Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Essay
  • Published:

Imagining the brain cell: the neuron in visual culture

Abstract

Images of the exquisitely formed apparatus of the nervous system have great potential to capture the imagination. However, the fascinating complexity and diversity of neuronal form has only rarely been celebrated in broader visual culture. We discuss how scientific and cultural practices at the time of the neuron's discovery generated a legacy of schematic and simplified popular neuronal imagery, which is only now being revised in the light of technological advances and a changing artistic climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The historical origin of the 'typical' neuron.
Figure 2: The history of neuronal visualization.
Figure 3: Illustrations of the neuron: past to present.

References

  1. Ede, S. Art and Science (Tauris, London, 2004).

    Google Scholar 

  2. Webster, S. Science and society: art and science collaborations in the United Kingdom. Nature Rev. Immunol. 5, 965–969 (2005).

    Article  CAS  Google Scholar 

  3. Kemp, M. Leonardo (Oxford Univ. Press, Oxford, 2005).

    Google Scholar 

  4. Kemp, M. Science in culture. Nature 435, 888 (2005).

    Article  CAS  Google Scholar 

  5. Kwint, M. Desiring structures: exhibiting the dendritic form. Interdiscip. Sci. Rev. 30, 205–221 (2005).

    Article  Google Scholar 

  6. Kemp, M. Visualisations: the Nature Book of Art and Science (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  7. Banham, R. Theory and Design in the First Machine Age (MIT Press, Cambridge, Massachusetts, 1999).

    Google Scholar 

  8. Clarke, E. & O'Malley, C. D. The Human Brain and Spinal Cord (Univ. California Press, Berkeley and Los Angeles, 1968).

    Google Scholar 

  9. Shepherd, G. Foundations of the Neuron Doctrine (Oxford Univ. Press, New York and Oxford, 1991).

    Google Scholar 

  10. Barker, L. F. The Nervous System and its Constituent Neurones (Appleton, New York, 1899).

    Google Scholar 

  11. Merico, G. Microscopy in Camillo Golgi's times. J. Hist. Neurosci. 8, 113–120 (1999).

    Article  CAS  Google Scholar 

  12. Pannese, E. The Golgi Stain: invention, diffusion and impact on neurosciences. J. Hist. Neurosci. 8, 132–140 (1999).

    Article  CAS  Google Scholar 

  13. Edwards, J. S. & Huntford, R. Fridtjof Nansen: from the neuron to the North Polar Sea. Endeavour 22, 76–80 (1998).

    Article  CAS  Google Scholar 

  14. Ramón y Cajal, S. Estructura de los centros nerviosos de los aves. Rev. Trimest. Histol. Norm. Patol. 1, 305–315 (1888) (in Spanish).

    Google Scholar 

  15. Sherrington, C. S. The Integrative Action of the Nervous System (Yale Univ. Press, New Haven, 1906).

    Google Scholar 

  16. Marchi, V. & Algeri, G. Sulle degenerazioni discendenti consecutive a lesioni sperimentale in diverse zone delle corteccia cerberale. Riv. Sper. Freniatria Med. Legal. 11, 492–494 (1885) (in Italian).

    Google Scholar 

  17. Cowan, W. M. The emergence of modern neuroanatomy and developmental neurobiology. Neuron 20, 413–426 (1998).

    Article  CAS  Google Scholar 

  18. Nauta, W. J. H. & Feirtag, M. Fundamental Neuroanatomy (Freeman and Company, New York, 1986).

    Google Scholar 

  19. Taylor, A. C. & Weiss, P. Demonstration of axonal flow by the movement of tritium-labeled protein in mature optic nerve fibers. Proc. Natl Acad. Sci. USA 54, 1521–1527 (1965).

    Article  CAS  Google Scholar 

  20. Kristensson, K. Transport of fluorescent protein tracer in peripheral nerves. Acta Neuropathol. (Berl.) 16, 293–300 (1970).

    Article  CAS  Google Scholar 

  21. Stretton, A. O. & Kravitz, E. A. Neuronal geometry: determination with a technique of intracellular dye injection. Science 162, 132–134 (1968).

    Article  CAS  Google Scholar 

  22. Thomas, R. C. & Wilson, V. J. Marking single neurons by staining with intracellular recording microelectrodes. Science 151, 1538–1539 (1966).

    Article  CAS  Google Scholar 

  23. Thomas, R. C. & Wilson, V. J. Precise localization of Renshaw cells with a new marking technique. Nature 206, 211–213 (1965).

    Article  CAS  Google Scholar 

  24. Wiener, N. Cybernetics: or Control and Communication in the Animal and the Machine (Wiley, New York, 1948).

    Google Scholar 

  25. Lettvin, J. Y., Maturana, H. R., McCulloch, W. S. & Pitts, W. H. What the frog's eye tells the frog's brain. Proc. Inst. Radio Engr. 47, 1940–1951 (1959).

    Google Scholar 

  26. Hatten, M. E. & Heintz, N. Large-scale genomic approaches to brain development and circuitry. Annu. Rev. Neurosci. 28, 89–108 (2005).

    Article  CAS  Google Scholar 

  27. Skarnes, W. C., Auerbach, B. A. & Joyner, A. L. A gene trap approach in mouse embryonic stem cells: the lacZ reported is activated by splicing, reflects endogenous gene expression, and is mutagenic in mice. Genes Dev. 6, 903–918 (1992).

    Article  CAS  Google Scholar 

  28. Skarnes, W. C. et al. A public gene trap resource for mouse functional genomics. Nature Genet. 36, 543–544 (2004).

    Article  CAS  Google Scholar 

  29. Branda, C. S. & Dymecki, S. M. Talking about a revolution: the impact of site-specific recombinases on genetic analyses in mice. Dev. Cell 6, 7–28 (2004).

    Article  CAS  Google Scholar 

  30. Gong, S. et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425, 917–925 (2003).

    Article  CAS  Google Scholar 

  31. Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).

    Article  CAS  Google Scholar 

  32. Vassar, R. et al. Topographic organization of sensory projections to the olfactory bulb. Cell 79, 981–991 (1994).

    Article  CAS  Google Scholar 

  33. Gao, F. B., Brenman, J. E., Jan, L. Y. & Jan, Y. N. Genes regulating dendritic outgrowth, branching, and routing in Drosophila. Genes Dev. 13, 2549–2561 (1999).

    Article  CAS  Google Scholar 

  34. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 24, 251–254 (2001).

    Article  CAS  Google Scholar 

  35. Feng, G. et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28, 41–51 (2000).

    Article  CAS  Google Scholar 

  36. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  37. Ramón y Cajal, S. Recollections of My Life (MIT Press, Cambridge, Massachusetts,1989).

    Book  Google Scholar 

  38. Kemp, M. Science in culture. Nature 416, 265 (2002).

    Article  CAS  Google Scholar 

  39. Mombaerts, P. et al. Visualizing an olfactory sensory map. Cell 87, 675–686 (1996).

    Article  CAS  Google Scholar 

  40. Firestein, S. A nobel nose: the 2004 Nobel Prize in physiology and medicine. Neuron 45, 333–338 (2005).

    Article  CAS  Google Scholar 

  41. Warwick, R. & Williams, P. L. (eds) Anatomia del Gray (Zanichelli, Bologna, 1973) (in Italian).

    Google Scholar 

  42. Rose, S. & Lichtenfels, A. (eds) Brainbox (Portland, London, 1997).

    Google Scholar 

  43. Steiner, G. & Lenzlinger, J. Brainforest (Christoph Merian, Basel, 2005).

    Google Scholar 

  44. Van Leeuwenhoek, A. More observations from Mr. Leewenhook, in a letter of Sept. 7. 1674. sent to the publisher. Proc. R. Soc. Lond. 9, 178–182 (1674).

    Google Scholar 

  45. Golgi, C. Sulla Fina Anatomia Degli Organi Centrali del Sistema Nervoso (Istituto e Museo di Storia della Scienza di Firenze, Florence, 1873) (in Italian).

    Google Scholar 

  46. Ramón y Cajal, S. Histologie du Système Nerveux de l'Homme et des Vertébrés (Maloine, Paris, 1911) (in French).

    Google Scholar 

  47. Jacobson, M. Foundations of Neuroscience (Plenum, New York, 1993).

    Book  Google Scholar 

  48. Encyclopedia Brittanica 11th edn (Encyclopedia Brittanica, New York, 1911).

  49. Herrick, J. The Brain of the Tiger Salamander (Univ. Chicago Press, Chicago, 1948).

    Google Scholar 

  50. Braitenberg, V. On the Texture of Brains (Springer, New York, 1977).

    Book  Google Scholar 

  51. Banham, R. Megastructure: Urban Futures of the Recent Past (Harper and Row, New York, 1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Wingate.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Kwint's homepage

MRC Centre for Developmental Neurobiology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wingate, R., Kwint, M. Imagining the brain cell: the neuron in visual culture. Nat Rev Neurosci 7, 745–752 (2006). https://doi.org/10.1038/nrn1973

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1973

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing