UK (L.S.W.), the Beebe Trust and Health Foundation UK (A.I.) and Research Councils United Kingdom (W.D.). We would like to thank our collaborator P. Burgoyne and colleagues G. Kelsey, W. Reik, and A. Holland. L.S.W. is a member of the MRC Co-operative on Imprinting in Health and Disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence S. Wilkinson.

Related links

Related links

DATABASES

OMIM

Angelman syndrome

Bardet–Biedl syndrome

PWS

Rett syndrome

FURTHER INFORMATION

http://www.BGG.cardiff.ac.uk

Glossary

Parthenogenetic embryos

Embryos that develop in the absence of fertilization by a male. Parthenogenetic cells contain two copies of the maternal genome, but have no paternal contribution.

Androgenetic embryos

Embryos that develop in the absence of a contribution from a female. Androgenetic cells contain two copies of the paternal genome.

Yeast two-hybrid screen

A molecular method for determining whether proteins interact. The binding and activation domains of the transcription factor GAL4 are split and fused to the proteins in the assay. If the two proteins interact, the reconstituted GAL4 initiates the transcription of a reporter gene.

BAX

A well characterized regulator of apoptosis that exerts its effects through heterodimerization with BCL2.

Angelman syndrome

A neurodevelopmental disorder that is characterized by mental retardation, ataxia and a 'happy' disposition. It results from a lack of maternally expressed genes on chromosome 15, at positions q11–q13.

Wnt1 promoter

Wnt1 encodes a secreted signalling protein that is involved in developmental processes, including the induction of the mesencephalon and the cerebellum.

Prader–Willi syndrome

A neurodevelopmental disorder that is characterized by early hypotonia, followed by compulsive eating, mild mental retardation, several behavioural abnormalities and hypogonadism. It results from a lack of paternally expressed genes on chromosome 15, at positions q11–q13.

SH2-containing adaptor protein

A protein that is an accessory to the main proteins in a signal transduction pathway and that contains an SH-2 domain (which binds phosphorylated tyrosine residues).

Epidermal growth factor-like homeotic family

A group of proteins that are involved in cell signalling and subsequent neurodevelopment or neural patterning and which have homology with epidermal growth factor.

Disomies

The presence of two sets of chromosomes—the normal situation in diploid organisms such as humans and mice. In uniparental disomies, both sets of chromosomes originate from one parent.

Linkage

A technique for identifying candidate chromosomal regions that underlie a particular trait, based on the extent to which that trait is co-inherited with certain genetic markers.

Autism spectrum disorders

(ASD). A number of phenotypically overlapping neurodevelopmental conditions, including autism, Asperger's disorder, childhood disintegrative disorder and pervasive developmental disorder—not otherwise specified.

Linkage peaks

Chromosomal regions, identified by linkage analysis, that contain closely linked markers that are often co-inherited in probands.

Epigenetic hotspot

A region of the genome that is especially sensitive to perturbation of gene expression through effects on DNA methylation and/or histone modification.

Rett syndrome

A neurodevelopmental disorder that occurs mainly in females and is characterized by cognitive impairments and autism-like behaviours. In most cases, the disorder is caused by a mutation in the X-linked methyl CpG binding protein 2 gene. In males, this mutation is nearly always lethal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkinson, L., Davies, W. & Isles, A. Genomic imprinting effects on brain development and function. Nat Rev Neurosci 8, 832–843 (2007). https://doi.org/10.1038/nrn2235

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn2235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing