Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making

Abstract

Intuitively, decisions should always improve with more time for the accumulation of evidence, yet psychophysical data show a limit of 200–300 ms for many perceptual tasks. Here, we consider mechanisms that favour such rapid information processing in vision and olfaction. We suggest that the brain limits some types of perceptual processing to short, discrete chunks (for example, eye fixations and sniffs) in order to facilitate the construction of global sensory images.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Integrator model.
Figure 2: Mechanisms that may limit the timescale or effectiveness of temporal integration.
Figure 3: Discrete sampling of sensory information in vision and olfaction.

Similar content being viewed by others

References

  1. Mazurek, M. E., Roitman, J. D., Ditterich, J. & Shadlen, M. N. A role for neural integrators in perceptual decision making. Cereb. Cortex 13, 1257–1269 (2003).

    Article  PubMed  Google Scholar 

  2. Aksay, E., Gamkrelidze, G., Seung, H. S., Baker, R. & Tank, D. W. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nature Neurosci. 4, 184–193 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Brody, C. D., Romo, R. & Kepecs, A. Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Curr. Opin. Neurobiol. 13, 204–211 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Goldman, M. S., Levine, J. H., Major, G., Tank, D. W. & Seung, H. S. Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. Cereb. Cortex 13, 1185–1195 (2003).

    Article  PubMed  Google Scholar 

  5. Seung, H. S., Lee, D. D., Reis, B. Y. & Tank, D. W. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26, 259–271 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, X. J. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci. 24, 455–463 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Koulakov, A. A., Raghavachari, S., Kepecs, A. & Lisman, J. E. Model for a robust neural integrator. Nature Neurosci. 5, 775–782 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Luce, R. D. Response Times: Their Role in Inferring Elementary Mental Organization (Oxford Univ. Press, New York, 1986).

    Google Scholar 

  9. Ratcliff, R. & Smith, P. L. A comparison of sequential sampling models for two-choice reaction time. Psychol. Rev. 111, 333–367 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).

    Article  Google Scholar 

  11. Laming, D. R. Information Theory of Choice–Reaction Time (Academic, New York, 1968).

    Google Scholar 

  12. Ratcliff, R., Gomez, P. & McKoon, G. A diffusion model account of the lexical decision task. Psychol. Rev. 111, 159–182 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Stone, M. Models for choice reaction time. Psychometrika 25, 251–260 (1960).

    Article  Google Scholar 

  14. Burr, D. C. & Santoro, L. Temporal integration of optic flow, measured by contrast and coherence thresholds. Vision Res. 41, 1891–1899 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Britten, K. H., Shadlen, M. N., Newsome, W. T. & Movshon, J. A. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12, 4745–4765 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roitman, J. D. & Shadlen, M. N. Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. J. Neurosci. 22, 9475–9489 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Palmer, J., Huk, A. C. & Shadlen, M. N. The effect of stimulus strength on the speed and accuracy of a perceptual decision. J. Vis. 5, 367–404 (2005).

    Article  Google Scholar 

  18. Shadlen, M. N. & Newsome, W. T. Motion perception: seeing and deciding. Proc. Natl Acad. Sci. USA 93, 628–633 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shadlen, M. N. & Newsome, W. T. Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. J. Neurophysiol. 86, 1916–1936 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Shadlen, M. N. & Gold, J. I. in The Cognitive Neurosciences (ed. Gazzaniga, M.) 1229–1241 (MIT Press, Cambridge, 2004).

    Google Scholar 

  21. Smith, P. L. & Ratcliff, R. Psychology and neurobiology of simple decisions. Trends Neurosci. 27, 161–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Schall, J. D. Neural correlates of decision processes: neural and mental chronometry. Curr. Opin. Neurobiol. 13, 182–186 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Hanes, D. P. & Schall, J. D. Neural control of voluntary movement initiation. Science 274, 427–430 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Gold, J. I. & Shadlen, M. N. Representation of a perceptual decision in developing oculomotor commands. Nature 404, 390–394 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Gold, J. I. & Shadlen, M. N. The influence of behavioral context on the representation of a perceptual decision in developing oculomotor commands. J. Neurosci. 23, 632–651 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Watson, A. B. Probability summation over time. Vision Res. 19, 515–522 (1979).

    Article  CAS  PubMed  Google Scholar 

  27. Karpov, A. P. in Neural Mechanisms of Goal-Directed Behavior (eds Thompson, R. F., Hicks, L. H. & Shvyrkov, V. B.) 273–282 (Academic, New York, 1980).

    Book  Google Scholar 

  28. Bodyak, N. & Slotnick, B. Performance of mice in an automated olfactometer: odor detection, discrimination and odor memory. Chem. Senses 24, 637–645 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Goldberg, S. J. & Moulton, D. G. Olfactory bulb responses telemetered during an odor discrimination task in rats. Exp. Neurol. 96, 430–442 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Slotnick, B. M. in Comparative Perception (eds Stebbins, W. & Berkley, M.) 155–244 (Wiley, New York, 1990).

    Google Scholar 

  31. Uchida, N. & Mainen, Z. F. Speed and accuracy of olfactory discrimination in the rat. Nature Neurosci. 6, 1224–1229 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Abraham, N. M. et al. Maintaining accuracy at the expense of speed: stimulus similarity defines odor discrimination time in mice. Neuron 44, 865–876 (2004).

    CAS  PubMed  Google Scholar 

  33. Khan, R. M. & Sobel, N. Neural processing at the speed of smell. Neuron 44, 744–747 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Zariwala, H., Uchida, N. & Mainen, Z. F. A study of speed and performance accuracy in an olfactory discrimination task. Soc. Neurosci. Abstr. 278.9 (2005).

  35. VanRullen, R. & Thorpe, S. J. The time course of visual processing: from early perception to decision-making. J. Cogn. Neurosci. 13, 454–461 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Johnson, J. S. & Olshausen, B. A. Timecourse of neural signatures of object recognition. J. Vis. 3, 499–512 (2003).

    Article  PubMed  Google Scholar 

  37. Bacon-Mace, N., Mace, M. J., Fabre-Thorpe, M. & Thorpe, S. J. The time course of visual processing: backward masking and natural scene categorisation. Vision Res. 45, 1459–1469 (2005).

    Article  PubMed  Google Scholar 

  38. Keesey, U. T. Effects of involuntary eye movements on visual acuity. J. Opt. Soc. Am. 50, 769–774 (1960).

    Article  CAS  PubMed  Google Scholar 

  39. Nachmias, J. Effect of exposure duration on visual contrast sensitivity with square-wave gratings. J. Opt. Soc. Am. 57, 421–427 (1967).

    Article  Google Scholar 

  40. Tulunay-Keesey, U. & Jones, R. M. The effect of micromovements of the eye and exposure duration on contrast sensitivity. Vision Res. 16, 481–488 (1976).

    Article  CAS  PubMed  Google Scholar 

  41. De Bruyn, B. & Orban, G. A. Human velocity and direction discrimination measured with random dot patterns. Vision Res. 28, 1323–1335 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Snowden, R. J. & Braddick, O. J. The temporal integration and resolution of velocity signals. Vision Res. 31, 907–914 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Uka, T. & DeAngelis, G. C. Contribution of middle temporal area to coarse depth discrimination: comparison of neuronal and psychophysical sensitivity. J. Neurosci. 23, 3515–3530 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Harwerth, R. S., Fredenburg, P. M. & Smith, E. L. Temporal integration for stereoscopic vision. Vision Res. 43, 505–517 (2003).

    Article  PubMed  Google Scholar 

  45. Shortess, G. K. & Krauskopf, J. Role of involuntary eye-movements in stereoscopic acuity. J. Opt. Soc. Am. 51, 555–559 (1961).

    Article  Google Scholar 

  46. Laing, D. G. Identification of single dissimilar odors is achieved by humans with a single sniff. Physiol. Behav. 37, 163–170 (1986).

    Article  CAS  PubMed  Google Scholar 

  47. Laing, D. G., Eddy, A., Francis, G. W. & Stephens, L. Evidence for the temporal processing of odor mixtures in humans. Brain Res. 651, 317–328 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Hick, W. E. On the rate of gain of information. Q. J. Exp. Psychol. 4, 11–26 (1952).

    Article  Google Scholar 

  49. Müller, J. R., Metha, A. B., Krauskopf, J. & Lennie, P. Information conveyed by onset transients in responses of striate cortical neurons. J. Neurosci. 21, 6978–6990 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Osborne, L. C., Bialek, W. & Lisberger, S. G. Time course of information about motion direction in visual area MT of macaque monkeys. J. Neurosci. 24, 3210–3222 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oram, M. W. & Perrett, D. I. Time course of neural responses discriminating different views of the face and head. J. Neurophysiol. 68, 70–84 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Tovee, M. J., Rolls, E. T., Treves, A. & Bellis, R. P. Information encoding and the responses of single neurons in the primate temporal visual cortex. J. Neurophysiol. 70, 640–654 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Heller, J., Hertz, J. A., Kjaer, T. W. & Richmond, B. J. Information flow and temporal coding in primate pattern vision. J. Comput. Neurosci. 2, 175–193 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Buracas, G. T., Zador, A. M., DeWeese, M. R. & Albright, T. D. Efficient discrimination of temporal patterns by motion-sensitive neurons in primate visual cortex. Neuron 20, 959–969 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Cain, W. S. Odor intensity after self-adaptation and cross-adaptation. Psychophysics 7, 271–275 (1969).

    Article  Google Scholar 

  56. Ekman, G., Berglund, B., Berglund, U. & Lindvall, T. Perceived intensity of odor as a function of time of adaptation. Scand. J. Psychol. 8, 177–187 (1967).

    Article  CAS  PubMed  Google Scholar 

  57. Pryor, G. T., Steinmet, G. & Stone, H. Changes in absolute detection threshold and in subjective intensity of suprathreshold stimuli during olfactory adaptation and recovery. Percept. Psychophys. 8, 331–335 (1970).

    Article  Google Scholar 

  58. Kurahashi, T. & Menini, A. Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385, 725–729 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Leinders-Zufall, T., Greer, C. A., Shepherd, G. M. & Zufall, F. Imaging odor-induced calcium transients in single olfactory cilia: specificity of activation and role in transduction. J. Neurosci. 18, 5630–5639 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Getchell, T. V. & Shepherd, G. M. Adaptive properties of olfactory receptors analysed with odour pulses of varying durations. J. Physiol. (Lond.) 282, 541–560 (1978).

    Article  CAS  Google Scholar 

  61. Friedrich, R. W. & Laurent, G. Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291, 889–894 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Stopfer, M., Jayaraman, V. & Laurent, G. Intensity versus identity coding in an olfactory system. Neuron 39, 991–1004 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Friedrich, R. W. & Laurent, G. Dynamics of olfactory bulb input and output activity during odor stimulation in zebrafish. J. Neurophysiol. 91, 2658–2669 (2004).

    Article  PubMed  Google Scholar 

  64. Mazor, O. & Laurent, G. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48, 661–673 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Zohary, E., Shadlen, M. N. & Newsome, W. T. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370, 140–143 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Wang, X. J. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–968 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Wong, K. F. & Wang, X. J. A recurrent network mechanism of time integration in perceptual decisions. J. Neurosci. 26, 1314–1328 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smith, P. L. Psychophysically principled models of visual simple reaction time. Psychol. Rev. 102, 567–593 (1995).

    Article  Google Scholar 

  69. Ratcliff, R. & Rouder, J. F. Modeling response times for two-choice decisions. Psychol Sci 9, 347–356 (1998).

    Article  Google Scholar 

  70. Ratcliff, R. A theory of order relation in perceptual matching. Psychol. Rev. 88, 212–225 (1981).

    Google Scholar 

  71. Busemeyer, J. R. & Townsend, J. T. Decision field theory: a dynamic–cognitive approach to decision making in an uncertain environment. Psychol. Rev. 100, 432–459 (1993).

    Article  CAS  PubMed  Google Scholar 

  72. Cook, E. P. & Maunsell, J. H. Dynamics of neuronal responses in macaque MT and VIP during motion detection. Nature Neurosci. 5, 985–994 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Usher, M. & McClelland, J. L. The time course of perceptual choice: the leaky, competing accumulator model. Psychol. Rev. 108, 550–592 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Irwin, D. E. Information integration across saccadic eye movements. Cognit. Psychol. 23, 420–456 (1991).

    Article  CAS  PubMed  Google Scholar 

  75. Nakayama, K. in Vision: Coding and Efficiency (ed. Blakemore, C.) 411–422 (Cambridge Univ. Press, 1990).

    Google Scholar 

  76. O'Regan, J. K. & Noe, A. A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24, 939–973 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Rayner, K. Eye movements in reading and information processing: 20 years of research. Psychol. Bull. 124, 372–422 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Ahissar, E. & Arieli, A. Figuring space by time. Neuron 32, 185–201 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Rensink, R. A. Change detection. Annu. Rev. Psychol. 53, 245–277 (2002).

    Article  PubMed  Google Scholar 

  80. Melcher, D. & Morrone, M. C. Spatiotopic temporal integration of visual motion across saccadic eye movements. Nature Neurosci. 6, 877–881 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon, Oxford, 1978).

    Google Scholar 

  82. Laing, D. G. Optimum perception of odor intensity by humans. Physiol. Behav. 34, 569–574 (1985).

    Article  CAS  PubMed  Google Scholar 

  83. Laing, D. G. Natural sniffing gives optimum odour perception for humans. Perception 12, 99–117 (1983).

    Article  CAS  PubMed  Google Scholar 

  84. Wise, P. M. & Cain, W. S. Latency and accuracy of discriminations of odor quality between binary mixtures and their components. Chem. Senses 25, 247–265 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Spors, H. & Grinvald, A. Spatio-temporal dynamics of odor representations in the mammalian olfactory bulb. Neuron 34, 301–315 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. VanRullen, R. & Koch, C. Is perception discrete or continuous? Trends Cogn. Sci. 7, 207–213 (2003).

    Article  PubMed  Google Scholar 

  87. Cang, J. & Isaacson, J. S. In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. J. Neurosci. 23, 4108–4116 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Margrie, T. W. & Schaefer, A. T. Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. J. Physiol. (Lond.) 546, 363–374 (2003).

    Article  CAS  Google Scholar 

  89. Buonviso, N., Amat, C. & Litaudon, P. Respiratory modulation of olfactory neurons in the rodent brain. Chem. Senses 31, 145–154 (2006).

    Article  PubMed  Google Scholar 

  90. Kepecs, A., Uchida, N. & Mainen, Z. F. The sniff as a unit of olfactory processing. Chem. Senses 31, 167–179 (2006).

    Article  PubMed  Google Scholar 

  91. Yabus, A. Eye movements and Vision (Plenum, New York, 1967).

    Book  Google Scholar 

  92. Hines, D. J. & Whishaw, I. Q. Home bases formed to visual cues but not to self-movement (dead reckoning) cues in exploring hippocampectomized rats. Eur. J. Neurosci. 22, 2363–2375 (2005).

    Article  PubMed  Google Scholar 

  93. Marks, L. Sensory Processes: The New Psychophysics (Academic, New York, 1974).

    Google Scholar 

  94. Wickelgren, W. Speed–accuracy tradeoff and information processing dynamics. Acta Psychologica 41, 67–85 (1977).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. R. DeWeese for discussions and comments on an earlier version of this manuscript. The original research of the authors was supported by a grant from the National Institute on Deafness and Other Communication Disorders (Z.F.M.) and fellowships from the Japan Society for the Promotion of Science, the Cold Spring Harbor Laboratory Association (N.U.) and the Swartz foundation (Z.F.M., N.U. and A.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary F. Mainen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Mainen's laboratory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchida, N., Kepecs, A. & Mainen, Z. Seeing at a glance, smelling in a whiff: rapid forms of perceptual decision making. Nat Rev Neurosci 7, 485–491 (2006). https://doi.org/10.1038/nrn1933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrn1933

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing